
Behavior-based Iterative Component Architecture
for soccer applications with the Nao humanoid

Carlos E. Agüero #1, Jose M. Cañas #1, Francisco Martı́n #1 and Eduardo Perdices #1

#Robotics Group, Universidad Rey Juan Carlos
Tulipán s/n 28933 Móstoles, Madrid (Spain)

1{caguero, jmplaza, fmartin, eperdices}@gsyc.es

Abstract— Software architectures are essential for robotic ap-
plications development. They organize perception and actuation
capabilities in order to achieve the goals the robots for which are
developed. In this paper we present the third major release of
our software architecture, named BICA, that aims to be applied
in a wide range of applications using the Nao humanoid robot
as the hardware platform. This architecture has been designed
using state-of-the-art concepts to be reliable, extensible and
efficient and the last release improves some of the shortcomings
observed along the experience with the initial design, as well
as the addition of new specific components for perception, auto-
localization and communication. This architecture has been tested
in different domains, mainly the RoboCup Standard Platform
League, which is very demanding, competitive and dynamic.
Around this software architecture we have developed an useful
set of tools to design, setup and debug the perceptive abilities
and behaviors of the robot.

I. INTRODUCTION

The focus of robotic research continues to shift from in-
dustrial environments to mobile service robots operating in a
wide variety of scenarios, often in human-habited ones.

In many cases, research is motivated by accomplishment of
a difficult task. In robotics there are several competitions which
present a problem and must be solved by robots. For example,
Grand Challenge or Urban Challenge propose a robotic vehicle
to cross hundred of kilometers driving autonomously.

Our work is related to RoboCup. This is an international
initiative to promote research on the field of Robotics and
Artificial Intelligence. This initiative proposes a very complex
problem, a soccer match, in which several techniques related
to these field can be tested, evaluated and compared.

This work is focused on the Standard Platform League. In
this league, all the teams use the same robot and changes in
hardware are not allowed. This is the key factor that makes
that the efforts focus on the software aspects rather than in the
hardware. Since 2008, the official robot in this league is the
Nao humanoid. Robot Nao is a fully programmable humanoid
robot. Nao is about 55 cm. tall and can perceive in 3D because
of the two cameras installed at a high position that enables the
robot to calculate the position of the elements that are located
on the floor.

With this work, we are proposing a behavior-based software
architecture that meets the requirements needed to develop a
soccer player. Every behavior is obtained from a combination
of reusable components that execute iteratively. Every compo-
nent has a specific function and it is able to activate, deactivate

or modulate other components. This approach meets the vi-
vacity, reactivity and robustness needed in this environment.
This architecture is inherited from the one we presented in [1],
but it has been redesigned in order to improve efficiency and
reliability.

In section II we will present relevant previous works which
are also focused in robot behavior generation. In section III we
will summarize the Nao and the programming framework pro-
vided by the manufacturer to develop the robot applications. In
section IV, the behavior based architecture and their properties
will be described. Next, in section V, we will show one
useful tool in the architecture. In section VI we will describe
some experiments carried out to validate the architecture and
some actuation and perception developed components. Finally,
section VII will summarize the conclusions.

II. RELATED WORKS

There are many approaches that try to solve the behavior
generation problem. One of the first successful works on mo-
bile robotics is Xavier [3]. The architecture used in these works
is made out of four layers: obstacle avoidance, navigation,
path planning and task planning. The behavior arises from
the combination of these separate layers, each with a specific
task and priority. The main difference with regard to our work
is this separation. In our work, there are no layers with any
specific task, but the tasks are broken into components in
different layers.

Another approach is [4], where a hybrid architecture, in
which behavior is divided into three components, was pro-
posed: deliberative planning, reactive control and motiva-
tion drives. Deliberative planning made the navigation tasks.
Reactive control provided with the necessary sensorimotor
control integration for response reactively to the events in
its surroundings. The deliberative planning component had a
reactive behavior that arises from a combination of schema-
based motor control agents [5] responding to the external
stimulus. Motivation drives were responsible of monitoring
the robot behavior. This work has in common with ours the
idea of behavior decomposition into smaller behavioral units.

The JDE architecture [8] has several similarities with
the one presented in this work, including the activa-
tion/deactivation of reactive components called schemas.

In the RoboCup domain, a hierarchical behavior-based
architecture was presented in [6]. This architecture was divided

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

in several levels. The upper levels set goals that the bottom
level had to achieve using information generated by a set
of virtual sensors, which were an abstraction of the actual
sensors.

