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Abstract. Robots detect and keep track of relevant objects in their en-
vironment to accomplish some tasks. Many of them are equipped with
mobile cameras as the main sensors, process the images and maintain
an internal representation of the detected objects. We propose a novel
active visual memory that moves the camera to detect objects in robot’s
surroundings and tracks their positions. This visual memory is based
on a combination of multi-modal filters that efficiently integrates partial
information. The visual attention subsystem is distributed among the
software components in charge of detecting relevant objects. We demon-
strate the efficiency and robustness of this perception system in a real
humanoid robot participating in the RoboCup SPL competition.

Keywords: robot soccer, active vision, multitarget tracker, humanoid,
attention.

1 Introduction

Several international robot competitions and challenges have emerged in the
last years. For instance the DARPA Grand Challenge and Urban Challenge[6],
RoboCup|10], the FIRA Robot World Cup[13], and the DARPA Robotics Chal-
lenge. They aim to foster Al and intelligent robotics research by providing a
standard problem where a wide range of technologies can be integrated and ex-
amined. The motivation of competition makes them attractive, and they serve as
proof of concept of current technological limits, pushing them further. In particu-
lar, RoboCup chose soccer as a central topic, which is a complex and challenging
scenario for robotics research as it is dynamic, with opponents, and allows the
cooperation of several robots inside a team. It has the long term goal to develop
a team of fully autonomous humanoid robots that can beat the human world
champion team by 2050.

The RoboCup competition is organized into leagues according to the type of
robots. In the Standard Platform League (SPL) [7] all teams use the same robot,
and changes in hardware are not allowed, so the effort focuses on software. A
fully featured SPL soccer player has to get information from the environment,
mainly using its on board camera. It provides high volume data about the en-
vironment, and task relevant information must be extracted from them. Robot
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control decisions may be based exclusively on current image, but this suffers
from some limitations. The camera scope is limited to a 60° field of view, and
it is common to have occlusions of the objects and even false positives. Robots
must identify and locate the ball, goals, lines and other robots. Having this in-
formation, the robot has to self-localise and plan the next action: move, kick,
search another object, etc. The robot must perform all these tasks very fast in
order to be reactive enough to be competitive in a soccer match.

This paper presents the visual perception system of our humanoid robots
participating in the SPL (SPiTeam[21]), composed by a visual memory and
an integrated attention subsystem. The aim is to improve perception in order
to make good decisions and so unfold good behaviors. The visual memory is
composed of a collection of Joint Probabilistic Data Association Filters (JPDAF)
[1] [] that store and update the relative position of objects, like goals or the ball,
relative to the robot. This approach has been designed to cope with partial and
ambiguous observations. Partial observations occur when an object is occluded or
when the camera field of view is limited. The observations can also be ambiguous,
if the perceived feature is not unique due to symmetries or similarities with other
objects. We also propose a novel attention subsystem that controls the head
movement and continually shifts the focus of attention so the camera looks at
different areas of the scene providing new images to feed the visual memory and
to update the object state estimates. This visual perception system has been
integrated in the behavior-based architecture of the humanoid robot, named
BICA [I1].

Next, we review the state of the art in world modeling, attention and multi-
object estimation, with emphasis on the other teams of the RoboCup SPL. The
two main components of the proposed perceptive system, the visual memory
and the visual attention module, are described in detail in sections Bl and [4]
respectively. The analysis of the experiments conducted is detailed in section [l
while discussion generated by this work is presented in section [Bl

2 Related Works

Researchers within the RoboCup community typically maintain an object repre-
sentation known as the world model containing the position of relevant stimuli:
ball, goals, robots, etc. The world model is updated using the instantaneous
output of the detection algorithms or by running an extra layer that imple-
ments some filtering. The most commonly used filters are Kalman filter[22],
its nonlinear variants Extended Kalman filter (EKF) or unscented Kalman fil-
ter (UKF)[20], particle filters[9], hybrid techniques, or even multi-modal
algorithms|[19].

