Research on mobile robots at URJC

Vicente Matellán y José María Cañas

vmo,jmplaza@gsyc.escet.urjc.es

25 de Mayo de 2004

The short history of our group

3

Environment

- URJC (1998): 4 campus, (~ 12,000 students)
- ESCET: 7 studies (ITIG, ITIS, II, IQ, LCM, ITI, IM)
- DIET (2002): ~ 125 teaching members (CCelA(1++),LSI(~ 50),ATC(~ 35),IT(~ 15),EST(~ 20)
- GSyC: Operating systems, networking, and robotics (1CU, 4TU, 2TEU 12 Ayud & 3 Asoc)
- Robotics Group: 1TU, 1AD, 2Ay, 1 bec (TC), 2 bec (TP, project) & 1 Visiting

The evolution of the group

Academic Year	People	Robots
1999-2000	1 Doct	+20 Lego, +2 Eyebots
2000-2001	1 Doct 1 Ay	+4 Eyebots, +10 Lego
2001-2002	1 Doct 1 Ay	+1 Pioneer
2002-2003	1 Doct 2 Ay	+1 Pioneer $+$ 1 laser
2003-2004	2 Doct 2 Ay 1 Vis	+3 Aibo $+$ 1 laser
	1 bec(TC), 2 bec(TP)	

4

Ourselves

 $\mathbf{5}$

Research activities examples

- Basic behaviors for EyeBot robots (robosoccer)
- PERA: Ad-hoc networks for mobile robots
- Dynamic Schema Hierarchies
- Robot localization using WiFi signal
- Topological navigation in a legged robot
- SiS: Speed Intelligent System

Basic behaviors for EyeBot robots (robosoccer)

Robosoccer environment

EyeBot robot

- 3 infrared sensors
- 1 camera (83 x 64 pixels)
- Programming: RoBIOS
- Radio communications
- On-board display (B&W)

Finding robots and the ball (off-board)

Initial image

Filtered image image

Segmented

Finding and following lines (on-board)

Color filtering

- RGB filter.
- Manual tunning.

Border analysis

- Bottom-up analysis
- Robust

Segmentation

PERA: Ad-hoc networks for mobile robots

What is **PERA**?

- Library for Robot communication
- Wireless and dynamic network
 - Radio with limited scope
 - Robots are moving all the time
 - No infrastructure
- Each Robot operates as a router
- Fixed routing is not suitable

Ad-Hoc Routing protocols

- Based on routing tables
- Based on demand routing
- AODV
 - Route discovery: (*RREQ*)/ (*RREP*)
 - Route maintenance

EyeBot Radio

- Radio module
- Small bandwidth (9600 baud)
- Limited data size (35 bytes)
- Robot OS (RoBios)
 - Radio system calls: *Send / receive*

Goals & Design

- Network transparency for applications
 - PERA functions replace OS primitives
- Multiple programs can communicate simultaneously

Top-down design: Application, transport, network, link

Similar to TCP/IP model

17

Link level

- Transmission is not reliable
- Non Blocking receive function
 - Check for new messages before *receive*

Network level

- Protocol based in on demand routing for Ad-Hoc networks
- Route discovery
 - RREQ (Route Request) message
 - RREP (Route Reply) message
- Route maintenance
 - RERR (Route Error) message
 - HELLO packet

Route discovery

Transport level

- Provides communication interface to applications
 - bind (port)
 - send (robot,port,data)
 - receive (port, &data)
- A good abstraction ->Ports.
 - Multiplexes the radio channel
 - Several applications communicate simultaneously
- Addressing scheme

Implementation

Tests

- $T_{Direct \ send \ 1 \ -> \ 2} \approx 1,75 \ secs$
- $T_{Direct \ send \ 1 \ -> \ 3} \approx \infty \ secs$
- $T_{Route \ discovery \ 1 \ -> \ 3} \approx 5,5 \ secs$
- $T_{PERA \ send \ 1 \ -> \ 3} \approx 5, 5 + 3, 5 \approx 9 \ secs$

Dynamic Schema Hierarchies

Dynamic Schema Hierachies

- architecture = perception + control
- perception and control are partitioned in small units: schemas
 - perceptual schemas
 - control schemas
- schemas can be combined in hierarchies
 - a control schema activates child perceptual schemas to identify relevant stimuli and child control schemas which react accordingly to them.
 - child control schemas implement parent's behavior while pursuing their own.

