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Abstract—This paper addresses the problem of determining ttgequential MonteCarlo techniques but without the probabilistic
current 3D location of a moving object and robustly tracking it fromioundations.

a sequence of camera images. The approach presented here usesrge 5nhr0ach described here uses a particle filter based
particle filter and does not perform any explicit triangulation. Onl . . .
the color of the object to be tracked is required, but not any precied theé CONDENSATION algorithm [8], but in a different
motion model. The observation model we have developed avoi@genario from the contour tracking inside an image. A similar
the color filtering of the entire image. That and the MonteCarlapproach [9] has been recently followed to track objects inside
techniques inside the particle filter provide real time performancgnages based on movement, color and speech cues. While our
Experiments with two real cameras are presented and lessons Iearé] rithm shares the 2D observations (the images), it focuses
are commented. The approach scales easily to more than two cameras . ) .
and new sensor cues. on a 3D tracking and uses only color. It requires calibrated
cameras and uses projective geometry to forward project
particles into all the images. The color of such projection
and its neighbors provides feedback about the closeness of
the particles to the real 3D location of the coloured object.
. INTRODUCTION A gaussian random noise is used as the motion model of the
o . articles. Such model allows the particle population to follow
BJECT tracking is a useful capability for autonomougny object movement.

systems like ambient intelligence or mobile robotics, The rest of the paper is organized as follows. Second sec-

ang eg?” _ftor computer-hluman Interaction. dCamerha_s fare CT%H explains our particle filter, detailing the observation and
and ubiquitous sensors. images may provide much informatighyi;,, qqels used. Third section introduces the experimental

about the environment, but usually it takes lot _of.compuu.n tup and some tests of the system. Finally some conclusions
power to extract relevant data from them. A basic mforma'uoghd future lines are sketched out

they may provide is the 3D location of an object or person
who is moving around the camera environment.
Many commercial applications may take benefit from a !l. COLOR BASED PARTICLE FILTER FOR3D TRACKING

robust object tracking. For instance, Gorodnichy et al [1] our approach uses the CONDENSATION algorithm [8] to

employ a tracking system which allow a person to use her nas&imate location of a coloured object. This is an iterative
as a mouse in front of a personal computer endowed with t@yorithm which includes three steps on each iteration: predic-
off-the-self cameras. In security applications, unsupervisggn update and resampling. CONDENSATION is a Bayesian
cameras may autonomously track moving persons and triggggursive estimator which uses Sequential MonteCarlo Impor-
an alarm if the person approached to any protected locatiogynce Sampling.

The object tracking techniques may be also used in roboticsn  short, it estimates the current multidimensional
to cope with the self-localization problem. If the mobile robogiate X(t), using a collection of sequential observations
tracked the relative 3D positions of some surrounding objqubs(m obs(t—1), 0bs(t —2)..., 0bs(to)]. The observations are
and their absolute locations are known, then it could infgg|ated to the state through a probabilistic observation model
its own position in such absolute frame of reference. Sughx (+)|0bs(t)). The state itself may be dynamic, and such
objects may not be dynamic, but the robot's motion causegygnamism is captured in a motion modglX (£)| X (¢t — 1)).
relative movement which demands a tracking. Davison Wofthe sequential nature of the algorithm provides iterative
[2] is a good example for this. Actually, object trackingquations, and its sampling nature makes it to manage a set
and localization share much mathematical background Wi N particles to represent the X (t)|obs(t), obs(t —1)...). A
dynamic state estimation like Kalman filters, probabilistic grighore rigorous and broad description of probabilistic estimators
based methods [3] and MonteCarlo sampling methods [¢hn be found in [5] and [10].

[5]. There are also approaches to the visual 3D trackinggach particles;(t) represents an state estimate and has a
based on genetic algorithms [6][7], similar in spirit 0 th§yeight w,(t) associated, regarding the importance sampling.
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weights of all particles are computed following the observation  occlusionsn is set to 1 when no pixel matches the target
model: w;(t) = p(s;(t)|obs(t)). Those particles which are color description.

likely given the current observation increase their weights. In

the resampling stepa new set of particles is built sampling

from the weighted distribution of current particles. The higher outside : p1(s;(t)|img1(t)) =1/25 (6)
the weight, the more likely that particle appear in next set. inside : py(si(t)[imga(t)) = m/25 @)
Full details are provided at the original paper [8].