Much research has been done over the Standard Platform
League. The B-Human Team [7] divides their architecture in
four levels: perception, object modeling, behavior control and
motion control. The execution starts in the upper level which
perceives the environment and finishes at the low level which
sends motion commands to actuators. The behavior level was
composed by several basic behavior implemented as finite state
machines. Only one basic behavior could be activated at the
same time. These finite state machines were written in XABSL
language [10], that was interpreted at runtime, and it allows
to change and reload the behavior during the robot operation.

A different approach was presented by Cerberus Team [12],
where the behavior generation is done using a four layer
planner model, that operates in discrete time steps, but exhibits
continuous behaviors. The topmost layer provides a unified
interface to the planner object. The second layer stores the
different roles that a robot can play. The third layer provides
behaviors called ”Actions”, used by the roles. Finally, the
fourth layer contains basic skills, built upon the actions of
the third layer.

III. NAO AND NAOQI FRAMEWORK

The behavior based architecture proposed in this work has
been tested using the Nao robot. The applications that run
in this robot must be implemented in software. The robot
manufacturer provides an easy way to access the hardware
and also several high level functions, useful to implement
the applications. This software is called NaoQi and provides
a framework to develop applications in C++ and Python.
Our soccer robot application uses some of the functionality
provided by this underlying software.

NaoQi is a distributed object framework containing several
software modules which communicate among them. Robot
functionality is encapsulated in software modules, so we can
communicate to specific modules in order to access sensors
and actuators.

NaoQi is voracious, consuming a lot of memory and com-
puting resources. Intensive use of memory, communication or
synchronization mechanism provided by NaoQi affects the
robots movement. We use NaoQi for motion and camera
access mainly through two NaoQi modules: ALMotion and
ALVideoDevice.

The hardware features impose some restrictions to our
behavior based software architecture design. The micropro-
cessor is not very powerful and the memory is very limited.
These restrictions must be taken into account to run complex
localization or sophisticated image processing algorithms.

IV. BICA: BEHAVIOR-BASED ARCHITECTURE FOR ROBOT
APPLICATIONS

It is possible to develop basic behaviors using only the
Naoqi framework, but it is not enough for our needs and

the development of complex applications using NaoQi alone
is hard. We need an architecture that lets us activate and
deactivate components, which is more related to the cognitive
organization of a behavior based system. This is the first step
to have a wide variety of simple applications available.

In this section we will describe the design concepts of the
robot architecture we propose in this paper, named BICA. The
main element in BICA is the component, which is the basic
unit of functionality. At any time, each component can be
active or inactive. When it is active, it is iteratively running
a step() function to perform the component task. When
inactive, it is stopped and it does not consume computation
resources. A component also accepts modulations to its actu-
ation and provides information of the task it is performing.

A component, when active, can activate another components
to achieve its goal, and these components can also activate
another ones. This is a key idea in our architecture. This allows
the decomposition of functionality in several components that
work together. An application is a set of components in which
some of them are activated and another ones are deactivated.
The subset of the components that are activated and the
activation relations are called activation tree.

The activation tree is no fixed during the robot operation.
Actually, it changes dynamically depending on many factors:
main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls.
The robot must adapt to the changes in these factors by
modulating the lower level components or activating and
deactivating components, changing in this way the static view
of the tree.

As an example, Figure 1 shows an activation tree composed
of three components. ObjectPerception is a low level compo-
nent that determines the position of an interesting object in
the image. Head is a low level component that moves the
head. These components functionality is used by a higher
level component called FaceObject. This component activates
both low level components, that execute iteratively. Each
time FaceObject component performs its step() function,
it asks FaceObject for the object position and modulates head
movement to obtain the global behavior: facing the object.

Robot Soccer

10

Fig. 10. Activation tree composed by several components.

Two differents components are able to activate the same child component, as we can
observe in figure 11. This property lets two components to get the same information from a
component. Any of them may modulate it, and the changes affect to the result obtained in
both component.

Fig. 11. Activation tree where B and D activates D component.

The activation tree is no fixed during the robot operation. Actually, it changes dinamically
depending on many factors: main task, environment element position, interaction with
robots or humans, changes in the environment, error or falls… The robot must adapt to the
changes in these factors by modulating the lower level components or activating and
deactivating components, changing in this way the static view of the tree.

The main idea of our approach is to decompose the robot functionality in these components,
which cooperate among them to make arise more complex behaviors. As we said before,
component can be active or inactive. When it is active, a step() function is called
iteratively to perform the component task.

