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Abstract— This paper addresses the problem of determining the
current 3D location of a moving object and robustly tracking it from
a sequence of camera images. The approach presented here uses a
particle  lter and does not perform any explicit triangulation. Only
the color of the object to be tracked is required, but not any precise
motion model. The observation model we have developed avoids
the color  ltering of the entire image. That and the MonteCarlo
techniques inside the particle  lter provide real time performance.
Experiments with two real cameras are presented and lessons learned
are commented. The approach scales easily to more than two cameras
and new sensor cues.

Keywords— Monte Carlo sampling, multiple view, particle  lters,
visual tracking.

I. INTRODUCTION

OBJECT tracking is a useful capability for autonomous

systems like ambient intelligence or mobile robotics,

and even for computer-human interaction. Cameras are cheap

and ubiquitous sensors. Images may provide much information

about the environment, but usually it takes lot of computing

power to extract relevant data from them. A basic information

they may provide is the 3D location of an object or person

who is moving around the camera environment.

Many commercial applications may take bene t from a

robust object tracking. For instance, Gorodnichy et al [1]

employ a tracking system which allow a person to use her nose

as a mouse in front of a personal computer endowed with two

off-the-self cameras. In security applications, unsupervised

cameras may autonomously track moving persons and trigger

an alarm if the person approached to any protected location.

The object tracking techniques may be also used in robotics

to cope with the self-localization problem. If the mobile robot

tracked the relative 3D positions of some surrounding objects,

and their absolute locations are known, then it could infer

its own position in such absolute frame of reference. Such

objects may not be dynamic, but the robot’s motion causes a

relative movement which demands a tracking. Davison work

[2] is a good example for this. Actually, object tracking

and localization share much mathematical background with

dynamic state estimation like Kalman  lters, probabilistic grid

based methods [3] and MonteCarlo sampling methods [4],

[5]. There are also approaches to the visual 3D tracking

based on genetic algorithms [6][7], similar in spirit to the
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sequential MonteCarlo techniques but without the probabilistic

foundations.

The approach described here uses a particle  lter based

on the CONDENSATION algorithm [8], but in a different

scenario from the contour tracking inside an image. A similar

approach [9] has been recently followed to track objects inside

images based on movement, color and speech cues. While our

algorithm shares the 2D observations (the images), it focuses

on a 3D tracking and uses only color. It requires calibrated

cameras and uses projective geometry to forward project

particles into all the images. The color of such projection

and its neighbors provides feedback about the closeness of

the particles to the real 3D location of the coloured object.

A gaussian random noise is used as the motion model of the

particles. Such model allows the particle population to follow

any object movement.

The rest of the paper is organized as follows. Second sec-

tion explains our particle  lter , detailing the observation and

motion models used. Third section introduces the experimental

setup and some tests of the system. Finally some conclusions

and future lines are sketched out.

II. COLOR BASED PARTICLE FILTER FOR 3D TRACKING

Our approach uses the CONDENSATION algorithm [8] to

estimate location of a coloured object. This is an iterative

algorithm which includes three steps on each iteration: predic-

tion, update and resampling. CONDENSATION is a Bayesian

recursive estimator which uses Sequential MonteCarlo Impor-

tance Sampling.

In short, it estimates the current multidimensional

state X(t), using a collection of sequential observations

[obs(t), obs(t−1), obs(t−2)..., obs(t0)]. The observations are

related to the state through a probabilistic observation model

p(X(t)|obs(t)). The state itself may be dynamic, and such

dynamism is captured in a motion model p(X(t)|X(t − 1)).
The sequential nature of the algorithm provides iterative

equations, and its sampling nature makes it to manage a set

of N particles to represent the p(X(t)|obs(t), obs(t−1)...). A

more rigorous and broad description of probabilistic estimators

can be found in [5] and [10].

Each particle si(t) represents an state estimate and has a

weight wi(t) associated, regarding the importance sampling.