A topic closely related to visual memory is the control of camera gaze. In the
RoboCup environment, policies to decide when and how to direct the gaze to a
particular point can be divided into three groups. First, those that delegate to
each behavior the decision on the positioning of the head. Second, those which
continuously move the robot’s camera in a fixed pattern to cover the entire search
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space of the robot. Its main drawback is that it does not allow tracking a detected
stimulus. In addition, much time is wasted on exploring areas where a priori there
is no object. A third group includes those using a specific component responsible
for making this decision based on the requirements of active behaviors. There
are attention mechanisms guided by utility functions based on the task the robot
is currently doing]8|, or salience-based schemes which increase with time[l6] or
time-sharing mechanisms, among others.

One SPL team [I6] associates a tuple < p, 6, anchor > with each stimulus
that the robot can detect. The p[0, max dist] and §[—m, 7] indicate the relative
distance and orientation to the stimulus, respectively. The anchor[0, 1] indicates
the confidence in the information of the stimulus. In this system, the behaviors
define the importance of each stimulus. Depending on the importance defined
for each stimulus and the values for anchor, the active vision system decides
which stimulus to focus on at any time. The behaviors themselves establish
which stimuli should be observed. This approach does not tolerate observations
with occlusions and partial observations. In this approach that only one of the
objects receives the feature’s update, while the other objects remain unchanged.
This association is carried out according to a specific function, like Euclidean
distance. In this work the search for new objects uses the same fixed pattern for
head positions, independently of the type of the object to search.

One interesting approach [2] shares information among all the robots of a
team. Each stimulus is labeled as valid, suspicious and invalid, depending on the
confidence on the stimulus. This label is set to valid when an object is detected in
the image of the robot, or suspicious if this information comes from a teammate.
The stimuli which are labeled as valid do not need to be attended urgently.
Those labeled as suspicious have to be inspected to check whether they are still
valid. There are behaviors that define the importance of a stimulus. All stimuli
are attended at all times. Regarding the visual memory, a mixed approach is
used to estimate the goal positions. The estimate of the goal extracted from the
self-localization system is mixed with the one captured in the last scan.

The approach proposed in [14] uses a multi-modal algorithm to estimate the
positions of other robots. The observations are compared with the positions
maintained by the world model using the Euclidean distance criterion. A similar
approach was used in [I5] but using the Mahalanobis distance between observa-
tions and objects in memory. The disadvantage of these algorithms is their full
association between the observation and one of the objects.

In [I8] and [5], the state of the robot is modeled using Monte Carlo Localiza-
tion (MCL). The state includes both the robot’s position and the ball’s position.
The aim of the active vision system is to minimize the entropy of the robot’s
state. Here the active vision is associated with a utility (self-localization and
detection of the ball), and that the utility of turning our gaze towards one place
or another is quantifiable depending on how it decreases the entropy of system.
Behaviors do not define the importance of the stimuli and do not modulate the
active vision system in any way.
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3 Multi-object Visual Memory

In BICA the humanoid robot intelligence is decomposed in perceptive compo-
nents, which provide information and behavior components, that make control
decisions taking into account such information. Some behavior components for
the SPL are SearchBall, GoToPoint, and several shooting movements. Some
perception components are BallDetector, GoalDetector and LineDetector
which detect the relevant stimuli in the RoboCup scenario. These components
are responsible for detecting the stimulus in the image, calculating its 3D posi-
tion, updating the visual memory with this position, and providing information
to the attention system.

Beyond the instantaneous detection in current image a visual memory is built
and updated. The visual memory is formed by the composition of various inde-
pendent JPDAF filters running in parallel, one for each object to be tracked. In
order to avoid the additional uncertainty the self-localization algorithms and to
be fast, the visual memory records the position and uncertainty of the objects
in a coordinate system relative to the robot. For each object the last time it
received a new observation is also stored. For the SPL humnanoid robot there
are three JPDAF filters running in parallel: one for the ball, one of the team’s
goal, and another for the opponent’s goal.