Fig. 12. Activation tree with two low level components and a high level components that
modulates them.

As an example, in figure 12 we show an activation tree composed by 3 components.
ObjectPerception is a low level component that determines the position of an
interesting object in the image taken by the robot’s camera. Head is a low level component

Fig. 1. Activation tree while executing Faceball behavior

Using this guideline, we have implemented our architecture
in a single NaoQi module. The components are implemented
as Singleton C++ classes and they communicate among them
by method calls.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

Activations and deactivations are made implicit in the
components code. There is not an activate method, but each
component that wants to activate the other component calls to
its step() method. When NaoQi module is created, it starts
a thread which continuously call to step() method of the
root component (the higher level component) in the activation
tree. Each step() method of every component at level n has
the same structure:

1) Calls to step() method of components in n-1 level in
its branch that it wants to be active to get information.

2) Performs some processing to achieve its goal. This could
include calls to component methods in level n-1 to obtain
information and calls to lower level component methods
in level n-1 to modulate their actuation.

3) Calls to step() methods of component in n-1 level in
its branch that it wants to be active to modulate them.

The step() code of the last example looks like this:

void FaceBall::step(void) {
perception->step();
if (isTime2Run()) {

head->setPan(perception->getBallX());
head->setTilt(perception->getBallY());

}
head->step();

}

Each module runs iteratively at a configured frequency.
It makes no sense that all the components execute at the
same frequency. Some pieces of information are needed to
be refreshed very quickly, and some decisions are not needed
to be taken so quickly. When a step() method is called,
it checks if the elapsed time since last execution is equal or
higher to the one according to its frequency. In that case, it
executes (1), (2) and (3) items of the step() structure. If the
elapsed time is lower, it only executes (1) and (3) items.

Using this approach, we can modulate the frequency of
every module, and be aware of situations where the system
has a heavy load. If a module does not meet with its (soft)
deadline, it only makes the next component to be executed
a little bit late, but its execution is not discarded (graceful
degradation).

V. VICODE TOOL: VISUAL COMPONENT DESIGNER

The robot applications are organized as a collection of
connected components, perceptive ones and actuation ones.
Some actuation components may be successfully programmed
as reactive controllers or simple PID feedback controllers.
Many times the complexity of the components fits well in finite
state machines (FSM). Using FSMs powerful components
can be programmed, which unfold complex behaviors. But
developing complex behaviors based on FSMs is complicated
and prone to errors. Because of this we have developed a
useful tool, named VICODE (VIsual COmponent DEsigner),
that automatically generates C++ BICA component code from
a visual description of the finite state machine.

We use VICODE for the development of complex compo-
nents, and even for the basic ones, as the code generation

Fig. 2. Finite State Machine for Player behavior

is faster and more reliable using it than writing the code
manually.

This tool lets us design an iterative finite state machine
setting its states and transitions. Each state has a source code
attached to be run at each iteration of the FSM being in such
state. At the same time it has a source code to check possible
transitions from it to other states when certain perceptive
conditions are met. Furthermore, we can visually establish
which components are used in each state, and whether it is
a modulation or a requirement link.

VICODE generates the component C++ code. This includes
the state machine code, the headers file with the component
API, and calls to the step() method of the components
that it uses or modulates. VICODE lets us to edit the states
and transitions code. This code is even refreshed if the code
is externally edited to avoid inconsistencies. Transitions are
defined as functions that return true or false if the transition
has to be taken. This information to make the decisions can be
provided by other components or by a timer (used for time-
based transitions).

VI. EXPERIMENTS IN THE ROBOCUP SCENARIO

In this section we present the experiments carried out to
validate this behavior based architecture.

A. Forward soccer Player

Using BICA we have developed the forward Player be-
havior set and tested it at RoboCup 2009 in Graz and
at Mediterranean Open 2010 with real robots. A video
with a sample of the behavior may be visualized at
www.teamchaos.es/index.php/URJC#RoboCup-2009.

Figure 2 shows the finite state machine corresponding to
the forward player component. Figure 3 shows a piece of an
experiment of the soccer player behavior. In this experiment
the robot starts with total uncertainty about the ball. Initially,
the Player component is in LookForBall state and it has
activated the SearchBall component to look for the ball. Player
component is continuously asking Perception component for
the ball presence, and when the ball is detected in the image

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

Fig. 3. Ball searching sequence

Fig. 4. Ball approaching modulation to make the robot turn

(fourth image in the sequence), SearchBall component is de-
activated and FollowBall component is activated, approaching
to the ball (fifth image in the sequence).