- Non blocking activation
- Continuous **modulation** through parameters
- Active perceptual schemas configure a **perceptual space** per level.

Action selection

- Control competition per level.
- Winner must be awake and be appropriate for current situation.
- Activation regions for coarse grain arbitration.
- Parent is called for arbitration in *control overlaps* and *absences*.

Situated perception

- perception is partitioned.
- it is explicitly taken into account in the architecture.
- context activation offers an attention mechanism.
- complex stimulus as a hierarchy of perceptual schemas (e.g. door = depth discontinuity + visual jamb)

Reconfiguration

- Number of levels depends on the task and is dynamic.
- Schemas can be reused at different levels.
- **Monitoring** is included in each schema, causing reconfiguration.
- An exception climb up for an schema able to deal with it.

Implementation

- Pioneer robot with a Linux laptop.
- Schemas \approx programming threads.
- Control loops (e.g. 100 ms)
- Shared variables, semaphores.
- List of brothers, arbitration callback.

Gotopoint behavior

 $\mathbf{31}$

 $\mathbf{32}$

RoboCup behavior (attack)

RoboCup behavior (modulation)

RoboCup behavior (perceptive space)

Robot localization using WiFi signal

 $\mathbf{35}$

Localization

Localization: Problem of determining the position of a robot in a map

- Different solutions (and problems):

Specific sensors (i.e. GPS): Outdoors only

Odometry: Noisy sensors, accumulated errors

Artificial landmarks (+Kalman): Engineerization

Natural landmarks (+Kalman): Complex recognition of landmarks

Range sensors (+probabilistic framework): Computational cost

Our approach

Use a probability distribution to accumulate position estimations using information from odometry and WiFi energy received from Access Points placed in a-priori known position

Advantages:

- Infrastructure has already been deployed
- Probabilistic localization has been successfully tested (Simmons95, Thrun00).

Probabilistic localization

Our environment

Theoretical aspects

- p(x(t)) is the probability of the robot to be in the location x
- Considering Markovian independence in (equation 1) and using (thrun98), probability can be computed incrementally (equation 3).
- Action model (robot movements) are integrated in 4.

$$p(x(t)) = p(x(t)/obs(t), obs(t-1), ...)$$
 (1)

$$p(x(t)) = p(x(t)/obs(t)) * p(x(t)/obs(t-1), obs(t-2), ...)$$
(2)

$$p(x(t)) = p(x(t)/obs(t)) * p(x(t-1))$$
 (3)

$$p(x(t)) = p(x(t)/mov(t-1), x(t-1)) * p(x(t-1))$$
(4)

Sensor model

- Posterior sensor model: p(x(t)/obs(t)) contains all the position information carried by the observation.
- A priori sensor model: p(obs(t)/x(t)), which contains the probability to obtain the given sensor measurement obs(t) in time t if the robot were at position x at time t.
- We will use WiFi energy measurements as main sensor observations, defined as a vector of visible AP and their signal level
- Ad-hoc posterior model: compare signal values with expected ones at each location. Normalize distance function.
- Two versions: a priori compiled energy map, and a theoretical WiFi propagation model.

Three a priori WiFi energy maps

Sensorial model when using energy maps

 $p(x/obs(t)) = 1 - d(t)\sigma$

where:

- σ is an amplification factor
- d(t) is computed as the percentage of energies from the sensor reading vector that fall close to its corresponding element in the expected vector
- A given threshold is set to consider two energies as close enough

WiFi propagation model

$$d(t) = e^{-\left(\sum_{i=0}^{AP} \left(\frac{|r_{obs}^{i} - r_{x}^{i}|}{100}\right)\sigma\right)^{2}}$$
(5)

where:

- Based on the breakpoint model (Clarke02).
- This is a free space loss model that takes into account only the distance from the emitter
- Two different regions are defined: before and after a *breakpoint*

Propagation models for AP1 and AP3

Experiments

Results using energy maps

Results using WiFi propagation model

Probabilistic topological navigation in a legged robot

Idea

- Interested in localization indoor for a legged robot
- Odometry is not reliable, we will use topological maps (set of states S)
- We will calculate the probability $p(s_i \text{ of robot being located at state } s_i \in S \text{ using POMDP}$
- In order to calculate it we will use:

Set of states S

- We will use a topological map of the environment.
- We will use represent rooms and corridors as nodes

Room node Creates a single state.