All filters are updated regularly based on the odometry generated by the robot
and the detected features from perceptual components. In the initialization phase
of each filter it is possible to set some features like the object motion model.
For the ball, as can be kicked by other robots, the uncertainty of its estimate
must increases if the robot stays still. As time passes without generating new
observations, it becomes more likely that the ball changes its position. However,
the goals will not move, so it makes sense not to increase their uncertainty if the
robot remains motionless.

The general working environment for the JPDAF algorithms consists of sev-
eral objects and several observations. These objects may have the same appear-
ance, and therefore cannot be assigned to each estimator straightforward. The
problem is to find out how we can associate each observation to each object.
Using the notation of [17], we have a set of objects X* = a%, ... ,x’% at time k.
The set of observations at that instant k is defined as Z(k) = z1(k),. .., Zm,-
The entire set of possible associations between an observation j and object
1, is defined as a joint association event 6 to a specific set containing couples
(4,1) € {0,...,mp} x {1,..., T} The set § uniquely associates each observation
with each object. The special empty observation zo(k) means that the object
has not been perceived. The term ©j;; expresses the set of all joint association
events that pair j with the object <.

The core of the JPDAF algorithm is based on calculating the parameter 3;,
whose mission is to measure the likelihood that the observation j belongs to
object i. Equation (d]) shows how to perform the calculation of the posterior
probability.
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The probability P(8|Z*) can be expanded according to equation [ assum-
ing the problem is Markovian and using the theorem of total probability. The
full derivation of this formulation can be found in [17]. P(8|X¥) evaluates the
probability of a specific 8 set given the current state of the tracked objects.

P(6]2") = a / P(Z(k)|9, X*) P(0]X*)p(xX*| 24 )X (2)

P(Z(k)|0, X*) of equation (@) specifies how likely the set of observations ob-
tained with the current state of objects and a particular set of observation-object
associations is. To derive this term, it is necessary to consider the case of a false
positive. We call «y the probability that an observation is a false positive and the
number of false positives on a 6 is expressed as (my—16|). In turn, the probability
associated with all false positives in at time k and a specific 6 is y("+=19D,

For P(0|X"%) it is assumed that all sets of pairs of associations are equally
likely and, therefore, this term can be approached by a constant (as can be seen
in [3]).

Taking into account the derivation of the previous two terms and assuming
independence between observations, we have:

P(Z(K)[6, X*) = 1D T / Pl (B)[)p(at| 25 Vydak (3)

(ji)€06

Combining equations @), (@) and (1) we get:

Bji = Z |:a,y(mk [01) H / k‘Zk 1)dl‘ (4)

0€0;; (ji)€b

Once we know how to compute 3;; to weight each observation with each
object, all we need is to describe how to update the Kalman filters to estimate
each object. The prediction phase is performed by equation (B) and the correction
phase is described by the equation (@]).

pat21) = [ plablal ! Dplat =125 et (5)

p(fZ2%) = ap(Z (k)| )p(xf| 2571 (6)

This is where we introduce the factor 3;;, integrating over all the observations
obtained and its association with the object 1.

my

p(ef|Z8) = a Yy Bjip(z (k)laf)p(a| 25 (7)

7=0
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3.1 Ball Object

The ball is one of the objects stored in visual memory. Although there is only
one ball, in practice and due to calibration problems or lighting, it is possible
to detect several balls in the same frame in addition to the correct ball. The
JPDAF ball algorithm is configured as a single object, i.e., you can not create or
destroy new estimates, only one remains. This causes the correct observation to
be weighted with a high value of 5. The comparison between the correct obser-
vation and false positives greatly benefits the correct observation and, therefore,
the rest have less influence on the estimate.

