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Abstract. In visual simultaneous location and mapping (SLAM) with
a single camera, the use of 3D points as a basic feature has been shown
sufficient to reliably estimate the camera position and orientation. Never-
theless, the resultant maps are not clear enough for certain applications,
even for a large amount of point features. We propose a novel SLAM
technique that uses lines as basic features, and the unscented Kalman
filter (UKF) as a tracking algorithm. This paper discusses the mathemat-
ical foundations as well as the practical implementation of this technique,
along with the results of preliminary experiments.

Keywords: Cameras, simultaneous localization and mapping, SLAM,
visual localization, line detection, Plücker coordinates, unscented
Kalman filter.

1 Introduction

The automatic extraction of relevant information from the image flow of a camera
is one of the main challenges of computer vision. One of the main successful
techniques in this field are the visual simultaneous localization and mapping
(SLAM) algorithms. They provide 3D location of the camera in real time taking
as input only the image flow. An important precedent of SLAM is structure
from motion (SFM), which has been extensively studied with impressive results
over the past three decades [1]. However, the developed approaches usually didn’t
work in real time since its applications didn’t require it. New applications such as
augmented reality (AR) have motivated new approaches that focus in real-time
algorithms.

Many real-time AR applications with mobile cameras have been used in
videogames (e.g. InvizimalsTM), in industrial environments (e.g. Seabery’s Aug-
mented Training technology for welding) and in medical scenarios. Wearable
vision, the new Google glasses and robotics are other scenarios where these al-
gorithms can be applied.

Monocular Simultaneous Localization and Mapping (MonoSLAM) [2] was the
first approach achieving good performance working in real time. This approach
was based on sequential Bayesian estimation with an extended Kalman filter
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(EKF). Other approaches aimed at improving the MonoSLAM technique pro-
viding a new parameterization to work with features in the infinite [3], adding
new techniques to tolerate spurious features [5] or using particle filtering meth-
ods to scale better with the number of features [4]. Another issue to take into
account before using previous approaches is linearization; even though EKF is
able to manage non linear systems, it can be imprecise or unstable when applied
on a highly non-linear model. The UKF [6] is an alternative that can cope with
these non-linearities; however, it has more computational complexity that the
EKF. Novel works [7] state that in this case a square-root UKF can be used,
which maintains the same order of magnitude (O2) as an EKF.

Afterwards, a new kind of algorithm appeared to solve SfM problem in real
time. This new approach, called parallel tracking and mapping [8], introduced
a new point of view using optimization methods and decoupling mapping and
tracking into two different threads, since most applications need to work in real
time only for tracking and not for mapping. In [10] both methods MonoSLAM
and PTAM were compared and they came to the conclusion that EKF based
approaches work better for small feature sets, whereas PTAM based approaches
are more suitable elsewhere. Recently, PTAM approach has been improved with
new techniques to make it more robust [9].

Most of the state of art explained before is based on point features. Each
landmark is modeled as a point in a 3D space; 2D interesting points are de-
tected in each observation (e.g. with a corner detector) and their surrounding
small image patches are stored. Recent research suggests that the use of more
complex geometrical features such as straight lines can improve the performance
of the MonoSLAM algorithms. See [11] and [12] for EKF implementations to use
straight lines and points at the same time; and [13] for an analysis of different
parameterizations to work with point and line features.

So far, there are no visual SLAM implementations that use lines as a basic
feature and make use of the UKF for tracking at the same time. This paper
presents a novel algorithm, named LineSLAM, that covers this gap. Hopefully
lines would improve accuracy, robustness to blur and fast movements, and help
in the construction of more abstract and reusable maps. In addition, the pro-
posed line representation has been carefully designed to facilitate an efficient
and powerful management. The use of lines may be the first step towards more
complex objects that may improve the localization quality.

Several algorithms to detect straight lines in an image are available. A basic
technique [16] is to apply an edge filter on an image and then use a Hough
transform to detect lines, but it consumes too much time to work in real time.
More efficient and precise implementations are available, [17,18]; the detector
chosen for the present work [18] is explained in Section 3.3.

The rest of the paper is organized as follows: Section 2 of the paper describes the
proposed line representation and some related operations. In Section 3, the UKF-
, line-based SLAM algorithm is detailed, along with the image pressing required.
Some preliminary experiments performedwith the software implementation of our
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visual SLAMare shown in Section 4. Conclusions and future lines in section 5 wrap
up the paper.