In our approach the state to be estimated is the 3D locationThe color is described in HSI space which is more robust
of the objectX = [z,y, 2], so the particles have the shapé¢o changes in illumination than RGB. A target color is defined
of s;(t) = [z:(t),v:(t), z:(t)], they are 3D positions. The with two pairsH.,;,, Hpmaz aNd Sy, Smas- Pixels with very
observations are just the color images on M cameras and tbe or very high intensity are silenty discarded and do not
motion model is just a simple one that randomly move th@atch any color description.
particles through the three dimensions following a gaussian
distribution for each step. =

A. Movement model —

Similar to [11], our approach uses a weak motion modelling,
in order to accomodate to any real movement of the object.
This provides robustness to the tracking algorithm as it avoids =
the need of a precise movement modelling to perform properly. F—

The motion model is a gaussian distributed one, with the
same typical deviationr,, for z, y and z axis. It follows
the equations (1), (2) and (3). There is no privileged motiqf;g_ 1
direction, as the object may equally move in any of them. The
;izg ofo,, has influence on the particle speed while walking The opservation model in (5) clearly rewards those 3D
inside the state space. locations which are compatible with several cameras simul-

taneously. In the case of two, the 3D locations compatible
2i(t) = 25(t — 1) + N(0, o) 1) with one camera but which project badly in the other score
poorly, because; (s;(t)|imgi(t)) or pa(s;(t)|imga(t)) is set

5x5 vicinity window for observation model computation

yi(t) = it = 1) + N(0, o) @) {0 a minimum, and that keeps the;(t) at small values.
zi(t) = zi(t — 1) + N(0,0m) (3)  This combined reward will lead the particles to the right 3D
positions.
B. Observation model Another advantage of this observation model is that it avoids

need to color filtering of the entire image. Depending on
number of particles this can be convenient and reduce the
umber computations. In our experimental setup, for instance,

cameras. It takes each camera separatedly, treates them Llilflnhg the (\j/vl*luole |n_1ageNregEL,1 res |320X|240. pixel Sev;gjatlons
they were independent observations and so multiplies all (RS the model requires Nx25 pixel evaluations. S0 o<

partial conditioned probabilities. For two cameras it takes tl‘?’g72 It IS \_/vorthwhlle. ) ; _
form of (5). In addition the observation model doesn't require any seg-

mentation in the images neither the search for salient points.

The update step gives the new weights of the particl%ﬁ
according to the last sensor observation. Our observati
model is color based and works with any number M

wi(t) = p(si(t)[imga(t), imga(t), . ..) (4)

wi(t) = p1(si(t)|imgy (t))  p2(si(t) [imga(t)) (5) _ _
Our approach requires calibrated cameras, but no back-
Each  individual  conditioned  probability  like projection or triangulation is performed. Only the forward
p1(si(t)|img1(t)) is computed as follows. First, we projectprojections, from 3D particles into image planes, are used.
the particles into the corresponding image plane using Agtually, there is no matching between the stereo images, no
pinhole camera model. We assume cameras have no distortg@trelation involved, and no explicit triangulation are carried
« If such projection falls outside the image limits, themut. The observation model rewards those 3D locations with
p1(si(t)|imgy(t)) = 1/25 are color compatible in all images. This may include more
« If the projection falls inside the image limits, its vicinityspace areas than the true one, and may lead to the particle
is explored to count the numben of pixels with a cloud to be splitted into such areas. This reflects the fact that
color similar to the target color. The vicinity is a 5x5particle filter can represent multiple simultaneous hypothesis
window around projected pixel. This can be seen in Figbout the state. New observations will eventually break the
1. The equation (7) assigns a probability proportional tambiguity and the population will converge to the real object
m. To avoid probability locks with zeroes and to tolerat@osition.

C. Considerations



The developed algorithm is a true multi-image algorithr
[12]: there is no privileged camera, all images are treated eq
and it may be used with an arbitrary number of cameras.

IIl. EXPERIMENTS

The algorithm has been tested in our lab with two rei
cameras to track a pink ball. The setup is shown in Fi
2, where camera 1 is located &0.5,0.0,0.195) (m) and
camera 2 at0.07,0.485,0.085) (m) of that coordinate system.
The cameras are two webcams, which have been calibra
using OpenCYV library. Their external parameters like absolu
position and orientation have been manually adjusted usi
a tape measure and projecting an absolute 3D grid into 1
images. They provide 320x240 color images through tt
videodlinux API. Right camera was rotated’%b it delivers
240x320 images.

<<<<<<<

X

Fig. 2. Experimental setup (left) and projected grid (right)

The particle filter has been tuned to 200 particles, and
typical deviationo,, = 0.03 (m). The vicinity window for
observation model was set up to 5x5 pixels, as describ
previously. A typical filter iteration including all the prediction,
update and resampling steps takes around 5 ms (on a Pent......
IV, 2’7 GHz with HyperThreading) which is enough to real
time performance. Fig. 3. Particle projections in left (camera 1) and right cameras (camera 2)

The Fig. 3 shows a regular run of the particle filter dig?" terations 2, 50 and 60
playing their projection in both images at three different times
fggrzg(r)nne Zp;a?t(i)claenc(:jloi?j).ir;r?ﬁeil(% SI;nhgws the projection %fonvergence of the whole population speeds up as soon as

