Evolutive learning of walking gaits for Nao humanoid robot using the
Gazebo simulator

Francisco Pérez! and Francisco Rivas? and José M. Caiias®

Abstract— This contribution presents the work in progress
for the automatic learning of walking gaits using an evolution-
ary algorithm. The humanoid movement is modelled as coupled
waves of its limbs, which are coordinated by a Central Pattern
Generator. The waves are defined with a set of parameters. The
values of parameter set define the space of possible walking
gaits. The evolutionary algorithm searches in that space a good
walking gait such that maximizes the robot advance speed, pro-
vides stability and minimizes lateral deviation. The evolutionary
algorithm proposes parameter combinations which are tested
in a Nao humanoid inside the Gazebo simulator. The developed
Nao support in Gazebo software and the implementation of this
gait evaluation on the simulated humanoid are presented.

I. INTRODUCTION

Walking gaits for humanoid robots is an important issue
in robotics. Many research groups are focusing their studies
on trying to find a good solution for this kind of locomotion.
A clear example of this is the international scientific compe-
tition RocoCup. In this competition a group of robots have
to play soccer all together and humanoids are used in some
of their main leagues. Moreover, almost all major Japanese
companies are working on their own prototypes. Perhaps, in
order to introduce them into an emerging market for service
robots in homes, thinking that this human appearance makes
them more readily acceptable by people. One of the most
important works is the Honda ASIMO (Advanced Step in
Innovative MObility) robot, which is capable of speeds up
to 6 km/h.

Despite of the major recent advances, locomotion of
humanoid remains an open problem, yet being too far from
the flexibility, robustness and plasticity of human natural
movements of people.

Gaits generation in humanoid robots is part of a more gen-
eral problem: the robots coordination of n joints actuators.
Given a robot with n joints with its particular morphology
(humanoid, quadruped, hexapod, legless...) the problem is
to find the specific functions which establish the position
of each joint so that the robot can move. In the literature
there are three different approaches: classic, control tables
and bio-inspired model. In the classical approach, trajectory
functions for the outside of the limb are set, calculating every
joint position using inverse kinematics. Path functions for
the ends of the legs are set in the classical approach and
the positions of the actuators are calculated using inverse

1Universidad Rey Juan Carlos, Spain

2Universidad Rey Juan Carlos, Spain
franciscomiguel.rivas@urijc.es
3Universidad Rey Juan Carlos, Spain

josemaria.plaza@urijc.es

kinematics. The implementation of these controllers requires
an exhaustive mathematical model of the robot and overall
computational cost will be high.

A different approach is the control tables proposed by
Yim [1] for locomotion of its first modular robots. These
tables store basically a vector of every joint position for each
instant. The controller scans the table sending positions to
the actuators. This controller is simple and can be performed
using low-end microcontroller. However, it is very flexible,
to change the movement involves simply on recalculating the
table.

The third approach is the bio-inspired one, wherein the
position functions are obtained from nature models. IJspeert
[2] was the pioneer in applying the lamprey Central Pattern
Generators (CPGs) for robots locomotion, getting movement
in its robotic salamander named Amphibot [3]. The CPGs
are specialized groups of neurons that produce rhythms to
control muscle activity of living beings. Kurakawa et al.
[4] used as principle the half center oscillator pattern of
Matsuoka [5] to generate the modular robot rhythms of the
M-tran III, which can take different morphologies.

CPGs have the property that in steady state behave as
fixed-frequency oscillators. Using this concept, Gonzalez-
Gomez [6] proposed a simplified model of sinusoidal os-
cillators with which he was able to manage the locomotion
of a robotic snake in two dimensions, getting five different
gaits and obtaining a smooth natural motion.

The most used technique for humanoid robots locomotion
has been for many years the ZMP (Zero Moment Point).
ZMP calculates the trajectory of the center of mass to get
a smooth and stable gait. Such complex robots like ASIMO
and HRP are using this algorithm. However, to make ZMP
work properly you need to make a very precise modeling of
the robot and actuators. Therefore, more and more authors
are applying bio-inspired models for humanoids robots. The
ZMP approach in combination with CPGs is suggested by
Or et al [7] for real-time control of a humanoid robot with
a flexible spine.

II. MOVEMENT MODEL

The gait of a humanoid robot is similar to the gait of a
human. Humanoids have 2 feet with 3 joints in each leg:
hip, knee and ankle. The gait of a biped robot, as human,
is periodic. Our gait consists on chaining a number of steps.
If we walk at a constant speed, each step are exactly alike.
Therefore, we can simplify the gait of a humanoid robot in
steps.