3.2 Goal Objects

Unlike the ball filter, the JPDAFs for each goal are set to hold two indepen-
dent objects simultaneously, one for each post. Although the tracking algorithm
maintains an independent estimation for each post, there is a restriction that can
be applied and improves the accuracy of the estimate. This constraint imposes
the posts are always at the same distance from each other, in our case 1400mm.

1. l] N [1 [—[1] = [1 i i
|- LT

‘Pi

Fig. 1. Diagram of the algorithm for the calculation of goal’s center

The idea of the algorithm is to assume that each post is correctly estimated
and therefore we can infer the opposite virtual post position vp;. Along with the
position of each post and the opposite ones virtually generated, two hypotheses
with centers of the goals at X; are created. The end point where you estimate the
center of the goal would be in a straight line connecting these two hypotheses.
Although the midpoint of the two hypotheses could be a first approximation to
the solution, it does not take into account that the original estimations for each
post can have different uncertainties. Therefore, it is preferable to weight the
uncertainty as each of the hypotheses. Equation [§ calculates the desired point X
assuming X, is the position of the hypothesis i and its covariance associated with
C;. Finally, the original estimations of each post P; are adjusted according to
the calculated midpoint and the restriction of known distance from the midpoint
of each post obtaining P;. Algorithm [[l summarizes the steps for calculating the
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Algorithm 1. Optimization to improve the calculation of the goal center

1: Update posts estimations P; using JPDAF algorithm

2: for i+ 1,2 do

3 vp; = Generate the virtual opposite post

4: XZ Calculate the hypothesis between P; and the vp;

5: end for

6: for i < 1,2 do

7 X = Obtain the corrected center applying weighting the two Gaussians
(X1,C1)) and (X2,C2))

8: Using X as the center of the net, generate P according with the width con-
straint

9: end for

central point of the goal. Furthermore, Figure [I] shows an example of the whole
adjustment process made to the position of each object.

X =X, +C1[C1 + Oy 1(Xy — X)) (8)

4 Visual Attention

Robots equipped with cameras have a limited field of view. Visual stimuli may
not all be present simultaneously in the image perceived by the camera of a robot.
For this reason, the robot has to search in the scene by varying the orientation
of the camera. The visual stimuli are incorporated into the visual memory, as
described in section [B] and they should be checked periodically to update their
position. The visual attention system is responsible for performing the scanning
for visual stimuli in a scene, and it verifies and updates the already collected
stimuli.

Some actuation components have perceptual requirements, i.e., a set of visual
stimuli to be aware of. These perceptual requirements are met by activating the
perception components responsible for detecting each one of these stimuli and
by setting the importance, in the range (0.1], for each visual stimulus.

Our visual attention system receives attention requests from each of the com-
ponents activated with interest in some objects. Each of these components have
different requirements that may conflict with each other, so the visual atten-
tion component acts as a referee assigning control of the attention fairly among
all visual stimuli. Figure 2] (left) shows how some actuation components send
their attention requirements about the visual stimuli in the scene. For each vi-
sual stimulus received, the visual attention attention system chooses the highest
value received and then it normalizes this value by the sum of all importances.
At the left side of figure @I (left), the value of importance for the goals is 0.5
(max(0.5,0.25)), for the ball is 1.0 (max(0.75,1.0,0.5)) and 1.0 for the lines.

If an actuation component sets a need for a visual stimulus, and then becomes
inactive, the visual attention system must adapt to this new situation. The com-
ponents are iterative, and their mechanism of deactivation is simply stop running
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Fig. 2. Example of attention Setup. left: Actuation components (Al, A2, A3 and A4)
send their perception requirements to the Attention component, which calculates the
importance relationship among the object. Right: The attention system receives desired
points to focus the camera. When it is the ball’s turn, the attention system asks the
component in charge of detecting the ball (red), and when it is the goal’s turn, the
attention system asks to the component in charge of detecting the goal (blue).

them silently. Because of this, each component in each iteration should resend
their perceptual requirements. The visual attention system discards those stim-
uli that are not refreshed frequently, recalculating the importance relationship
among visual stimuli.