Global estimates can be made from the whole particle set, like

choosing that of the higher weight (Maximum a Posteriori) or

a weighted mean (Minimum Mean Square Error).

The prediction step in each iteration of CONDENSATION

samples the motion model for every particle, obtaining a new

si(t), and so building a new particle set. In the update step, the
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weights of all particles are computed following the observation

model: wi(t) = p(si(t)|obs(t)). Those particles which are

likely given the current observation increase their weights. In

the resamplingstep, a new set of particles is built sampling

from the weighted distribution of current particles. The higher

the weight, the more likely that particle appear in next set.

Full details are provided at the original paper [8].

In our approach the state to be estimated is the 3D location

of the object X = [x, y, z], so the particles have the shape

of si(t) = [xi(t), yi(t), zi(t)], they are 3D positions. The

observations are just the color images on M cameras and the

motion model is just a simple one that randomly move the

particles through the three dimensions following a gaussian

distribution for each step.

A. Movementmodel

Similar to [11], our approach uses a weak motion modelling,

in order to accomodate to any real movement of the object.

This provides robustness to the tracking algorithm as it avoids

the need of a precise movement modelling to perform properly.

The motion model is a gaussian distributed one, with the

same typical deviation σm for x, y and z axis. It follows

the equations (1), (2) and (3). There is no privileged motion

direction, as the object may equally move in any of them. The

size of σm has in uence on the particle speed while walking

inside the state space.

xi(t) = xi(t − 1) + N(0, σm) (1)

yi(t) = yi(t − 1) + N(0, σm) (2)

zi(t) = zi(t − 1) + N(0, σm) (3)

B. Observationmodel

The update step gives the new weights of the particles

according to the last sensor observation. Our observation

model is color based and works with any number M of

cameras. It takes each camera separatedly, treates them as if

they were independent observations and so multiplies all the

partial conditioned probabilities. For two cameras it takes the

form of (5).

wi(t) = p(si(t)|img1(t), img2(t), . . .) (4)

wi(t) = p1(si(t)|img1(t)) ∗ p2(si(t)|img2(t)) (5)

Each individual conditioned probability like

p1(si(t)|img1(t)) is computed as follows. First, we project

the particles into the corresponding image plane using a

pinhole camera model. We assume cameras have no distortion.

• If such projection falls outside the image limits, then

p1(si(t)|img1(t)) = 1/25
• If the projection falls inside the image limits, its vicinity

is explored to count the number m of pixels with a

color similar to the target color. The vicinity is a 5x5

window around projected pixel. This can be seen in Fig.

1. The equation (7) assigns a probability proportional to

m. To avoid probability locks with zeroes and to tolerate

occlusions, m is set to 1 when no pixel matches the target

color description.

outside : p1(si(t)|img1(t)) = 1/25 (6)

inside : p1(si(t)|img1(t)) = m/25 (7)

The color is described in HSI space which is more robust

to changes in illumination than RGB. A target color is de ned

with two pairs Hmin,Hmax and Smin, Smax. Pixels with very

low or very high intensity are silenty discarded and do not

match any color description.

Fig. 1 5x5 vicinity window for observation model computation

The observation model in (5) clearly rewards those 3D

locations which are compatible with several cameras simul-

taneously. In the case of two, the 3D locations compatible

with one camera but which project badly in the other score

poorly, because p1(si(t)|img1(t)) or p2(si(t)|img2(t)) is set

to a minimum, and that keeps the wi(t) at small values.

This combined reward will lead the particles to the right 3D

positions.

Another advantage of this observation model is that it avoids

the need to color  ltering of the entire image. Depending on

the number of particles this can be convenient and reduce the

number computations. In our experimental setup, for instance,

 ltering the whole image requires 320x240 pixel evaluations

and the model requires Nx25 pixel evaluations. So for N <
3072 it is worthwhile.

In addition the observation model doesn’t require any seg-

mentation in the images neither the search for salient points.

