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Abstract  
A visual overt attention mechanism is presented in this paper. Our algorithm chooses the next fixation point 
for a robot mobile camera in order to track several objects around the robot simultaneously, even if the whole 
set of them can not be covered by the same camera image. Our approach is based on two related 
measurements, liveliness and saliency, that dynamically evolve depending on the image observations and the 
camera movements. The attention is shared among exploring the surroundings for salient features, 
reobserving the tracked objects and other task-dependent points to look at. A winner-takes-all competition 
provides a flexible time sharing behavior with natural appearances of new objects, disappearances and 
inhibition of return. It also accepts top down features to look for and different priorities for them. Several 
experiments have been carried out with a real Pioneer robot endowed with mobile camera and are also 
described.  
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1. INTRODUCTION 
The use of cameras in robots is continuously 
growing. They can potentially provide the robot 
with much information about its environment and 
in the last years they have become a cheap sensor. 
Most service robots, including humanoid 
prototypes, are equipped with vision as it is the 
most promising technology for human-robot 
interaction. But dealing with the huge amount of 
data carried by video streams is not easy. The visual 
attention offers a solution for the processing 
bottleneck generated by such overwhelming source 
of raw data, especially convenient in machines with 
limited computational resources. 

An attention mechanism of human vision system 
has been source of inspiration for machine visual 
systems, in order to sample data non uniformly and 
to utilize computational resources efficiently [2]. 
The performance of the artificial systems has been 
always compared to the performance of several 
animals, including humans, in simple visual search 
tasks. In last years, biological models are moving to 
the real-time arena and offer an impressive 
flexibility to deal simultaneously with generic 

stimulus and with task specific constraints [7,11]. 
Current trends in the design of visually guided 
autonomous robots urge for integration of recent 
advances in biological attention mechanisms. 

Machine attention systems have been typically 
divided into overt and covert ones. The covert 
attention mechanisms [16,9,10] search inside the 
image flow for relevant areas for the task at hand, 
leaving out the rest. Search of autonomous vehicles 
in outdoor scenarios for military applications [8], 
and search for traffic signals inside the images from 
the on-board car cameras are just two sample 
applications. 

The overt attention systems [17,8,14] use mobile 
cameras and cope with the problem of how to move 
them: looking for salient objects for the task at 
hand, tracking them, sampling the space around the 
robot, etc.. The saccadic eye movements observed 
in primates and humans are their animal 
counterpart. They have been used, for instance, to 
generate a natural interaction with humans in social 
robots like Kismet [3]. This active perception 
system can guide the camera to better perceive the 



relevant objects in the surroundings. The use of 
camera motion to facilitate object recognition was 
pointed out by [2] and has been used, for instance, 
to discriminate between two shapes in the images 
[10]. 

Most successful systems define low level salient 
features like color, luminance gradient or 
movement [8]. Those features drive the robot 
attention following an autonomous dynamics in a 
close loop with the images. This way, the system is 
mainly bottom-up guided by the low level visual 
clues. One active research area is the top-down 
modulation of these systems, that is, how the 
current task of the robot or even the high levels of 
perception, like object recognition [15,12], can tune 
the attention system and maybe generate new focus 
of attention. 

In our scenario, visual representation of interesting 
objects in robot's surroundings may improve the 
quality of robot behavior as its control decisions 
may take more information into account [6]. This 
poses a problem when such objects do not lie 
completely into the cameras field of view. Some 
works use omni directional vision, and they have 
been successfully applied in problems like visual 
localization or soccer behaviors in RoboCup 
competition. Other approaches use a regular camera 
and an overt attention mechanism [9,18], which 
allows for rapid sampling of a very wide area of 
interest.  

In this paper we report on an overt attention system 
for a mobile robot endowed with a pan-tilt camera, 
which can be oriented at will independently from 
the robot base. This system performs an early 
segmentation on color space to select a set of 
candidate objects. Each object enters a coupled 
dynamics of liveliness and saliency that drives the 
behavior of the system over time. The system will 
continuously explore the scene and answer to two 
questions: how many relevant colored objects are 

there around a robot? and, where are they located?. 
From an active vision viewpoint, this process of 
continuous trading between search and refresh can 
be seen as a situating process, in the sense of 
grounding visual objects to the external world [13]. 

Following this introduction, second section 
describes our attention mechanism, its dynamics of 
liveliness and saliency. Many experiments have 
been carried out on a real robot, testing the 
performance and behavior of the algorithm on a real 
setup. They are summarized in fourth section. 
Finally some brief conclusions end the paper. 