FollowBall component activates FaceBall component to
center the ball in the image while the robot is approaching
to the ball. FollowBall activates Body to approach the ball.
As the neck angle is less than a fixed value, i.e 35 degrees
(the ball is in front of the robot), Body activates GoStraight
component in order to make the robot walk straight.

In Figure 4, while the robot is approaching to the ball, it
has to turn to correct the walk direction. In this situation,
the head pan angle is higher than a fixed value (35 degrees,
for example) indicating that the ball is not in front of the
robot. Immediately, after this condition is true, FollowBall
modulates Body so the angular speed is not null and forward
speed is zero. Then, Body component deactivates GoStraight
component and activates Turn Components, which makes the
robot turn in the desired direction.

The robot reaches the ball while it is walking to the ball,
the bottom camera is active, the head tilt is higher than a
threshold, and the head pan is low. This situation is shown
in the first image in the Figure 5. In that moment, the
robot has to decide which kick it has to execute. For this
reason, the net has to be detected. In the last image, the
conditions to kick the ball are held and the player component
deactivates FollowBall component and activates the SearchNet
component. The SearchNet component has as output a value
that indicates whether the scan is complete or not. The Player
component queries in each iteration if the scan is complete.

Fig. 5. Search net behavior and kick

Once completed, depending on the net position (or if it has
been detected), a kick is selected. In the second image of
the same figure, the blue net is detected at the right of the
robot. For this test we have created three types of kicks: front,
diagonal and lateral. Actually, we have six kicks available
because each one can be done by both legs. In this situation
the robot selects a lateral kick with the right leg to kick the
ball.

Before kicking the ball, the robot must be aligned in order
to situate itself in the right position to do an effective kick. For
this purpose, the player component requests the ball position
in 3D with respect to the robot of the Perception module.
The player component activates Fixmove component with the
selected kick and a lateral and straight alignment. As we can
see in third and fourth images, the robot moves on its left and
back to do the kick. While the kick is performing and after
the kick, FaceBall component is activated to continue tracking
the ball.

This experiment was carried out in a real competition
environment, where the robot operation showed robust to the
noise produced by other robots and people.

B. Ball perception in 3D

Several perceptive components have also been programmed
in order to provide the relevant environment information for
control decisions. At the RoboCup competition, the environ-
ment is designed to be perceived using vision and all the
elements have a particular color and shape.

We perform a 3D perception using projective geometry.
Taking into account all the joint positions, we can determine
the camera position and orientation in 3D. This lets us project
the image pixels in the 3D world to determine the 3D position
(knowing other data, like the Z coordinate) and backproject a
3D hypothesis on the image to validate an image detection.

The modular design of BICA has allowed component devel-
opers to test different implementations of the same component
maintaining the same interface. This is the case of the percep-
tion module, where a novel alternative has been developed.
The classical algorithm processes the full set of pixels or a
region of interest of an image looking for important features.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

As we mentioned before we can apply projective geometry to
estimate the 3D position of the objects.

In contrast to this approach we have inverted the method
maintaining a set of hypothesis in the real 3D world. Each
hypothesis is then backprojected to the image to be validated.
We have carried out different methods for validating and
ranking every hypothesis. For the case of the ball, every
hypothesis uses two different cubes. An internal cube 3D is
calculated surrounding the hypothetical ball that is represent-
ing. An external 3D cube is also calculated to represent the
surrounding area of the ball. Both cubes are backprojected
into the image plane as we can see in figure 6 generating the
proximity windows (pink and cian in figure 6 left).

Fig. 6. Cubes, proximity windows (left) and object estimation window (right)

The population of hypothesis is maintained using a genetic
algorithm. The fitness function is shown in equation 1, where
n is the number of individuals, Dint is the density of positive
pixels inside the internal proximity window, Dext refers to the
density of positive pixels inside the external window deducting
the area occupied by the internal window, while α and β are
coefficients for weighting each factor.

hi =
1

n
+ARGMAX(0, α ∗Dint. − β ∗Dext.) (1)

The results have shown a reduction of a 30%-60% (depend-
ing on the distance to the ball) in the CPU consumption due to
the minor number of pixels checked compared with the clas-
sical approach of evaluating all of them. Another advantage in
robustness has been deduced from the experiments due to the
fact that we do not explore other areas that can cause potential
problems as false positives.