2 Line Representation

We aim to take advantage of environments that contain straight lines by pa-
rameterizing them in both the 3D world and the 2D image plane. This section
describes the main mathematical tools (structures and operations) that will be
used to model the environment of the camera. In structured real environments,
especially indoors, straight lines are ubiquitous as they are formed by the in-
tersection of 2 planes (such as walls) and they are present between corners of
artificial objects such as pieces of furniture.

Some of the advantages of using lines instead of (or additionally to) points
are: i) lines having homogeneous visual features along themselves are easy to
detect and parameterize; ii) the schemes can be adapted to deal with incomplete
observations (segments) resulting from occlusions and image-plane cutting; iii)
the combination of corners (points) and edges (lines) can help detect and identify
objects in the scene; iv) scale- and perspective- invariance characteristics of edge
features [14] can be exploited to make the algorithm more robust.

Points in our model are represented using the homogeneous coordinates: the
2D point [u, v]T corresponds to the equivalence class λ[u, v, 1]T ∀λ �= 0. A 2D
point corresponds to a subspace of a 3D space. Similarly, the 3D point [x, y, z]T

corresponds to the class λ[x, y, z, 1]T ∀λ �= 0 (subspace of a 4D space).
Representing 2D lines by their slope and origin ordinate renders vertical lines

impossible to represent, since their slope equals infinity. To avoid such an ill-
posing, a line in the image plane is associated with the equation ax+ by+ c = 0,
different choices of [a, b, c] giving rise to different lines. Thus, a line may naturally
be represented by the vector subspace k[a, b, c]T ∀k �= 0.

The homogeneous representation of lines and points allows us to write some
properties and line-point operations as simple vector operations.

This paragraph addresses planes and lines in 3D (see [1] for a more detailed
explanation). Expressing the plane as an equation similarly to the 2D line equa-
tion, the vector equation πTx = 0 expresses that the point x is on the plane
defined by the 4-component vector π. Having this in mind, note that lines in
3D cannot be represented by one scalar equation: at least two equations are
required. Moreover, the 3D line can be intuitively represented as the join of 2
separate points or, equivalently, the intersection of 2 non-parallel planes. As a
consequence, a line can be represented by a 4× 4 skew-symmetric homogeneous
matrix. In particular, the line joining the two points A,B is represented by the
Plücker matrix L = ABT − BAT . The matrix L is independent of the points
A,B used to define it and has the required 4 degrees of freedom for a line in
3D. Point and plane transformations defined by matrices can easily be adapted
to define a line transformation. A line in Plücker format can be more compactly
represented as a 6-entry vector corresponding to the 6 nonzero elements of L,
namely L = [L12, L13, L14, L23, L42, L34]. This form is more convenient for the
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Kalman filter formulation as using it is equivalent to updating only the relevant
components of the original 4× 4 Plücker matrix.

2.1 Point, Plane and Line Operations

Some basic operations concerning points, planes and lines are presented next
which are relevant to the line-based SLAM (LineSLAM) formulation.

The most important operation associated with the camera model is the obser-
vation function. This function is characterized by the 3× 4 projective1 matrix E
that can be computed as E = KRT, where K,R,T are the projection, rotation
and translation matrix. While R and T are 4× 4 matrices that convert absolute
(world) coordinates into camera frame coordinates, K is the 3×4 projection ma-
trix that converts camera frame coordinates into image plane (2D) coordinates.
More precisely, while R and T are time variant and depend on the camera state
(position and orientation) vector; K is constant and it depends on the camera
intrinsic parameters.

Once we have defined the observation projective matrix E, we describe the
basic transformations associated with it.

– Point projection. If we have a point p in absolute coordinates, its projection
on the image plane is p′ = Ep

– Line projection. If we have a line L in 3D absolute coordinates and in Plücker
matrix format, its projection on the image plane is L′ = ELET. To convert
the resulting 3 × 3 matrix into a homogeneous line vector, we take l =
[L′

23, L
′
13, L

′
21]

T.