Another important feature is the symmetry: to get a linear
gait the movement of a leg must be symmetrical to the
contrary only with a certain delay, exactly the half of a step
length. To get a sufficiently stable gait making the robot not
to fall, all the actuators involved must be in rhythmic and
properly synchronized, in short, coupled.

Following the CPGs approach, for each actuator involved
in the gait we will get a function that defines its movement in
each step. Thus, the parameters do not depend on the number
of the movement frame positions like movements with the
control table. The gait will only depends on the parameters
of the characteristic function, for example sinusoidals.

As shown in figure 1 the movements of the actuators do
not correspond to sine waves in most cases. However, we try
to model these trajectories with basis functions characterized
with the same parameters as a sine wave: frequency (w),
amplitude (Ag), phase (5) and offset(y), corresponding to
the function a(t) = Ag * sin (w t + 8) + 7. Each actuator
will have only 4 parametres.

Pitch del tobillo

1 2 3 4 5] 7 B 9 10

-15 == |zquierda
==Derecha

Pitch de la cadera

1 2 3 4 5 6 7 B 9 10

== |zquierda
-20 ==Derecha

-30
-35

-40

Fig. 1. Examples of gait actuator trajectories

From the 12 actuators involved in the gait we will avoid
the yaw of the left and right hips. These yaw only control
the hip rotation which affects to the trunk verticality. As we
want the robot to walk with the greater stability both actuator
are allways going to be set to 0. Each of the 10 remaining
actuators will have a parameterized function with frequency,
amplitude, phase and offset. So this parametrization will have
40 parameters to generate a gait fot the humanoid robot.

The frequency of all the actuators have to be the same as

the step movement must start and end at the same time for
all of them. Thus, we will have 3 independent parameters in
each function (phase, amplitude, and offset) and a common
frequency, so we really have 31 parameters.

In a straight gait the robot steps are symmetric and can
obviate one side of the robot. We can set the movement on
the left side from the right only by adding a fixed offset to
the function that defines the movement. With this agreement
we reduce the number of parameters to 16: 5 actuator with
3 parameters in each and the common frequency.

Fixing the hip offset as reference and defining the offset
of the remaining joints on it, we can saved a parameter. That
reference marks the initial position of the step, but irrelevant
to the learning.

Another significant simplification is to fix the direct re-
lationship on the actuators that perform the gait swing of
the robot. The swing motion is performed by the robot to
compensate the weight when lifting one leg during gait. The
only actuators involved in this movement are the ankle and
hip roll.

Changing the phases of the swing actuators means that the
gait will not be rhythmic and will be uncoordinated. Based
on this idea, we can set a direct dependence on the phase
of the hip so that the phases of the swing actuator functions
will only change varying the phase of the hip.

To control the amplitude of the swing we will introduce a
parameter called swing amplitude. This amplitude is a con-
stant by which all swing actuators will be multiplied. With
this idea we can characterize the entire swing movement
with a single parameter. So we eliminate the two amplitudes,
which depend on the new parameter, the two phases, which
are directly dependent on the phase of the hip pitch in order
to have the rhythmic swing. Applying these concepts, all the
gait of a humanoid robot will be reduced to control the 10
parameters listed on Table II.

Parameter min | max | levels
1. Common frequency () 0 - -
2. Hip pitch amplitude 0 62 62
3. Hip pitch offset () -100 25 125
4. Knee pitch amplitude 0 65 65
5. Knee pitch phase (3) —27 | 2m 12
6. Knee pitch offset () 0 130 130
7. Ankle pitch amplitude 0 60 60
8. Ankle pitch phase (3) —7 ™ 6
9. Ankle pitch vertical offset () -75 45 120
10. Swing mplitude 0 100 100
TABLE I

PARAMETERS OF THE WALKING GAIT MODEL

III. NAO HUMANOID IN GAZEBO

We have chosen the Nao as humanoid robot and Gazebo
as the simulator. There are two building blocks when pro-
gramming the Nao support in Gazebo: create the robot model
in Gazebo and the plugins that allow external applications to
access to its sensors and actuators. Every plugin works as a
dynamic library that is loaded at the start of Gazebo.