2. OVERT VISUAL ATTENTION 
MECHANISM 

The task of the overt attention mechanism is to set 
the target coordinates for the pantilt unit at every 
time in order to keep fresh and updated the scene 
representation. Such representation is the collection 
of relevant objects, their positions and visual size. 
For the sake of clarity, we will initially consider 
that only the pink objects are relevant. 

The color images are Cartesian, with two 
coordinates (u,v) per pixel. The pantilt unit is 
located aiming at (pan,tilt) angles. We define a 
scene space, consisting of a sphere around the 
pantilt unit, accounting for all the possible camera 
orientations. Each pixel of the Cartesian image 
projects into a scene pixel (latitude,longitude) of 
the scene space (shown in Figure 1), depending of 
its own position (u,v) and the current pantilt 
position. Each monocular image projects into a 
patch in such scene space, consisting of all the 
projected pixels. The projection equations include 
the kinematics of the pantilt body and the pinhole 
model for the camera. 

The attention mechanism designed follows the 
algorithm in Figure 2. The pantilt is constantly 
moving from one fixation point to the next. No 

 
Figure 1. Scene space and coordinates. 
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loop 
     move the pantilt to the next fixation point 
     color filter of monocular image 
     clustering of monocular objects 
     project monocular image into the scene space 
     matching with scene objects 
     update liveliness 
     update saliency 
     probabilistic insertion of exploration points 
     choose the most salient fixation point 
end_loop 

Figure 2. Pseudocode of our overt attention algorithm. 

image is processed while the pantilt is moving, but 
once it has stopped at current fixation point the 
monocular image is processed to update the scene 
representation, the next target point for the pantilt is 
computed and commanded. At every fixation point 
the monocular image is filtered searching for pink 
pixels, which are clustered together in pink objects, 
and projected into scene space. The color filtering is 
performed in HSI space, which is more robust to 
changes in illumination than RGB.A fast 
histogramic clustering algorithm [5] is used. For 
illustration, after an initial teleoperated seep of the 
camera the scene image built is shown in Figure 3 
(left). The scene image is projected for 
visualization purposes into the display using a polar 
transformation, where ρ=latitude and θ=longitude.  

Liveliness dynamics 
The attention mechanism is based on two related 
and concurrent dynamics: liveliness of objects and 
saliency of fixation points. Each object in the scene 
has a liveliness, meaning the confidence of such 
internal symbol being a proper representation of the 

real object. In general the objects will lose 
liveliness in time, but will gain it every time they 
are observed with the camera. The equations (1) 
and (2) describe the dynamics of the liveliness in 
the discrete time. Equation (1) is applied at each 
iteration. To avoid infinite values of liveliness, we 
introduced saturation: its values are bounded inside 
the [0,MAX_LIV] interval. 

liv(object,t)  = liv(object,t-1)-ΔLtime (1)

liv(object,t)  = liv(object,t-1)+ΔLobservation (2)
There is a threshold, a minimum liveliness required 
for an object to be considered valid. Objects with 
liveliness below such threshold are simply 
discarded. This allows the system to forget objects 
that disappear from the scene or those not recently 
observed. In addition, in order to graphically show 
the effect of forgetting, pixels in the displayed 
scene gradually fade to white values (right side of 
Figure 3). So, areas of the scene which are not 
observed for a long time are displayed in white, 

    
Figure 3.  Scene image after the initial sweep and the forgetting mechanism. 
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while areas of the scene that have been recently 
visited show the fresh projected monocular patch. 

Once the pantilt has stopped at the current fixation 
point, the monocular image is color filtered and its 
pink blobs clustered as local objects. Each local 
object is projected into the scene and matched 
against the current scene objects using a distance 
threshold. If the local blob projects close enough to 
an existing scene object then it is considered to be 
the new position of such object, which has moved a 
little bit and is properly tracked. In case of positive 
match the liveliness of such scene object will be 
increased following equation (2). Local objects 
without correspondence in the scene image are 
inserted as new scene objects, with a liveliness 
roughly above the validity threshold. 

Saliency dynamics 
The second dynamics of the attention mechanism is 
the saliency. The fixation points are a collection on 
possible target positions for the pantilt unit. In our 
mechanism, the center of each valid scene object is 
inserted as a fixation point. Each fixation point has 
a saliency, meaning how desirable such position is 
as target for the pantilt unit. In general the fixation 
points will increase saliency in time, but will reset it 
every time the camera is fixated at them. The 
equations (3) and (4) describe the dynamics of the 
saliency in the discrete time.  

sal(fixp,t) = sal(fixp,t-1)+ΔStime (3)

sal(fixp,t) = 0 (4)
There is a winner-takes-all competition to gain the 
control of the pantilt motors. The fixation point 
with highest saliency is chosen as the next target for 
the pantilt movement. 