Corridor node Creates 4 states, depending on robot orientation

•
$$S = \{s_0, s_1, s_2, ..., s_{29}\}$$

Set of actions \boldsymbol{A}

- Set of actions: $A = \{a_r, a_l, a_f, a_o, a_e\}$
- Action a_r Turns 90° right
- Action a_l Girar 90° left
- Action a_f Follows corridor
- Action a_o Leaves room
- Action a_e Comes into room

$\mathbf{52}$

Transition function T

- We establish a general uncertainty model for the actions:
 - Action a_r p(doing nothing)=0.05, p(turning right 90°)=0.90, p(turning right more than 90°)=0.05
 - Action a_l p(doing nothing)=0.05, p(turning left 90°)=0.90, p(turning left more than 90°)=0.05
 - Action a_f p(doing nothing)=0.10, p(goes forward enough to get the next state)=0.70, p(goes further than desired)=0.15, p(goes much more further)=0.05
 - Action a_o p(doing nothing)=0.05, p(leaving room)=0.85, p(leaves room and goes further than desired)=0.10

Action a_e p(doing nothing)=0.10, p(Comes into the room)=0.90

 From this model we create a transition fuction, which is modeled as a table for each action. This table summarizes the probability of going from state s to state s' taking that action.

J												
$origen {f 8}$	•••	0	0	0	0	10	0	0	0	70	0	•••

Observation function ϑ

- We model the probabilities of getting an observation from each stata, that is, $p(\mathbf{o}|s)$
- We will use various types of observations

OVDoors Number of doors in an image

OVDepth Distance to the end of a corridor (using ceiling measures)

• Giving that observations are independent:

$$p(\mathbf{o}|s) = p(o_{OVDoors}, o_{OVDepth}|s) = p(o_{OVDoors}|s) \cdot p(o_{OVDepth}|s)$$

Sample matrix: de $p(o_{OVDepth}|s)$

p	$0_{\rm ovp0}$	0_{ovp1}	0_{ovp2}
•••	•••	•••	•••
$\mathbf{s_4}$	3	7	90
$\mathbf{S_5}$	95	4	1
$\mathbf{S_8}$	5	15	80
$\mathbf{s_{10}}$	85	10	5

Initialization

• If we do not know where we are,

$$Belief(s) = \frac{1}{n^{\mathsf{o}} ofstates}, \forall s \in S$$

• I we do know where we are,

$$Belief(s) = \begin{cases} 1 & s = s_{ini} \\ 0 & s \neq s_{ini} \end{cases}$$

• We calculate the belief $Belief(S^\prime)$ after doing an action

$$Belief_t(S') = \sum_{s \in S} p(s'|s, a) \cdot Belief_{t-1}(s), \forall s' \in S$$

- p(s'|s,a) has already been calculated as a table
- $Belief_{t-1}(s)$ is the belief in the previous instant
- So, the belief for every state s depends on the rest of states

 Belief(S') is calculated from the observations that we get from the environment after an action.

 $\mathbf{Belief_{posterior}(s)} = p(\mathbf{o}|s) \cdot Belief_{a \, priori}(s), \forall s \in S$

 $\mathbf{Belief_{posterior}(s)} = p(o_{OVDoors}, o_{OVDepth} | s) \cdot$

 $\cdot Belief_{apriori}(s), \forall s \in S$

 $\mathbf{Belief}_{\mathbf{posterior}}(\mathbf{s}) = p(o_{OVDoors}|s) \cdot p(o_{OVDepth}|s) \cdot$

 $\cdot Belief_{apriori}(s), \forall s \in S$

Interpretation of Belief(S)

• Uncertainty of the position of the robot can be calculated using *normalized entropy*:

$$\widetilde{H} = -\frac{\sum_{Belief(s) \neq 0} Belief(s) \cdot log(Belief(s))}{log(m)}$$

- If \widetilde{H} is 0, there is no uncertainty about the pose of the robot, and the larger value of $Belief(s_i), 0 \leq i < n$ will show that the robot is in state s_i .
- If \widetilde{H} es 1, that means that values $Belief(s_i), 0 \le i < n$ are equal, so we do not have any information about the position.

62

SiS: Speed Intelligent System

Work in progress

63