A. The humanoid model

The first step to build support to the Nao humanoid in
Gazebo is to create a model inside the simulator with basic
objects: links, joints and sensors. In addition to assembling
all the pieces, the simulator offers Simulation Description
Format (SDF), a way to write XML files defining the visual
properties of our robot. To build the robot we joined some
basic predefined blocks like hexahedrons, spheres, cylinders,
etc. Several properties like geometrical size, mass, location
in the world, inertia matrix and others can be associated to
each block. These bodies are joined by hinges, which can
give one or more directions of rotation. This provides our
simulated model with different degrees of freedom. Every
hinge in this model is built based on revolute joints, which
commands the aperture of the hinge in the specified axis.

Following the next steps we designed and built every part
of the simulated humanoid Nao: the arms, legs, body and
head as can be seen in Figure 2. The arm and the camera
will be detailed as representative samples. The properties
of every part were set according to the Aldebaran Robotics
documentation, including the center of masses, inertial ma-
trices or the aperture range of the hinges, getting a realistic
behavior at the simulation.

11)l Steps: 1, Real Time Factor:

Fig. 2. Nao robot in Gazebo simulator

The humanoids arm in Gazebo is composed by humerus,
ulna, radius and hand which were modelled as two rectan-
gular hexahedrons, one for the humerus and another one for
the rest. These two bodies are joined by an elbow hinge.
This hinge gives the regular elbows degree of freedom, which
allows to bend and stretch the arm. Besides, it allows another
additional degree of freedom available in the real Nao, one
that allows you to rotate the forearm with respect to the
humerus. To achieve these two degrees of freedom at the
elbow we used two hinge joints in the model with a dummy
block of negligible mass in between. To add a skin is as
simple as specify the path to a Colladal2 file (.dae) in the
visual tag. The Nao robot skins were built with Blender and
added to this model.

The humanoid head is modelled as an sphere, with its skin,
and incorporates two camera sensors, as in the real robot. To
do that, it is necessary to add two sensors in the model.
This sensor is created based on the SonyVID30 camera,

already supported by Gazebo. This camera provides images
with a size of 320x240 pixels, with an horizontal field of
view (HFOV) of 60 degrees and a refresh of 10 frames per
second. Once incorporated to the head, we developed the
basic programming interface which allows to get data from
the camera to see what the Nao robot in Gazebo is watching
every moment. In order to move the head, we developed a
neck hinge with two degrees of freedom: one for the pitch
(tilt), and one for the yaw (pan).

B. Gazebo plugins

Once the Gazebo humanoid model was built, developers
can program applications that use its sensors and command
movements to its actuators. The simulator provides a low
level API with different modules in order to have a realistic
simulation, such as methods to get the position of a link,
simulate a depth camera sensor or give an easy way to have
a PID controller in the simulation, among others.

We write our robot applications using the JdeRobot open
source robotics middleware [], so we developed several
Gazebo plugins that wrap such low level API and provide a
high level API, in terms of the ICE object interfaces used in
that middleware. They provide external access to simulated
Nao sensors and actuators from other JdeRobot components.

A Gazebo plugin must have at least three elements: the
line in which you register the plugin, the Load method in
which you load every element of the SDF file you want to
take over control and the OnUpdate method that will run
iteratively in a loop to do the work.

Several standard ICE interfaces in JdeRobot were used,
like Tmage interface for Nao cameras or encoders inter-
face for humanoid hinge positions. Other were specifically
developed for this humanoid, like the body joints. Under
the position commands a control loop is executed inside the
plugin, it reads the hinge position using the Gazebo low level
API to its encoders and commands orders to the hinge motors
to keep the reference position sent to the high level API. The
simulated robots neck is special: it is the only hinge that
allows movement both in position and in speed. With this
feature the neck can be commanded to an specific position
or commanded to move to an specific speed in certain axis.

IV. EVOLUTIVE LEARNING

With the proposed motion model a huge number of walk-
ing gaits may be represented (not all). Discretizing the scope
of the ten parameters of Table II and fixing the common
frequency, there would be 2°! possible walking gaits. Many
of them are nonsense, make the robot fall, others make the
robot steps very long and slow o short and fast. Such huge
space may be searched using a brute force approach but we
propose the use of an evolutive algorithm that use a fitness
function to explore such space of tentative walking gaits.

The fitness function is not analytical, as that would be
cumbersome. Instead, we propose the use of a simulator,
commanding the simulated humanoid robot to move accord-
ing to each tentative walking gait during a given testing time
interval. The results of that motion are objectively measured

in terms of stability, speed and lineality of the generated
motion. The combination of these criteria gives a quality
function.