The visual attention system implements a time-sharing policy, a time slot is
assigned to each visual stimuli. This time slot is dedicated to seeking and tracking
the corresponding stimulus. Figure @] (right) shows how the turns are managed.
On each turn, the visual attention system asks the component responsible for
the stimulus what to do. The answers come in the form of attention points (AP).
These attention points are three dimensions coordinates where the camera should
focus. The only feedback sent to each detector is when the camera is pointing
at the requested attention point.

It is remarkable that the visual attention system does not decide where to
focus the camera, how to seek or track an object or when it is considered that
a stimulus has been found or when it is lost. The novelty of this system is that
these tasks are delegated to the corresponding perceptive component (detector):

— The attention component notifies to the detector components when the cam-
era is focusing to the desired attention point. If the object is not at the posi-
tion where it should be, the detector is responsible to guess if it is lost, using
the last detection time. Some detectors could me more robust to occlusions,
depending on the object characteristics.

— If an object is considered lost, or its position is not known, the detector
generates attention points sequentially in the positions where the object can
be found. Whenever a requested position is reached, the attention system
reports this event, and the detector generates the next attention point. It
is important that the focal points generated depend on which object you
are looking for: the ball can only be at a point on the ground, but it is
more effective to find the goals at the points on the horizon. Actually, it is
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even possible to use the self-location information to decide where to generate
search points. In any case, the selection of these attention points is done by
each detector, which is specialized to look for the object.

— When an object is detected and the current slot corresponds to its detector,
decisions may be different. In the case of the ball, being a very dynamic
object, the remaining time slot can be dedicated to track the object.

More details and a comparison between several developed attention mecha-
nisms can be found at [12].

5 Experiments

An extensive experimentation has been carried out to validate the system de-
scribed in this article. We have used the real NAO robot in the real SPL envi-
ronment as shown in Figure[3l The Nao robot is a medium-sized humanoid robot
with 58 cm. of height, with 21 degrees of freedom, and a built-in x86 AMD Geode
cpu at 500 MHz running GNU /Linux. The Nao features two CMOS 640x480 cam-
eras, Ethernet, Wi-Fi, an inertial unit, force sensitive resistors, sonars, bumpers,
four microphones, two hi-fi speakers and a complete set of leds.

= e
_.I

Fig. 3. Experimental setup. The environment is the real SSL field and the robot is
equipped with a pattern in order to be detected by a ground truth system.

During the experiments, we collected a great amount of data used to analyze
the visual attention subsystem and the visual memory. The data collected during
the execution of the experiments is stored in a log file for offline processing.
Meanwhile, we have adapted the SSL [23] ground-truth system that captures
the correct position of the dynamic elements of the field (robots and ball). This
system is composed of two ceiling cameras mounted above the center of each half
field. During the experiments, the robot is equipped with a visual pattern easily
detected by the cameras. The error of the ground-truth system is less than 3 cm.
in position and less than 5 degrees in orientation. Post-processing of robot log
data and the ground truth data led us to accurately calculate the error in the
perception of the robot.
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Visual Memory Accuracy Experiments. The first experiment makes a sta-
tistical analysis of the accuracy obtained in estimating the current stimuli in the
visual memory. The stimuli analyzed are the ball and one of the goals. For each
stimulus, we calculate the error (measured as the Euclidean distance between
the real and the estimated position) and the standard deviation of the estimate
over time. There have been two different tests, one with a static robot and a
second with the robot in motion. The attention settings for each test are labeled
in the key of the graph. Figure @] shows the data extracted from the experiment,
where data analyzed from the static robot are located in the upper image and
the data extracted from the robot in motion are displayed in the lower image.
Besides the error in the estimate and standard deviation, Figure @ also shows on
a horizontal bar the intervals where each object of attention has the attention
turn.
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Goal estimation error with the robot still ——«—
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Fig. 4. Accuracy and standard deviation of the visual memory estimation