L′ = ELET

l =
[
L′
23 L′

13 L′
21

]T (1)

– Finding the ϕ-plane corresponding to an observed line. When the true po-
sition of a line is not available, but a projection of it (from a known camera
state) is available, its coordinates cannot be estimated just from one view
(observation), but it is possible to find the plane that contains all the lines
that could give rise to that view. Since that plane also contains the focal
point of the camera in the position of the current observation, we call that
plane the ϕ-plane. Given the projection matrix E and the 2D line (the view)
l, the ϕ-plane is computed as ϕ = ET l. The proof is straightforward and
is omitted for space limitations. This representation is useful because ob-
servations of the same line from different viewpoints give rise to a pencil of
ϕ-planes that intersect on the same line. As a consequence, a set of ϕ-planes
that match the same line and their viewpoints have enough parallax can be
used to estimate the line vector. This will be further explained in Sect. 2.2.

1 Note that the projective matrix that maps from 3D to 2D is 3 × 4 because of the
homogeneous coordinates. The same applies to the dimension of K,R and T.
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2.2 Line Initialization

This section is devoted to the process of initializing newly observed features
(lines), which is key to the creation and maintenance of a map from the processed
visual information.

Mathematically, this can be defined as robustly estimating an unknown 3D
line which is the “rolling axis” of a pencil of planes, from noisy observations
(projections) of the planes belonging to such pencil. This is useful because, de-
spite all ϕ-planes associated with observations of a single line intersect in that
line, the observations are usually corrupted with noise and that noise makes the
planes not intersect on the same line. Moreover, errors in the visual line match-
ing could give rise to outliers in the set of ϕ-planes. A measure of the reliability
of the estimated line is needed to know when the available ϕ-plane observations
are “different enough” to reliably compute a 3D line.

To estimate the line most likely to give rise to a set of ϕ-planes, we rely on the
singular value decomposition (SVD) method. To do so, we construct an n × 4
matrix M, such that each line of the matrix is a ϕ-plane in the set, and we
factorize it as M = UΣVT. Intuitively, the 4×4 matrix U contains 4 “represen-
tative” ϕ-planes, and the diagonal, 4 × 4 matrix Σ contains the singular values
associated to these representative planes. The estimated line is the intersection
of the ϕ-planes associated with the 2 largest singular values.

In a scenario where the set of ϕ-planes is not corrupted with noise and there
are at least 2 different ϕ-planes, M has rank 2, and therefore, the resulting Σ has
only 2 nonzero values. In the case of noisy observations, if the different points
of view (location of the camera associated with an observation) of the line have
enough parallax, then M will have 2 large SVs (singular values) and 2 SVs close
to 0. If there is only 1 large singular value, that means that the observations
have not enough parallax and the line cannot be reliably estimated. If there are
3 or 4 large singular values, that means that the amount of noise is too high.
In practice we say that the matrix has 2 large singular values when the 2nd
SV divided by the 3rd SV is greater than a pre specified threshold value. This
threshold has been set to 20 in experimental tests with reasonably good results.
This provides a means to decide when to initialize a line, i.e. incorporate it to
the set of known lines that are used to refine the estimated camera location.

3 LineSLAM

LineSLAM is a SLAM algorithm that, starting from Ni known (landmark) 3D
lines, keeps these lines under track from the image flow of a single camera and
creates a map with N 3D lines. It also incorporates the detected lines in the
scene to the set of landmark lines. This algorithm is inspired by MonoSLAM
approaches, with the novelty of using lines as features instead of isolated points.

Most MonoSLAM approaches deal with their non-linear dynamic models
by using an EKF, which basically linearizes the non-linear functions replacing
these functions with their Jacobians where needed. Instead of using an EKF,
LineSLAM has been implemented with a UKF. The associated dynamic model’s
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functions need not be linearized; instead, a deterministic sampling technique
known as unscented transform is used to generate a reduced set of samples
around the mean of statistic distributions.

Figure 1 shows the main steps of the algorithm. At each iteration, a new
video frame is obtained and lines are detected from it [cf. Sect. 3.3]. Afterwards,
the UKF prediction step is performed, what involves predicting the probability
distribution of the current camera state and landmark line vectors. The predicted
line observations (resulting from projecting the known landmark lines into the
predicted camera image plane) are matched with the 2D lines detected (this
steps will be further explained in Sects. 3.2 and 3.4). The last step consists in
creating new “candidate” lines from unmatched observations and initialize them
as valid 3D lines whenever they fulfill the conditions explained in Sect. 2.2. The
newly initialized 3D lines are added to the initial map with the aim of improving
the accuracy of the camera localization.