We have developed the software shown at Figure 3. The
Pose3D plugin continuously registers the current motion po-
sition in 3D. The NaoWalk plugin implements the tentative
walking gait, translating the parameters of a given walking
gait into particular position commands to each robot joint
along the testing time interval. It also accepts the parameters
of each walking gait to be tested and places the simulated
humanoid in a neutral starting position and posture before
receiving the next start-testing command.

In addition, the NaoWalk plugin measures three quality
indicators of the tested walking gait. The speed is measured
as the distance already travelled along the testing interval
from the starting point. The lineality is measured as the
final side deviation from the ideal trajectory. The stability is
measured as the accumulated deviation around the straight
trajecdtory. In case of the robot falling the quality indicators
of such parameter set are considered zero.

[JdeRobot]

Fig. 3. Evolutionary algorithm component connecting to the Gazebo
simulator, where the candidate walking gaits are tested.

The Learning Component implements the evolutive
algorithm, including the evolutive operators like mutation,
crossover, elitism, etc. and the fitness computation from the
basic quality indicators. It keeps a population of tentative
walking gaits that evolves depending on the fitness of its
members and the application of operators. The population
trends to move towards higher fitness values. This software
component generates tentative gait parameters which are
sent to the simulator to be tested. It receives the quality
indicators from the NaoWalk plugin. This way it explores
the parameter space, searching for an optimal walking gait.

V. CONCLUSIONS

In this contribution the developed support for Nao hu-
manoid in Gazebo has been presented. A physical and
appearance model of the robot parts was created. In addtion
several plugins were programmed to provide access to robot
sensors and actuators (joint motors) from external applica-
tions in the JdeRobot framework.

Legged robot motion is by far more complex than wheeled
robot locomotion. A movement model for a humanoid robot
has been proposed which uses coupled waves to coordinate
humanoid limbs motion. The waves are defined with a set
of ten parameters.

The span of possible walking gaits generated by different
parameter values is huge. The support for Nao in Gazebo has
been proposed to help in searching efficient walking gaits for
the humanoid in such space. The work in progress in this
line has been presented with two Gazebo plugins: one that
provides the robot position in the simulated world in real time
and a second one that implements a particular walking gait
for a time interval, gathers gait quality indicators (like robot
average speed, side deviation, whether it causes the robot
to fall or not) and may restart the simulation with another
different walking gait again.

Future lines include the full programming of the evolution-
ary algorithm that searches in the parameter space instead of
using a brute force approach. A second envisioned work is
to test the best walking gait found in the simulator into the
real Nao robot.

ACKNOWLEDGMENT

This research has been partially sponsored by Project
RoboCity2030-1II-CM (S2013/MIT-2748), which is funded
by Programas de Actividades I+D from Community of
Madrid and cofunded by Structural Funds of the European
Union.

REFERENCES

[1] M. Yim, Locomotion with unit-modular reconfigurable robot. PhD
thesis, Stanford University, 1995.

[2] A. J. Ijspeert, Design of artificial neural oscillatory circuits for the
control of lamprey and salamander-like locomotion using evolutionary
algorithms. PhD thesis, Department of Artificial Intelligence, Univer-
sity of Edinburgh, 1998.

[3] A. J. Ijspeert and A. Crespi, Online trajectory generation in an
amphibious snake robot using a lamprey like central pattern generator
model, in Proceedings of the 2007 IEEE International Conference on
Robotics and Automation (ICRA 2007), pp. 262268, 2007.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S.
Murata, Distributed self-reconfiguration of m-tran iii modular robotic
system, I. J. Robotic Res., vol. 27, no. 3-4, pp. 373386, 2008.

[5] M. Kiyotoshi, Mechanisms of frequency and pattern control in the
neural rhythm generators, Biological Cybernetics, vol. 56, pp. 345-
353, July 1987.

[6] J. Gonzalez-Gomez, Robotica Modular y Locomocion: Aplicacion a
Robots Apodos. PhD thesis, Escuela Politecnica Superior, Universidad
Autonoma de Madrid, 2008.

[71 O.Jimmy, A hybrid cpg-zmp controller for the real-time balance of a
simulated flexible spine humanoid robot, Trans. Sys. Man Cyber Part
C, vol. 39, pp. 547561, September 2009.