To avoid being redirected immediately to a 
previously attended location the saliency of a given 
fixation point is reset each time the pantilt unit is 
fixated at it. This way inhibition of return (IOR) is 
achieved without adding a transient local inhibition 
activation [12], neither explicitly keeping a saccade 
history [18]. Our simple saliency dynamics keeps 
the pantilt away from recently visited locations. In 
the case of a single object the saliency is reset, but 
as long as it is the only fixation point, it will gain 
the pantilt control over and over again. 

Because this IOR and that centers of valid scene 
objects are fixation points, the pantilt tend to jump 
among them, letting the objects to be periodically 
observed and to keep (or increase) their liveliness. 
Such behavior is flexible: new objects can be 
dynamically added or deleted to the lively objects 

list and they enter into or get out of the pantilt 
time-sharing. When a valid object disappears from 
scene, its liveliness will keep above the threshold 
for a while, the pantilt will insist on visiting its last 
location and on giving it a chance to be recovered 
again. After a while, its liveliness will fall below 
the threshold and it will be removed from the valid 
objects list, and so from the list of fixation points. 

The algorithm allows the specification of several 
features to indicate relevant objects and it offers a 
different saliency slope for each of them. For 
instance, our system may be interested in pink and 
blue objects, and associate a different ΔStime (3) for 
each type. This way, our attention mechanism 
allows several priorities: the higher the ΔStime of a 
type, the faster saliency of those objects will grow 
up and gain the attention of the camera. Providing 
different slopes, the system will be more time 
looking at high priority objects, in mean values, 
than at low priority objects. These priorities provide 
a way to balance the importance of the respective 
objects for the current robot tasks. 

Exploration of the scene 
While the pantilt is stably jumping among a certain 
set of valid scene objects, new objects out of current 
scope are also searched for. New locations are 
explored by periodically introducing pioneer 
fixation points into the list. Once the camera is 
looking at one of such points, in case of some 
relevant brand new objects really observed there 
their positions will be inserted as new fixation 
points. In case of no relevant object observed there, 
such fixation point will be simply removed from the 
list.  

The exploration points are generated in two 
different fashions. First, (a) some of them are 
obtained sampling from a uniform distribution in 
space, performing a completely random search. 
Second, (b) other exploration points are generated 
following certain sweep pattern, like a systematic 
sweep to make sure that eventually the whole scene 
is explored. This pattern may be task-dependent as 
may concentrate the exploration points on different 
areas of the scene. For instance, a navigation 
application may lay exploration points in the space 
just in front of the robot, the closer the better, 
because further areas are less significant. 

Two probability thresholds say whether any 
exploration point ((a) or (b) respectively) is inserted 
or not in the list in current iteration of the algorithm. 
This way, the amount of exploration points can be 
tuned from the upper cognitive levels. 
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3. EXPERIMENTS  
A lot of experiments have been conducted on a real 
robot to validate our attention algorithm and test its 
performance.  

The experimental setting includes an ActivMedia 
Pioneer endowed with a Directed Perception pantilt 
unit and Videre firewire camera (Figure 4). The 
pantilt unit accepts position commands through the 
serial port, and the camera provides a flow of 30 fps 
of 320x240 color images. In the experiments some 
pink and blue balls were located around the robot, 
as our focus here was the attention sharing, not the 
features to be tracked themselves. 

Starting with a single object, the system is able to 
keep it tracked and to follow its (slow) movements 
around (Figure 4). Figure 5 shows the scene built 
when exploring the environment with a regular 
pattern and refreshing the single tracked object at 
the same time. Changes in illumination slightly 
move the visual center of the object. To avoid small 
pantilt oscillations a minimum distance is required 
in order to really command a new pantilt target. 

This tracking could have been solved with classical 
closed loop techniques, but here we have solved it 
using exactly the same dynamics that will generate 
the tracking behavior for two, three and more 
objects, and the time sharing of the pantilt unit 
among them. In addition, one limitation of the 
current implementation is the maximum speed of 
the objects that the system can properly track. Only 
slow objects are successfully tracked. Faster 
hardware will for sure alleviate this limitation. For 
two objects the system reached a stable jumping 
loop. The saliency evolution for a scene with two 
objects can be seen at Figure 6 (left). The pattern 
shows a perfect alternating sharing of the pantilt 
device. Figure 6 (center) shows the liveliness 
evolution for such experiment, both objects were 
kept at high values as they are continuously 
observed. Figure 6 (right) displays how the 
liveliness of one of the pink balls lowed down when 
such ball disappeared from scene. 