Fig. 1. Main LineSLAM algorithm design

3.1 State and Observation Models

The dynamic model’s estimated state vector x̂ contains the camera state x̂c and
N line states l̂i corresponding to the known landmarks. Generally not all known
landmarks will be in the camera field of view, so that the state vector size will
change dynamically depending on the number of observed lines.

x̂ =

⎡

⎢
⎢
⎢
⎢
⎣

x̂c

l̂1
l̂2
...
ˆlN

⎤

⎥
⎥
⎥
⎥
⎦
; x̂c =

⎡

⎢
⎢
⎣

rW

vW

qWC

ωC

⎤

⎥
⎥
⎦ ; L̂i =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

l1
l2
l3
l4
l5
l6

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

The camera state vector x̂c is composed of its 3D position rW , its orientation
quaternion qWC and its linear and angular velocities vW and ωC . Each line’s
state is in turn a 6-dimension Plücker vector [cf. Sec. 2]. Coordinates are defined
in Fig. 2.
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Fig. 2. Camera and world coordinates

The state-transition (movement) model Ft in a time step Δt is constant for
each line. The camera transition model Ftc is defined by the following
equation:

Ftc(xc) =

⎡

⎢
⎢
⎢
⎣

rW|t−1 + vW|t−1Δt

vW|t−1

q(ωC
|t−1Δt)× qWC

|t−1

ωC
|t−1

⎤

⎥
⎥
⎥
⎦

The observation vector Ht is formed by concatenating all visible (2D) lines at
time t. The observation model associated to this is as follows: for each line Li de-
fined by its 6-dimension Plücker vector, a 3D vector Hti is computed converting
the Plücker vector into a 4x4 matrix:

Li =
[
L12 L13 L14 L23 L42 L34

]T ⇒

⎡

⎢
⎢
⎣

0 L12 L13 L14

−L12 0 L23 −L42

−L13 −L23 0 L34

−L14 L42 −L34 0

⎤

⎥
⎥
⎦ = L

and then projecting the line according to (1).

3.2 UKF Prediction and Update

As it was stated before, the UKF uses a deterministic sampling technique to
handle non-linear dynamic equations. For a state x with Np parameters, whose
state prediction is x̂ and its covariance P , the UKF needs to calculate 2Np + 1

states χi (called “sigma” vectors) and its corresponding weights W
(m)
i and W

(c)
i

using the following formulas:
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⎧
⎨

⎩

χi = x̂ if i = 0

χi = x̂+ (
√
(Np + λ)P )i if i = 1, ..., Np

χi = x̂− (
√
(Np + λ)P )i if i = Np + 1, ..., 2Np{

W
(m)
i = λ

Np+λ if i = 0

W
(m)
i = 1

2(Np+λ) if i = 1, ..., 2Np{
W

(c)
i = λ

Np+λ + (1− α2 + β) if i = 0

W
(c)
i = 1

2(Np+λ) if i = 1, ..., 2Np

where λ = α2(Np + κ) −Np is a scale factor, α represents how each sigma will
be spread around x̂, and κ and β are scale factors that can be tuned depending
on the a priori knowledge about the distribution of x.

Once the vectors χi and its corresponding weights W
(m)
i and W

(c)
i have been

computed, the Kalman prediction step is as follows:

x̂t|t−1 =
∑2Np

i=0 W
(m)
i F (χi)

Pt|t−1 =
∑2Np

i=0 (W
(c)
i (F (χi)− x̂t|t−1)(F (χi)− x̂t|t−1)

T ) +Qt

where x̂ is the state vector, P the state covariance matrix and Q the covari-
ance error matrix. The Kalman update step is in turn computed through these
equations:

Yt =
∑2Np

i=0 W
(m)
i H(χi)

St =
∑2Np

i=0 (W
(c)
i (H(χi)− Yt)(H(χi)− Yt)

T ) +Rt

Ct =
∑2Np

i=0 (W
(c)
i (χi − x̂t|t−1)(H(χi)− Yt)

T )
Kt = CtS

−1
t

x̂t = x̂t|t−1 +Kt(zt − Yt)
Pt = Pt|t−1 −KtSKT

t

where Y is the prediction mean vector, S the prediction covariance matrix, C
the prediction state cross-covariance matrix, K the Kalman gain matrix, z the
real observation vector and R the observation error matrix.