One interesting result is how the standard deviations vary while the robot
remains static (Figure [ upper). In the case of the goal (displayed in red), the
uncertainty remains constant even when there is lack of attention. However, in
the ball case (displayed in blue), the standard deviations increase during intervals
in which no features are received from the ball. When the robot moves (Figure
M lower), the dynamic of the stimulus is automatically configured with different
parameters and this affects how the uncertainty grows when the head does not
look at the goal and, consequently, no features are received. If we pay attention
at the lower blue curve on Figure [d we notice that the standard deviations are
larger and grow faster when there are no features perceived, compared with the
static robot experiment.
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Attention Experiments. The next experiment analyzes how the visual atten-
tion system simultaneously detects, confirms and tracks two different elements:
the ball and goal. In some tests that are part of this experiment, the robot is
stationary, and in others the robot is moving. Perceptual configurations are dif-
ferent, giving in some cases more attention to the ball, and in some cases greater
attention to the goal.

As described in Section Ml attention is distributed in the stimuli detectors.
The search is different in the case of the ball (it looks at the ground) and the
goal (it searches the horizon line). Likewise, the ball tracking is different in the
case of the ball (all the time available is used to track and update the ball
position) and the goal (when the goal is detected and its position is updated,
it yields the rest of this time). Finally, the ball is a manipulable element, so its
uncertainty increases over time as the robot moves. Instead, the goal is static,
and its uncertainty only grows when the robot moves.

Figure[dl (right) shows the evolution of the uncertainty (standard deviation of
estimate) in the detection of the ball and the goal when the robot is stopped. In
further experiments we will analyze the accuracy of the system, but in this case
we want to show how the attention system keeps low uncertainty of the estimates.
This graph shows how in the configurations with the ball importance set to 100%,
the average uncertainty remains very low, as the robot performs a constant
tracking of the ball, without paying attention to other stimuli. The standard
deviation of ball estimate does not increase too much as the goal importance
increases. In the case of the goal, the uncertainty is high when the robot is not
actively looking for this element, decreasing as the goal detector increases its
importance.

Figure [l (left)shows how the uncertainty is much greater when the robot
walks. When the importance of the ball is less than 50%, the uncertainty in-
creases to 750mm. The goal uncertainty, however, remains adequate when its
importance is greater than 50%.
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Fig.5. Attention experiment with the robot walking (left) and the static robot
(right). The graph shows the standard deviation of the ball and goal estimates, de-
pending on the attention modulation. The colored area shows the actual attention
distribution.
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Figure Bl show (colored areas) the real value of time spent on each item. The
percentage of time spent on the ball is always greater than on the goal due to
its internal implementation. The ball always take the most of all the available
time, while the goal detector yields the extra time.

Robustness Experiments. The next set of experiments measures the perfor-
mance of visual memory under undesirable situations, such as false positives or
false negatives observations. During the tests the robot has remained static. The
first experiment consisted in estimating the position of the ball in the presence
of false positives. A second ball located inside the robot’s field of view was used
to generate false positives. In the second experiment we used a single ball that
was periodically occluded. The third experiment evaluates the behavior of the
goal estimator against false positives. We used an extra goal post, which was
perceived by the robot’s camera during certain frames. Finally, a fourth exper-
iment analyzes the behavior of the estimator of goals to false negatives caused
artificially occluding one of the goal posts.

2000
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Fig. 6. Robustness against false positives and false negatives for the ball and goal

Figure [l shows a summary of data extracted from the experiments. In Figure
(upper) it is displayed the error of the ball estimator under false positives and
false negatives. In Figure [l (lower) we show the same information for the goal.
In both graphs we have labeled the time intervals for each experiment in which
false positives and false negatives appeared.

The graphs show that the estimators have high robustness, due to low error
variation when the false positives or false negatives arise. A rapid increase in ball
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position uncertainty is noticeable during ball occlusions due to the movement
mode associated with the ball.