C. Considerations

Our approach requires calibrated cameras, but no back-

projection or triangulation is performed. Only the forward

projections, from 3D particles into image planes, are used.

Actually, there is no matching between the stereo images, no

correlation involved, and no explicit triangulation are carried

out. The observation model rewards those 3D locations with

are color compatible in all images. This may include more

space areas than the true one, and may lead to the particle

cloud to be splitted into such areas. This re ects the fact that

particle  lte r can represent multiple simultaneous hypothesis

about the state. New observations will eventually break the

ambiguity and the population will converge to the real object

position.
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The developed algorithm is a true multi-image algorithm

[12]: there is no privileged camera, all images are treated equal

and it may be used with an arbitrary number of cameras.

III. EXPERIMENTS

The algorithm has been tested in our lab with two real

cameras to track a pink ball. The setup is shown in Fig.

2, where camera 1 is located at (0.5, 0.0, 0.195) (m) and

camera 2 at (0.07, 0.485, 0.085) (m) of that coordinate system.

The cameras are two webcams, which have been calibrated

using OpenCV library. Their external parameters like absolute

position and orientation have been manually adjusted using

a tape measure and projecting an absolute 3D grid into the

images. They provide 320x240 color images through the

video4linux API. Right camera was rotated 90o so it delivers

240x320 images.

             Fig. 2 Experimental setup (left) and projected grid (right)

The particle  lter has been tuned to 200 particles, and a

typical deviation σm = 0.03 (m). The vicinity window for

observation model was set up to 5x5 pixels, as described

previously. A typical  lter iteration including all the prediction,

update and resampling steps takes around 5 ms (on a Pentium

IV, 2’7 GHz with HyperThreading) which is enough to real

time performance.

A. Typical execution

The Fig. 3 shows a regular run of the particle  lter dis-

playing their projection in both images at three different times

(iteration 2, 50 and 60). The Fig. 4 shows the projection of

the same particle cloud in the XY plane.

The particles are initially located at position (0.4, 0.1, 0.2)
(m), just in front of the camera 1 (this initalization will be

justi ed later on). In two iterations they spread following the

gaussian motion model. As can be seen in the upper pair of

Fig. 3, particles project around the pink ball for the left camera

(camera 1), but are out of scope of the right camera (camera

2).

After 50 iterations, the particle cloud has moved itself away

from the camera 1, along its optical axis and always keeping

their projections around the pink ball in such camera. In Fig. 4,

the typical deviation in Y (optical axis of camera 1) is greater

than in X. Also, the middle pair of Fig. 3 shows some of

the particles entering inside the scope of right camera while

keeping around the ball in left image.

Finally, at 60th iteration the particles converge around real

3D location of the ball, and their projections into both cameras

are coherent with the ball. If the ball doesn’t move, the

population remains stable around its real position. Once the

Fig. 3 Particle projections in left (camera 1) and right cameras (camera 2)
at iterations 2, 50 and 60

population has converged, smooth movements of the ball are

successfully tracked in any direction. It can be noticed that

convergence of the whole population speeds up as soon as

some particles enter into the ball projection.

The position error is de ned as the distance between the

position estimate from the particle  lter and the ground truth

position of the tracked object. In all the experiments such

error lied under 3 cm after the particle set has converged.

Low position error means that the particle cloud has settled

around the right location.

B. Systematicdrift

We have observed a systematic pernicious trend of the

particles to move far away from the cameras along their optical

axis. This can be noticed in the Fig. 4. Experiments were also

carried out with random initalization, and starting the particles

at a point further than the ball to a given camera. All such runs

resulted in no convergence at all: the systematic drift evolved

the particles cloud consistently with one image, but always

moving away from the other.
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Fig. 4 Three eyebird snapshots of the particles at iterations 2, 50 and 60