3.3 Line Detection

Each video frame is analyzed to detect segments of straight lines. We have
adapted the approach described by Solis et al. [18], which uses a compilation of
different image processing schemes involving normalization, Gaussian smoothing,
thresholding, and Laplace edge detection to extract edge contours from input im-
ages; then, these contours are labeled according to its orientation and segments
are recognized joining consecutive contours with similar orientations. Figures 3
and 4 shows the algorithm results in indoor and outdoor image samples.
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Fig. 3. Line detection in an indoor scenario, 36 lines detected in 4.5 ms

Fig. 4. Line detection in an outdoor scenario, 49 lines detected in 4.9 ms

This solution is far more accurate than other line detection algorithms; it
also exhibit robustness and obtains good results in a few milliseconds, what is
essential to maintain our algorithm running in real time. The execution time of
the algorithms vary from 3 to 6 ms with a 320× 240 image resolution depending
on the image characteristics.

3.4 Line Matching

While carrying out the UKF update step, the lines stores in MonoSLAM must
be matched with the segments detected in the image. To do so, each 2D segment
is converted into the general equation form of the line solving the determinant
with its extremes (ps and pe):

vi = (xi, yi, zi) =

∣
∣
∣
∣
∣∣

i j 1.0
psx psy 1.0
pex pey 1.0

∣
∣
∣
∣
∣∣

These 2D lines are compared with the known 3D lines projecting each 3D
line into the image plane to obtain a 2D vector vl = (xl, yl, zl) [cf. Sec. 2.1]. To
match each detected line with the LineSLAM 3D lines we have implemented a
method to compare two 2D lines. The first step is projecting the 2D vector into
a subset of R3 with:
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w =

⎡

⎣
a
b
c

⎤

⎦ ⇒
⎡

⎣
x/

√
x2 + y2

y/
√
x2 + y2

z/
√
x2 + y2

⎤

⎦

This subspace makes easier to compare distances and angles among 2D lines.
Thus, comparison between two 2D lines converted to this subspace (wi and wl)
is made by the equation:

d =

⎡

⎣
ai − al
bi − bl
ci − cl

⎤

⎦

T ⎡

⎣
1 0 0
0 1 0
0 0 α

⎤

⎦

⎡

⎣
ai − al
bi − bl
ci − cl

⎤

⎦

where α balances the importance between line-to-line distance and orientation.
Even with this equations, consecutive segments with the same orientation are
difficult to match because both segments might have the same general equation
form of the line. To rule out these cases we also store representative image
patches of the 3D line the first time it is observed and calculate the correlation
between theses patches and current segments patches with a zero-mean sum of
squared differences algorithm (ZMSSD), a technique that is fast to compute, and
invariant to brightness.

To validate a match between lines both d and paths correlation must be
below certain thresholds. These thresholds are set depending on image resolution,
image quality and current environment.

4 Experiments

We have tested our LineSLAM implementations first in simulated environments
with Matlab and afterwards with real observations from one single camera.

4.1 Simulated Data

The main objective of the simulations is to validate the numerical procedures
described in the body of this article. Moreover, they are intended to give insights
on the impact of different parameters such as noise, number of detected lines,
and the distance of the lines to the camera (relative to their length).

The results shown in this section are the results of a Monte Carlo estimation
of the mean square error of the camera position and orientation, as a function
of different parameters. The methodology of the experiments is as follows: for
each tuple of parameters, several sets of random 3D lines are generated. The
3D lines are contained in a unitary sphere and the simulated camera traces a
complete circle around the center of that sphere. The position and orientation
of the camera is estimated from the noisy observations of those lines. The mean
square error is averaged over all the independent runs.

The first set of simulations shows the effect of the noise in the camera local-
ization error for different numbers of detected lines. The radius of the camera
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circular trajectory is fixed at 28 cm. The error curves show that the performance
of the filter is limited for low levels of noise. Note that the slope of the loga-
rithmic error curve decreases as the noise tends to zero, meaning that it is not
possible to arbitrarily improve the quality of the estimation just by reducing the
noise in the observations (that would need an unaffordable increase in the cam-
era resolution). The results also suggest that, in order to improve the reliability
of the estimated camera’s state, the effect of reducing the noise by a factor of
10 is similar to that of increasing the detected lines by a factor of 2. Another
conclusion is that a reasonable performance can be obtained by using as less as
4 (non-coplanar) lines.