Eficiency Experiments. The next experiment measures the visual memory
and the attention system CPU consumption. In this experiment we run the
main behavior for playing soccer (Striker component). Moreover, Striker
executes the attention (Attention component) and visual memory behaviors
(VisualMemoryBall and VisualMemoryGoal), along with several other compo-
nents that analyze images (Perception), self-localized the robot itself (Locali-
zation), among others. During the experiment a log file stores information about
the average execution time of each component. Thus, we can see the average exe-
cution time of the visual memory and attention components and we can compare
their values with the time required by other components. Figure [1] shows the re-
sults obtained.

Mean execution time -]

Attention
Behaviors
HwControl

Localization

Perception

aweu juauodwoy

VisualMemoryBall

VisualMemoryGoal

0 5 10 15 20 25

Time (miliseconds)

Fig.7. CPU consumption of the Attention, VisualMemoryBall and
VisualMemoryGoal components compared with the rest of components running
on the robot

The average execution time of the component that implements the visual
memory for the ball is 0.21 ms. In turn, the visual memory required for the
goal is 1.5 ms due to greater number of features received compares with the
ball. In turn, the attention component consumes 0.47 ms. to execute one of its
iterations. Looking at Figure[ll we can see how the results are comparable to the
fastest components contained in our architecture and thus they are appropriate
to ensure real time execution.

6 Discussion and Future Lines

In this work we have presented the visual perception system developed for a
humanoid robot participating in the Standard Platform League of RoboCup.
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This system is composed of a visual memory and an attention subsystem. The
visual memory has been designed to store the relative position of the objects,
like goals or the ball, around the robot. We use several multi-modal JPDAFs
to update the object features from the camera images. The images coming from
the robot camera fed this visual memory. The attention mechanism moves the
robot’s head in order to visually explore the environment for new objects, to
reobserve the existing ones or to cover all robot surroundings. Following a time
sharing approach this attention component combines several perceptive needs
of the soccer application like seeing the ball or seeing the goals to self-localize.
A time slot is reserved for each relevant stimuli. Inside it, the head control is
distributed among the active perception components for detecting and tracking
the different stimuli.

Advantages of this visual memory system include time persistence and better
integration of partial information, due to a multi-modal algorithm. It has broader
scope than the single current camera image and the object estimations are more
reliable than instantaneous estimations for occlusions, false negatives and false
positives which usually appear in the images. The visual memory provides more
and more reliable information about the robot surroundings than the current
camera image alone. Taking both into account, memory and current image, the
robot can take better behavior decisions.

The advantages of the attention subsystem include the convenient combina-
tion of perception requirements, usually contradictory, and the delegation of
control commands to the components specialized in each object. The perception
requirements are combined in a fair time sharing distribution among different
stimuli. This solves the need of looking at the ball and looking at the goals from
time to time. This organization allows the independent development of different
behaviors, because their perceptive requirements can be met regardless other
behaviors, so there is no need to consider interferences at this level.

The experimentation confirms the advances provided by this work. The vi-
sual memory system keeps object estimates robust to errors in perception, such
as false positives or false negatives. The different tests carried out on the vi-
sual attention subsystem have shown how perceptual behavior requirements are
met. During the experiments, we have shown how this system shares the turns
between stimuli and their uncertainty is kept low. In addition to laboratory ex-
perimentation, this system was also used in the RoboCup-2011 by the SPiTeam
during real games. It is difficult to provide quantitative results of the partici-
pation. Instead, from a qualitative point of view, the results of the perceptual
system were very satisfactory, since the software operated as expected.

We are extending this work in several directions. First of all, an occlusion
detection mechanism might be developed. When a new object has been detected,
we could check whether it is lined up with another object estimated before. In
the positive case, we could modulate the growth of uncertainty of the occluded
object in a much slower way, probably because the object remains in its original
position but it has been occluded by the new object. Other future directions to
extend the system is the introduction of other robots (teammates or opponents)
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into the visual memory and the use of sensor information from other teammates
to update the robot visual memory.
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