: L . some particles enter into the ball projection.
Th? pa_rt|cles are initially located at_p0_3|_t|c@.4,_0.1,0._2) We have observed a systematic pernicious trend of the
(m), just in front of the camera 1 (this initalization will be

N, X . . articles to move far away from the cameras along their optical
justified later on). In two iterations they spread following thg y 9 b

. ) . . axis. This can be noticed in the Fig. 4. Experiments were also
gaussian motion model. As can be seen in the upper pair 3 9 b

Fig 3 ticl act d the oink ball for the left carried out with random initalization, and starting the particles
clg-me,rzai 'lejtp;:gegufg;usnco eegflrt]he erli h(:rcareneera Ci;nn?%ﬁ a point further than the ball to a given camera. All such runs
(2) ), P 9 ( ¥&3ulted in no convergence at all: the systematic drift evolved

. . . ) the particles cloud consistently with one image, but always
After 50 iterations, the particle cloud has moved itself aw ovina awav from the other
from the camera 1, along its optical axis and always keeping ving away o ' — :
' Given the conic shape of the projective observation model,

:he_lr plr(()jjec_tut)_ns qrom\J{nd p'tr.]k Iball_sucp camera.lln .F'g' 4'tt er the prediction step there is equal chance to fall closer
ypical deviation in Y (optical axis of camera 1) is greate r further to the camera than the current location, but falling

:Ean mt'xll AISO{ the m'd%'e tr:]aw of F'g'f3.SEt°WS some rc]) loser makes less likely to project inside the image, makes
€ particies entering inside the scope of night camera Wi qer 1o achive a good observation likelihood, and so, smaller

keepmg around th_e ba!l in left Image. the chance of surviving after the resampling. This can be seen
Finally, at 60th iteration the particles converge around real . 5

3D location of the ball, and their projections into both cameras Fig.
are coherent with the ball. If the ball doesn't move, the
population remains stable around its real position. Once the
population has converged, smooth movements of the ball aréerhe work presented here summarizes the preliminary results
successfully tracked in any direction. It can be noticed thah particle filter for object 3D tracking based on color infor-

IV. CONCLUSIONS AND FUTURE LINES
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Fig. 4. Three eyebird snapshots of the particles at iterations 2, 50 and 6[90]

(11]

(12]

Fig. 5. Particle and its likely positions at+ 1

mation. The algorithm doesn’t need any explicit triangulation
or stereo matching at all, and it scales to an arbitrary number of
cameras. The observation model used avoids the color filtering
of the whole images and looks at the vicinity of the particle
projections to estimate the particle’s likelihood.

D. Fox, W. Burgard, F. Dellaert and S. Thrullonte Carlo localization:
efficient position estimation for mobile robptén Proc. of 16th. AAAI

Nat. Conf. on Artificial Intelligenge, pp. 343-349, Orlando (USA), July
1999
S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188,
2002.
A.M. Boumaza and J. LouchetMobile robot sensor fusion using flies

In Gunter Raidl et.al. editors, Applications of Evolutionary Computing,
EvoWorkshops 2003, Lecture Notes in Computer Science, vol. 2611, pp.
357-367, Springer, 2003.
Jean Louchet,Using an individual evolution strategy for stereovision
Genetic Programming and Evolvable Machines, vol. 2, pp. 101-109, 2001
M. Isard and A. Blake, CONDENSATION- conditional density propaga-
tion for visual tracking Int. Journal of Computer Vision, vol. 20, no. 1,
pp. 5-28, 1998.
P. Perez, J. Vermaak and A. Blak®ata fusion for visual tracking with
particles Proceedings of IEEE, vol. 92, no. 3, pp. 495-513, March 2004.

D. Mackay, Introduction to Monte Carlo method$n M. Jordan editor,
Learning in graphical models, pp. 175-204, MIT Press, 1999

A. J. Davison, Real-time simultaneous localisation and mapping with
a single camera IEEE Int. Conf. on Computer Vision, ICCV-2003, pp.
1403-1410, Nice (France), October 2003.

R.T. Collins, Multi-image focus of attention for rapid site model con-
struction IEEE Int. Conf. on Computer Vision and Pattern Recognition,
1997, pp. 575-581, San Juan, Puerto Rico, June 1007.

The results are promising as convergence has been validated

in real experiments and the algorithm implementation exhibits
real time performance. The real location of the object is an
stable point for the particle cloud, and the particles success-
fully track smooth movements of the object. An interesting

systematic drift in the particle behavior has been discovered
and explained.

The experiments carried out are just a proof of concept.
More experiments are necessary in order to validate the
algorithm. Further improvements of the algorithm are coming.
First, the use of more than 2 cameras simultaneously, in order
to expand the volume inside which objects are succesfully
tracked. Second, we are also exploring some proposal dis-
tributions inside the filter which hopefully would increase
convergence speed of the cloud and its recovery capacity in
case of losing the object.
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