The second set of simulations shows the effect of the average distance from
the camera to the detected lines. As expected, the error increases monotonically
with the distance to the observed pattern.
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Fig. 5. Error in camera’s state estimation vs. observation noise for different number of
detected lines

4.2 Experiments with Real Data

We have implemented our LineSLAM approach in C++ to perform experiments
with real images in real time. For these real experiments we have used a Logitech
QuickCam Pro 9000 camera whose calibration matrix K is:

K =

⎡

⎣
277.2 0 162.0 0
0 274.9 121.0 0
0 0 0 0

⎤

⎦
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Fig. 6. Error in camera’s state estimation vs. average distance to the observed lines

The design of the algorithm is the same than in Matlab but we face new
problems such as less accuracy in line detection, what predictably will take to a
worse state estimation.

Fig. 7. Execution time vs. number of lines. It includes line detection (3-6ms), visual-
ization (1ms) and UKF prediction and update.
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Figure 7 shows how execution time increases with the number of lines N .
Since we have used an UKF, whose complexity order is O(n3), the execution
time increases quickly with N , being able to manage only until 18 lines in real
time (30FPS). Execution time would improve if we used an EKF, which has a
complexity order of O(n2).

Next experiment (Figs. 8 and 9) demonstrates the creation of new 3D lines
with the method explained in Sect. 2.2. The experiment begins with 4 known
3D lines (labelled from 1 to 4), which are matched to their corresponding 2D

(a) (b)

(c) (d)

Fig. 8. Left images are real observations which contains detected segments (green),
projections of consolidated lines (purple) and candidate lines (cyan). Right images
show a 3D simulated environment with current camera position and lines stored.

Fig. 9. Camera calculated trajectory (red) and real objects (blue). Labels 1 to 5 corre-
spond to the lines stored in the map whereas labels a,b,c and d are the camera positions
which correspond to the observations from Fig. 8.
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detected lines and allow the UKF to estimate a reliable camera’s state. Then
(Fig. 8(b)), a new candidate line in 2D is selected (labelled as 5), but its 3D
line is not properly calculated because the camera has not move enough and
its parallax is too small to calculate a proper 3D line. After some iterations
(Fig. 8(c)) the parallax is big enough and an accurate 3D line is calculated, and
therefore the candidate is consolidated as a valid 3D line (Fig. 8(d)). From then
on, this consolidated 3D line serves as a reliable and stable 3D line and helps
the UKF to estimate its state vector.

5 Conclusions

This article has presented a novel approach to the monocular vision SLAM based
on the detection of straight lines and the recursive estimation of the camera state
by means of the UKF. The mathematical details of the line modeling, the signal
processing (filtering) techniques as well as the image analysis tools related to
the detection of lines in the image frame, have been presented, and a novel
algorithm implementing all these aspects, LineSLAM, has been developed and
experimentally validated.

After testing several different methods, the Solis 2D line [18] algorithm has
been chosen as the best available technique for straight line detection. Regarding
the filtering technique, the UKF is preferred to the EKF because with UKF does
not require to compute the Jacobian matrix for the update step. The problems
typically associated with linearization-based approximation are thus avoided.

The representation of lines in 2D and in 3D has been carefully chosen, because
the quality of the estimated camera state depends on how they are represented.
The Plücker matrix format has been chosen because the functions associated
with this representation are expected to work well in conjunction with the family
of EKF and UKF filters. Additionally, we have presented a robust algorithm to
create new 3D lines from several 2D observations taken from known camera
locations. This algorithm is based on SVD and it is the mathematical basis to
incorporate 3D lines in the map. This is key to extend the built map to unknown
areas, as well as addressing the map maintenance task. A map built in terms of
3D straight lines provides more abstracted information and can be more useful
than a map based only on point features.

The performance of the developed algorithms has been assessed by two sets of
preliminary experiments. The first one with synthetic data shows the effects of
noise and camera-pattern distance in the camera location accuracy. The second
one validates the system real-time functioning with a real camera and shows an
example of addition of new lines in the map.

The obtained initial results encourage us to extend this work in several direc-
tions: i) making the algorithm able to deal with line segments of bounded length,
instead of infinite lines; ii) using EKF and square root UKF for filtering instead
of UKF to speed up the algorithm, and iii) making a thorough comparison be-
tween LineSLAM and point-based visual SLAM in terms of speed, robustness
and potential for the closed-loop problem [15]. Two long-term future lines of
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work are: i) exploring the use of a wider class of objects (e.g. more abstracted
shapes such as cubes or cylinders, widespread objects such as pens and books,
or scenario-specific objects such as surgical instruments) as features for visual
SLAM, and ii) the use of lines in bundle adjustment approaches like PTAM.
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