Given the conic shape of the projective observation model,

after the prediction step there is equal chance to fall closer

or further to the camera than the current location, but falling

closer makes less likely to project inside the image, makes

harder to achive a good observation likelihood, and so, smaller

the chance of surviving after the resampling. This can be seen

in Fig. 5.
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Fig. 5 Particle and its likely positions at t + 1

C. Particle filter dynamics

In a different set of experiments we have studied the

particle  lter dynamics, in particular we were interested in

its convergence speed. It was studied measuring the evolution

of the position error of the  lter when the tracked objet

suddenly moved to a different location. Instead of the 2D

observations described we used the pink ball 3D position

estimate as observations for the particle  lter . A 3D gaussian

observation model was developed for such observations. In

real experiments such estimates were built triangulating the

centers of masses of the pink pixels on each camera image.

In Fig. 6 the evolution of the position error is displayed.

The vertical axis means the position error in (m), and the

horizontal axis represents time, in iterations of the  lter . The

object is stable at the initial position until 30th iteration, and

then moves to a new location 2 meters away. To avoid the

effect of noise in the observations while studying the  lter

dynamics, in this experiment they were simulated and set to

the ground truth 3D position of the pink ball.

As can be seen in Fig. 6, it takes 5 iterations to the  lter

to converge at the initial position of the object. At the 30th

Fig. 6 Time evolution of the position error

iteration the error reaches 2 meters, just the distance that the

object has moved. Then the  lter needs around 15 iterations

more to converge at the new object location.

The convergence speed of the particle  lter has been studied

for different σm values, in order to determine the right value

for such parameter. In Fig. 7 the evolution of the position error

is displayed. The horizontal axis represents the time, from the

initial iteration at the left and increasing number of iterations

to the right. The vertical axis represents different values of σm,

from 0.001 (m) to 0.3 (m) at regular increments upwards. The

pixel color represents the position error, the darker the higher.

Colors close to black mean the  lter estimation of position is

far away from real one, colors similar to white mean they are

close. The tracked object moved suddenly at 30th iteration.

This way, each row shows an evolution like that in Fig. 6, but

encoded in color.

Fig. 7 Evolution of position error at different σ m values

The experiments in Fig. 7 show that high values of σm speed

up the convergence. The time needed to  nd the new object

location is the dark gap after the 30th iteration, inside each

row. As σm increases, such time asymptotically decreases. For

very low values of σm, the particle  lter is not able to  nd
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the new object position before 70th iteration, as can be seen

in the left side of the Fig. 7.

Fig. 8 Spatial evolution of the particle set

But such improvement in convergence speed does not come

for free. We have observed that for high values of σm the

typical deviation of the particle cloud increases. In Fig. 8 the

evolution for two particle set is displayed, with snapshots of

the particle clouds at six different instants. The same color

means the same iteration in both  lters. With small σm values

(left), the population slowly approaches to the location of the

object, keeping itself compact. With high σm values (right) the

cloud reaches sooner the new position of the tracked object,

but it is spread over a wide area.

IV. CONCLUSIONS AND FUTURE LINES

The work presented here summarizes the preliminary results

on particle  lter for object 3D tracking based on color infor-

mation. The algorithm doesn’t need any explicit triangulation

or stereo matching at all, and it scales to an arbitrary number of

cameras. The observation model used avoids the color  ltering

of the whole images and looks at the vicinity of the particle

projections to estimate the particle’s likelihood.

The results are promising as convergence has been validated

in real experiments and the algorithm implementation exhibits

real time performance. The real location of the object is an

stable point for the particle cloud, and the particles success-

fully track smooth movements of the object. An interesting

systematic drift in the particle behavior has been discovered

and explained.

The experiments carried out are just a proof of concept.

More experiments are necessary in order to validate the

algorithm. Further improvements of the algorithm are coming.

First, the use of more than 2 cameras simultaneously, in order

to expand the volume inside which objects are succesfully

tracked. Second, we are also exploring some proposal dis-

tributions inside the  lter which hopefully would increase

convergence speed of the cloud and its recovery capacity in

case of losing the object.
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