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The short history of our
group
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Environment

URJC (1998): 4 campus, (∼ 12,000 students)

ESCET: 7 studies (ITIG, ITIS, II, IQ, LCM, ITI, IM)

DIET (2002):∼ 125 teaching members (CCeIA(1++),LSI(∼ 50),ATC(∼
35),IT(∼ 15),EST(∼ 20)

GSyC: Operating systems, networking, and robotics (1CU, 4TU, 2TEU

12 Ayud & 3 Asoc)

Robotics Group: 1TU, 1AD, 2Ay, 1 bec (TC), 2 bec (TP, project) &

1 Visiting
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The evolution of the group

Academic Year People Robots

1999-2000 1 Doct +20 Lego, +2 Eyebots

2000-2001 1 Doct 1 Ay +4 Eyebots, +10 Lego

2001-2002 1 Doct 1 Ay +1 Pioneer

2002-2003 1 Doct 2 Ay +1 Pioneer + 1 laser

2003-2004 2 Doct 2 Ay 1 Vis +3 Aibo + 1 laser

1 bec(TC), 2 bec(TP)
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Ourselves
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Research activities examples

Basic behaviors for EyeBot robots (robosoccer)

PERA: Ad-hoc networks for mobile robots

Dynamic Schema Hierarchies

Robot localization using WiFi signal

Topological navigation in a legged robot

SiS: Speed Intelligent System
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Basic behaviors for
EyeBot robots
(robosoccer)
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Robosoccer environment

PC

Cámara Cenital

Módulo de Radio
Pelota

Robot

c©GSyC Research on mobile robots at URJC: Basic behaviors for EyeBot robots (robosoccer)



EyeBot robot 9

EyeBot robot

3 infrared sensors

1 camera (83 x 64 pixels)

Programming: RoBIOS

Radio communications

On-board display (B&W)
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Finding robots and the ball (off-board) 10

Finding robots and the ball (off-board)

Initial image Filtered image Segmented

image
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Finding and following lines (on-board) 11

Finding and following lines (on-board)

Color filtering

RGB filter.

Manual tunning.

Border analysis

Bottom-up analysis

Robust
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Segmentation

remaining borderthe strip

Pixel out of
the stripsegmentation

x

x

Border

Strip

Explanation for 

Hypothesized
segmentBeggining of

Hypothesis
verified

Pixel out of
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PERA: Ad-hoc networks
for mobile robots
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What is PERA?

Library for Robot communication

Wireless and dynamic network

• Radio with limited scope

• Robots are moving all the time

• No infrastructure

Each Robot operates as a router

Fixed routing is not suitable
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Ad-Hoc Routing protocols

Based on routing tables

Based on demand routing

AODV

• Route discovery: (RREQ)/ (RREP)

• Route maintenance

c©GSyC Research on mobile robots at URJC: PERA: Ad-hoc networks for mobile robots



EyeBot Radio 16

EyeBot Radio

Radio module

Small bandwidth (9600 baud)

Limited data size (35 bytes)

Robot OS (RoBios)

• Radio system calls: Send / receive
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Goals & Design

Application Application

PE
R

A

Link

Transport

Network

OS Primitives

1. Network transparency for applications

PERA functions replace OS primitives

2. Multiple programs can communicate simultaneously

Top-down design: Application, transport, network, link

Similar to TCP/IP model
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Link level

Transmission is not reliable

Non Blocking receive function

• Check for new messages before receive
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Network level

Protocol based in on demand routing for Ad-Hoc networks

Route discovery

• RREQ (Route Request) message

• RREP (Route Reply) message

Route maintenance

• RERR (Route Error) message

• HELLO packet
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Route discovery
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Transport level

Provides communication interface to applications

• bind (port)

• send (robot,port,data)

• receive (port, &data)

A good abstraction ->Ports.

• Multiplexes the radio channel

• Several applications communicate simultaneously

Addressing scheme
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Implementation

Robot OS Primitives
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Tests

TDirect send 1 −> 2 ≈ 1,75 secs

TDirect send 1 −> 3 ≈ ∞ secs

TRoute discovery 1 −> 3 ≈ 5,5 secs

TPERA send 1 −> 3 ≈ 5,5 + 3,5 ≈ 9 secs
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Dynamic Schema
Hierarchies
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Dynamic Schema Hierachies

architecture = perception + control

perception and control are partitioned in small units: schemas

• perceptual schemas

• control schemas

schemas can be combined in hierarchies

• a control schema activates child perceptual schemas to identify

relevant stimuli and child control schemas which react accordingly

to them.