C. Visual self-localization

One of the most important tasks in the RoboCup SPL is
the robot self-localization, since the robot’s behavior has to
be different depending on its location. The field where robots
play can provide us the information we need, given that it has
two colored goals (blue and yellow) and several white lines
such as the side lines, the penalty area lines, the halfway line
and the central circle.

To solve the robot localization problem there are different
approaches used by other teams. The most common are the
particle filters, such as Monte Carlo Localization (MCL)
[13], that has been used for several teams obtaining good

results [14], [15]. However, MCL is only able to handle one
solution for robot localization at each iteration, what could
take the solution to wrong locations in case of symmetries.
Taking this into account, we have designed a new approach
specifically created to bear symmetries in the RoboCup field.
This new approach uses an evolutionary algorithm, a type of
metaheuristic optimization algorithm that is inspired by the
biological evolution to solve a problem.

The main idea of the algorithm consists of several races
(candidate solutions) competing between each other in differ-
ent field positions. These races are created, for instance, after
getting symmetries from the observations. After some itera-
tions, predictably, the observations will provide information
to rule out the wrong races (i.e. solutions) and we will obtain
the real robot localization.

The observations have been analyzed by covering the input
images horizontally and vertically using a grid of variable size.
For each vertical and horizontal line of the grid we perform
several color filters to find the borders of the main objects of
the field, i.e. goals and lines. With these color filters we obtain
isolated points, which must fulfill other filters to be validated,
such as not being part of other robots or being close to other
points with the same color. Finally, with these points validated
we get the characteristic points of the image.

The analysis of the images takes 1.5 ms in the real robot,
meanwhile, each iteration of the evolutionary algorithm takes
37.7 ms on average. In the figure 7 we show an experiment
to validate the precision of our approach. In this figure we
show the trajectory calculated with the algorithm (red), the
calculated localization in several check points (blue circles)
and the real localization (yellow circles).

The algorithm is capable of following the real movement of
the robot with an average error of 14.3 cm and 8.42 degrees.
Furthermore, we can emphasize that the trajectory followed by
the robot is very stable and is always close to the real location
of the robot.

Fig. 7. Movement with evolutionary algorithm

Also, we have performed other experiments with kidnap-
pings and we have tested the algorithm in real competitions
obtaining good results.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

D. Component communication using Ice middleware

The mature state of the league has helped the integration
of team strategies and the development of a wide set of tools
for monitoring and debugging purposes. Those applications
demand a specific communication module to implement the
services required. The common requirements are sending / re-
ceiving primitives, data marshalling, subscription / publication
services and some level of configuration for switching between
reliable data or more efficient but unreliable communication.
The classical approach to solve these issues is to use some
library based on sockets. This well known alternative could
be considered as a low level communication layer since the
developers must solve some of the aspects mentioned before.

The Internet Communication Engine (Ice)[16] is an object
oriented middleware with support for multiples languages and
different operating systems. One of the key features in Ice
is the concept of interface. This file (written in a specific
language called Slice) describe the set of operations and rules
that other components can invoke.

One of the main advantages of BICA is its modularity and
with the inclusion of Ice this feature has been reinforced.
Every component that can be potentially used by other robot
or device must include its own Ice interface. The full set
of operations of the interface should be implemented by the
component.

Using this alternative the clients can now invoke the oper-
ations of a remote component in the same way they would
do it if the operation was local. The Ice infrastructure is very
flexible and allows some degree of configuration for every
interface or operation. For example, we can specify a reliable
communication between the Perception component and the
external tool for acquiring images, but a fast, efficient and
unreliable exchange mechanism of basic data sharing among
teammates.

VII. CONCLUSIONS

In this paper we have proposed a robotic behavior based
architecture for creating robot behaviors. The behavior arises
from a cooperative execution of iterative processing units
called components. These units are hierarchically organized,
where a component may activate and modulate other compo-
nents. In every moment, there are active components and latent
components that are waiting to be activated. This hierarchy
is called activation tree, and dynamically changes during the
robot operation.

In this paper we have shown how the behaviors are imple-
mented within the architecture. As a test, we have created a
forward player behavior to play soccer in Standard Platform
League at the RoboCup. Robots must react very quickly to
the stimulus in order to play well. This is an excellent test to
the behaviors created within our architecture.

The forward player behavior is made of several compo-
nents. These components have a standard modulation interface,
perfect to be reused by others without any modification in
the source code or to support multiple different interfaces.
The highest level component is the Player component. This

component has been implemented as a finite state machine
using one BICA tool, VICODE, for the visual design of FSM.
It activates the previously described components in order to
obtain the forward player behavior.