Figure 7 (left) shows an experiment with three pink 
balls around the robot. Figure 7 (center) displays 
the scene image for a similar situation, where the 
exploration was intentionally disabled for the sake 
of clarity. The pantilt continuously oscillated 
among the three pink balls, in a stable loop, 
jumping from one tracked object to another, in a 
round robin sequence. The visit pattern among the 
(numbered) balls was the following: 
1-2-3-1-2-3-1-2-3. Only those three areas of the 
scene are continuously refreshed. Other areas are 
not visited by the pantilt and then they fade to white 
values. 

To test the forgetting capability of our algorithm we 
hided the ball in the middle. The scene image 
evolved to 7 (right): after some iterations, the 
algorithm forgets the central ball and stops visiting 
its old location, changing to naturally jump among 
the two remaining ones. The central position 
gradually fades to white. The visit pattern was the 
following after the subtraction of the central ball 
(ball number 2): 1-2-3-1-2-3-1-3-1-3-1-3. 

Our dynamics were able also to properly track 
several moving objects. We placed the robot in 
front of three relevant objects. At the initial position 
(Figure 8 (left)) the perceived scene was that at the 
Figure 8 (center). Then the robot slowly moved 
forward 70cm, approaching to the objects, and the 
objects spread out in the scene image, as shown in 
figure 8 (right). 

To probe the effect of different priorities, we 
populated the environment with two pink balls 
(numbered 2 and 4) and two blue objects 
(numbered 1 and 3), and assigned them different 
priorities. After several iterations the scene imaged 
evolved to Figure 9, where only the four relevant 
objects appeared. Nevertheless they were not 
visited equally.  The visit pattern was: 
1-2-4-2-4-3-1-2-4-2-4-3-1-2-4-2-4-3, with the 
attention algorithm showing a clear bias towards 
the high priority objects. 

     
Figure 4. The camera follows the objects when they move. 
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Figure 5. The attention is shared among 

exploration and tracking. 

We found a limit in the number of objects the 
system can simultaneously track. In the case of few 
objects, they receive attention frequently enough to 
keep their liveliness at high values. When the 
number of objects increases, they tend to receive 
the attention of the camera at longer intervals, and 
their average liveliness decreases. There are a 
number of objects over which the camera 
movement is not fast and frequent enough to keep 
the liveliness of all of them above the liveliness 
threshold, and some of them are forgotten by 

accident. The particular limit depends on ΔLtime and 
ΔLobservation ratio. 

4. CONCLUSIONS 
A novel overt attention mechanism has been 
presented. It expands the visual scope of the robot 
single camera taking advantage of its movement. 
For instance, it can find how many pink colored 
objects there are around a robot and where they are 
the located, despite the limited field of view of its 
monocular camera.  

Our mechanism deals with valid objects and 
fixation points in the scene. It is based on two 
related dynamics: liveliness and saliency. The 
positions of already known objects are candidate 
fixation points for the pantilt device. Random 
exploration points are also included as candidates. 
The liveliness of every object decreases with time, 
but increases when it appears in the monocular 
image. The saliency of the fixation points grows up 
with time, and is set to zero when the pantilt fixates 
at it. The pantilt movement is always set to the most 
salient fixation point among the candidates.  

The algorithm accepts top-down modulation 
coming from high level cognitive processes. They 
can determine what low level features are relevant, 
they can assign different attention priorities to them, 
and they can set exploration patterns adjusted to the 
current robot task. 

     
Figure 6. Saliency (left), liveliness (center) evolution with two pink objects in the scene. In (right) one 

of them disappears from the scene. 

     
Figure 7. The robot has three pink balls around and pantilt oscillates among them. 
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Figure 8. When the robot approaches to the objects, they spread out in the image scene. 

 
Figure 9. Objects with high priority are 

refreshed more often. 

Such simple dynamics generate several interesting 
behaviors, as shown in the experiments with a real 
robot. First, it alternates the focus of attention 
among exploration and revisiting the relevant 
objects of the scene, regardless their amount, one, 
two, three... A limit in such number was also 
pointed out. Second, the system forgets positions of 
objects that disappear from the scene, with a certain 
tolerance to overcome spurious misses. Third, the 
system successfully tracks the relative movements 
of the objects, updating their position in the scene 
as they moved around. 

We are now working in extending the algorithm to 
stereo pairs and placing the focus points in 3D 
surroundings of the robot. Another future line is the 
insertion of new fixation points to test hypothesis 
coming from the perceptive analysis of the images. 
Conclusions are inserted at this point, before 
acknowledgements. 
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