• child control schemas implement parent’s behavior while pursuing

their own.
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System snapshot

Non blocking activation

Continuous modulation through parameters

Active perceptual schemas configure a perceptual space per level.
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Action selection

Control competition per level.

Winner must be awake and be appropriate for current situation.

Activation regions for coarse grain arbitration.

Parent is called for arbitration in control overlaps and absences.
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Situated perception

perception is partitioned.

it is explicitly taken into account in the architecture.

context activation offers an attention mechanism.

complex stimulus as a hierarchy of perceptual schemas

(e.g. door = depth discontinuity + visual jamb)
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Reconfiguration

Number of levels depends on the task and is dynamic.

Schemas can be reused at different levels.

Monitoring is included in each schema, causing reconfiguration.

An exception climb up for an schema able to deal with it.
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Implementation

Pioneer robot with a Linux laptop.

Schemas ≈ programming threads.

Control loops (e.g. 100 ms)

Shared variables, semaphores.

List of brothers, arbitration callback.
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Gotopoint behavior
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RoboCup behavior (attack)
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RoboCup behavior (modulation)
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RoboCup behavior (perceptive space)
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Robot localization using
WiFi signal
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Localization

Localization: Problem of determining the position of a robot in a map

- Different solutions (and problems):

Specific sensors (i.e. GPS): Outdoors only

Odometry: Noisy sensors, accumulated errors

Artificial landmarks (+Kalman): Engineerization

Natural landmarks (+Kalman): Complex recognition of landmarks

Range sensors (+probabilistic framework): Computational cost
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Our approach

Use a probability distribution to accumulate position estimations

using information from odometry and WiFi energy received from

Access Points placed in a-priori known position

Advantages:

Infrastructure has already been deployed

Probabilistic localization has been successfully tested (Simmons95,

Thrun00).
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Probabilistic localization

Our environment

   WIRELESS CARD
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Theoretical aspects

p(x(t)) is the probability of the robot to be in the location x

Considering Markovian independence in (equation 1) and using (th-

run98), probability can be computed incrementally (equation 3).

Action model (robot movements) are integrated in 4.

p(x(t)) = p(x(t)/obs(t), obs(t− 1), ...) (1)

p(x(t)) = p(x(t)/obs(t)) ∗ p(x(t)/obs(t− 1), obs(t− 2), ...) (2)

p(x(t)) = p(x(t)/obs(t)) ∗ p(x(t− 1)) (3)

p(x(t)) = p(x(t)/mov(t− 1), x(t− 1)) ∗ p(x(t− 1)) (4)
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Sensor model

Posterior sensor model: p(x(t)/obs(t)) contains all the position infor-

mation carried by the observation.

A priori sensor model: p(obs(t)/x(t)), which contains the probability

to obtain the given sensor measurement obs(t) in time t if the robot

were at position x at time t.

We will use WiFi energy measurements as main sensor observations,

defined as a vector of visible AP and their signal level

Ad-hoc posterior model: compare signal values with expected ones at

each location. Normalize distance function.

Two versions: a priori compiled energy map, and a theoretical WiFi

propagation model.
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Three a priori WiFi energy maps

c©GSyC Research on mobile robots at URJC: Robot localization using WiFi signal



Probabilistic localization (cont.) 42

Sensorial model when using energy maps

p(x/obs(t)) = 1− d(t)σ

where:

σ is an amplification factor

d(t) is computed as the percentage of energies from the sensor reading

vector that fall close to its corresponding element in the expected

vector

A given threshold is set to consider two energies as close enough
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WiFi propagation model

d(t) = e−(
∑AP

i=0
(
|ri

obs
−ri

x|
100 )σ)2 (5)

where:

Based on the breakpoint model (Clarke02).