This Player behavior has been tested in the RoboCup envi-
ronment, but BICA architecture is not limited to that scenario.
For instance, we are working on using the humanoid robot in
healthcare applications where it serves as a personal assistant
for elder people, or as a cognitive stimulation therapeutic tool
for Alzheimer patients.

REFERENCES

[1] Martı́n F.; Agüero C. E.; Cañas J. M. Follow ball behavior for an
humanoid soccer player. X Workshop de Agentes Fı́sicos. Cáceres
(Spain), 2009.

[2] Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.; Dellaert, F.;
Fox, D.; Hahnel, D.; Rosenberg, C. R.; Roy, N.; Schulte, J; Schulz, D.
MINERVA: A Tour-Guide Robot that Learns. Kunstliche Intelligenz, pp.
14-26. Germany, 1999.

[3] Reid, S. ; Goodwin, R.; Haigh, K.; Koenig, S.; O’Sullivan, J.; Veloso,
M. Xavier: Experience with a Layered Robot Architecture. Agents ’97,
1997.

[4] Stoytchev, A.; Arkin, R. Combining Deliberation, Reactivity, and Motiva-
tion in the Context of a Behavior-Based Robot Architecture. In Proceed-
ings 2001 IEEE International Symposium on Computational Intelligence
in Robotics and Automation. 290-295. Banff, Alberta, Canada. 2000.

[5] Arkin, R. Motor Schema Based Mobile Robot Navigation. The Interna-
tional Journal of Robotics Research, Vol. 8, No. 4, 92-112 (1989).

[6] Lenser, S.; Bruce, J.; Veloso, M. A Modular Hierarchical Behavior-Based
Architecture, Lecture Notes in Computer Science. RoboCup 2001: Robot
Soccer World Cup V. pp. 79-99. Springer Berlin / Heidelberg, 2002.

[7] Röfer, T.; Burkhard, H. ; von Stryk, O. ; Schwiegelshohn, U.; Laue, T.;
Weber, M.; Juengel, M.; Gohring D.; Hoffmann, J.; Altmeyer, B.; Krause,
T.; Spranger, M.; Brunn, R.; Dassler, M.; Kunz, M.; Oberlies, T.; Risler,
M.; Hebbela, M.; Nistico, W.; Czarnetzkia, S.; Kerkhof, T.; Meyer, M.;
Rohde, C.; Schmitz, B.; Wachter, M.; Wegner, T.; Zarges. C. B-Human.
Team Description and code release 2008. Robocup 2008. Technical report,
Germany, 2008.

[8] Cañas, J. M.; and Matellán, V. From bio-inspired vs. psycho-inspired to
etho-inspired robots. Robotics and Autonomous Systems, Volume 55, pp
841-850, 2007. ISSN 0921-8890.

[9] Gómez, A.; Martı́nez, H. Fuzzy Logic Based Intelligent Agents for Reac-
tive Navigation in Autonomous Systems. Fitth International Conference
on Fuzzy Theory and Technology, Raleigh (USA), 1997

[10] Loetzsch, M.; Risler, M.; Jungel, M. XABSL - A pragmatic approach
to behavior engineering. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), pages 5124-
5129, Beijing, October 2006.

[11] Denavit, J.; Hartenberg RS. A kinematic notation for lower-pair mech-
anisms based on matrices. Transactions of ASME 1955;77: 215-221
Journal of Applied Mechanics, 2006.

[12] Akin, H.L.; Merili, .; Merili, T.; Göke, B.; Özkucur, E.; Kavakhoglu, C.;
Yildiz, O.T. Cerberus08 Team Report. Technical Report. Turkey, 2008.

[13] Fox D.; Burgard W.; Dellaert F.; Thrun S. Monte carlo localization:
Efficient position estimation for mobile robots. In Proceedings of the
National Conference on Articial Intelligence, 1999.

[14] Hester T.; Stone P. Negative information and line observations for monte
carlo localization. The IEEE International Conference on Robotics and
Automation, 2008.

[15] Laue T.; Jeffry de Haas T.; Burchardt A.; Graf C.; Röfer T.; Hartl A.;
Rieskamp A. Efficient and reliable sensor models for humanoid soccer
robot self-localization. The 2009 IEEE-RAS Intl. Conf. On Humanoid
Robots, 2009.

[16] Henning M. A New Approach to Object-Oriented Middleware. IEEE
Internet Computing, vol. 8, no. 1, pp. 66-75, 2004.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 29-34