This is a free space loss model that takes into account only the dis-

tance from the emitter

Two different regions are defined: before and after a breakpoint
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Propagation models for AP1 and AP3
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Experiments

noise
gaussian

simulator
SRIsim

Wireless
table gaussian

noise

Localization
algorithm

wireless observation
simulated

theoretical
wireless value

accumulation

Estimated position

Odometry position

Ground truth position
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Results using energy maps
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Results using WiFi propagation model
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Probabilistic topological
navigation in a legged

robot
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Idea

Interested in localization indoor for a legged robot

Odometry is not reliable, we will use topological maps (set of states

S)

We will calculate the probability p(si of robot being located at state

si ∈ S using POMDP

In order to calculate it we will use:
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Set of states S

We will use a topological map of the environment.

We will use represent rooms and corridors as nodes

Room node Creates a single state.

Corridor node Creates 4 states, depending on robot orientation

S = {s0, s1, s2, ..., s29}
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Set of actions A

Set of actions: A = {ar, al, af , ao, ae}

Action ar Turns 90o right

Action al Girar 90o left

Action af Follows corridor

Action ao Leaves room

Action ae Comes into room
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Transition function T

We establish a general uncertainty model for the actions:

Action ar p(doing nothing)=0.05, p(turning right 90o)=0.90, p(turning right

more than 90o)=0.05

Action al p(doing nothing)=0.05, p(turning left 90o)=0.90, p(turning left more

than 90o)=0.05

Action af p(doing nothing)=0.10, p(goes forward enough to get the next sta-

te)=0.70, p(goes further than desired)=0.15, p(goes much more further)=0.05

Action ao p(doing nothing)=0.05, p(leaving room)=0.85, p(leaves room and

goes further than desired)=0.10

Action ae p(doing nothing)=0.10, p(Comes into the room)=0.90

From this model we create a transtion fuction, which is modeled as a table for

each action. This table summarizes the probability of going from state s to state

s′ taking that action.
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p · · · 4 5 6 7 8 9 10 11 12 13 · · ·
origen4 · · · 10 0 0 0 70 0 0 0 15 0 · · ·
origen5 0 0 0 0 0 0 0 0 0 0 0 · · ·

origen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
origen8 · · · 0 0 0 0 10 0 0 0 70 0 · · ·
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Observation function ϑ

We model the probabilities of getting an observation from each stata,

that is, p(o|s)

We will use various types of observations

OVDoors Number of doors in an image

OVDepth Distance to the end of a corridor (using ceiling measures)

Giving that observations are independent:

p(o|s) = p(oOV Doors, oOV Depth|s) = p(oOV Doors|s) · p(oOV Depth|s)
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Sample matrix: de p(oOV Depth|s)

p oovp0 oovp1 oovp2

· · · · · · · · · · · ·
s4 3 7 90

s5 95 4 1

s8 5 15 80

s10 85 10 5
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Initialization
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If we do not know where we are,

Belief(s) =
1

noofstates
, ∀s ∈ S

I we do know where we are,

Belief(s) =

{
1 s = sini

0 s 6= sini
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We calculate the belief Belief(S′) after doing

an action

Belieft(S
′
) =

∑
s∈S

p(s
′|s, a)·Belieft−1(s), ∀s

′ ∈ S

p(s′|s, a) has already been calculated as a table

Belieft−1(s) is the belief in the previous instant

So, the belief for every state s depends on the rest

of states

S0 S1 S2

S3 S4 S5

S6
S7 S8

c©GSyC Research on mobile robots at URJC: Probabilistic topological navigation in a legged robot



Initialization (cont.) 60

Belief(S′) is calculated from the observations
that we get from the environment after an action.

Beliefposterior(s) = p(o|s)·Beliefapriori(s), ∀s ∈ S

Beliefposterior(s) = p(oOV Doors, oOV Depth|s)·

·Beliefapriori(s), ∀s ∈ S

Beliefposterior(s) = p(oOV Doors|s)·p(oOV Depth|s)·

·Beliefapriori(s), ∀s ∈ S
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Interpretation of Belief(S)

Uncertainty of the position of the robot can be calculated using normalized entropy :

H̃ = −

∑
Belief(s)6=0

Belief(s) · log(Belief(s))

log(m)

If H̃ is 0, there is no uncertainty about the pose of the robot, and the larger value of

Belief(si), 0 ≤ i < n will show that the robot is in state si.

If H̃ es 1, that means that values Belief(si), 0 ≤ i < n are equal, so we do not have any

information about the position.
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SiS: Speed Intelligent
System
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Work in progress
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