Teaching Service Robotics with ROS and Unibotics web framework in Higher Education

Lucía Chen¹, José M. Cañas¹, David Roldán¹, Diego Martín¹, Lía García-Perez², Florian Stöckl³, Silvan Müller³, and Marcus Strand³

¹ Universidad Rey Juan Carlos, Spain
² Universidad Complutense de Madrid, Spain
³ Baden-Wuerttemberg Cooperative State University, Germany

Abstract. Unibotics is an open web framework for robot programming and teaching robotics in Higher Education. It is based on ROS and supports both Gazebo simulated robots and real ones. This paper describes the latest improvements on Unibotics regarding Service Robotics. Firstly, a new exercise has been developed from scratch regarding the navigation of a robot inside a warehouse for moving goods. Two logistics robot models have been designed to mimic real AMRs, and three reference solutions have been developed using the Open Motion Planning Library. They take into account the corresponding robot geometry and Ackermann dynamics constraints. Secondly, Unibotics has been successfully used in two different European universities and the teaching experiences are reported.

Keywords: Service Robots, Education Robotics, ROS, Logistics, Visual-Based Navigation

1 Introduction

Service robotics has become a fundamental tool for transforming various industrial and commercial sectors, improving efficiency and quality of life. These robotic systems, designed to interact directly with humans and perform everyday tasks, are revolutionising areas such as healthcare [9], logistics [8] and home maintenance [19]. The implementation of service robots not only optimises operational processes and reduces costs, but also allows for greater customisation and adaptation to the specific needs of users. In a context of rapid technological evolution and increasing demand for innovative solutions, service robotics is positioned as an essential pillar for sustainable development and global competitiveness.

Teaching service robotics to future engineers at university is crucial to prepare a new generation of skilled professionals to meet the technological challenges of the 21st century. Including this discipline in the curriculum provides students not only with advanced technical knowledge, but also with the practical and creative skills needed to design, implement and optimise robotic systems intended to interact with people and assist in everyday tasks. It also promotes a

comprehensive understanding of the ethics and societal implications of robotics, ensuring that future engineers are prepared to develop innovative solutions that improve the quality of life and promote sustainable development. As the demand for service robots grows exponentially in various sectors, university training in this area becomes an essential component to ensure competitiveness and technological leadership in the global market.

Service robots are miscellaneous, expensive and educational institutions often face budgetary constraints that make it difficult to acquire multiple units for classroom use. In addition, the complexity of these systems requires constant supervision and a high level of technical knowledge on the part of instructors, which can be a challenge in classrooms with many students.

This reality makes the use of advanced simulators [18, 11] and hybrid approaches [5] vitally important in the teaching of service robotics. Simulators allow students to practice and experiment in a virtual environment, faithfully replicating the characteristics and behaviours of real robots. In this way, testing and development of complex algorithms can be carried out without the risks and costs associated with the direct use of hardware. In addition, simulators facilitate equitable access to hands-on training, ensuring that all students have the opportunity to interact with advanced robotics technologies, regardless of economic constraints.

There are several private web-based online robotics training platforms, all of which use virtual laboratories. The Construct's Robot Ignite Academy is based on ROS, Gazebo and Jupyter and offers several short courses. Riders.ai offers online robotics courses with real-world applications. RobotBenchmark from Cyberbotics provides free access to a range of robotics exercises based on Webots simulations run in the cloud.

Robots Formation Control Platform (RFCP) is a web-based interactive environment for experimentation with mobile robots [6]. RFCP has an interactive multi-robot simulator, an experimental environment for working remotely with real robots, namely the low-cost moway educational robots. Another noteworthy initiative is the Robot Programming Network (RPN) [4,3]. It extends existing remote robot laboratories with the flexibility and power of writing ROS code in a Web browser and running it on the remote robot on the server side with a single click.

An additional web learning framework is Unibotics [13], which was born offline, then became ROS-based [14] and then online [12]. It currently contains more than 20 exercises, 10 of which relate to different service robotics topics.

Second section of this paper briefly describes the Unibotics robot programming website. Third section describes the available Service Robotics exercises at it, making emphasis in two of them: Follow Line exercise for autonomous driving and Amazon Warehouse exercise for robots in logistics. Fourth section summarizes two teaching experiences at two different European universities using part of those contents.

2 Unibotics web platform for teaching robotics

Unibotics⁴ is an online robot programming website from the open source JdeRobot organization⁵. It is based in ROS middleware (currently ROS2 Humble) and Gazebo simulator (currently Gazebo 11). It aims to improve the practical tools for learning and teaching robotics, making emphasis on the software, on the programming of robotics algorithms (perception, planning, control, etc). It is also suited for distance learning, and a good complement to MOOCs on robotics.

Its main features are:

- Supports Python programming language.
- All from the browser: code edition, execution and debugging (Figure 1).
- Easy to install: all robotics dependencies are preinstalled in a container (a docker image).
- Multiplatform: it works with Linux, Windows and MacOS operating systems.
- Supports both simulated and real robots.

The Unibotics design is described in detail in [12, 15]. At runtime there are two main components: the web browser and a docker container. The browser acts as the graphical user interface (GUI) of the framework, allowing the user to select an exercise in which he/she has to solve a task by programming a robot. Once the user has selected an exercise, the GUI of that exercise is displayed, as shown in figure 1. This webpage allows the user to edit the source code of their robotics application and to view the application running. There are several widgets to display the simulated robotics world, the robot in action, a text console, some auxiliary widgets for debugging and specific widgets depending on each exercise.

Both the robot simulator and the robotics application itself run inside a Docker container named RoboticsBackend, which the user must download from a public repository⁶ and launch before using the framework. It is the robotics runtime of the system, and all the robotics dependencies are preinstalled. Therefore, the user does not need to install them on the local computer. which greatly reduces the amount of time needed to start programming robots. Inside RoboticsBackend there is a Robot Application Manager (RAM) that acts as a bridge between the browser and the robotics applications inside. When the user executes code through the browser, this code is sent to the RAM, which runs it within RoboticsBackend. The robotics application sends the results of the execution of this code (images, data, simulation result, etc) back to the RAM and then to the browser in real time.

Unibotics includes the online version of RoboticsAcademy ⁷, an open source collection of robotics academic challenges. Several exercises and courses have already been presented in [1, 2].

⁴ https://unibotics.org

⁵ https://jderobot.github.io/

⁶ https://hub.docker.com/r/jderobot/robotics-backend/tags

⁷ https://jderobot.github.io/RoboticsAcademy/

Fig. 1. Webpage for the Amazon Warehouse exercise in Unibotics

3 Service Robotics contents

One of the challenges when teaching Service Robotics is the large variety of robots, scenarios and application domains. Unibotics currently supports several of them 8 .

Regarding cleaning robots, two exercises are provided: the basic and the localized vacuum cleaner. In both, the goal is to program the robot to clean an apartment in a given time interval. The larger the area covered, the better. The basic vacuum cleaner⁹ mimics the low-end commercial ones, without good localisation. A pseudo random navigation algorithm with spirals and bump-and-go stages is a reference solution, typically implemented with a reactive Finite State Machine. The localized vacuum cleaner mimics the high-end commercial ones, which have good localization. They are typically programmed with a coverage algorithm such as BSA [7], which provides systematic movements and a more efficient cleaning.

One increasing type of service robots are drones [1]. They are successfully used in crop monitoring, search and rescue operations and infrastructure inspection. Regarding drones Unibotics provides several exercises, including Drone Rescue People ¹⁰ and Power Tower monitoring ¹¹. In Drone Rescue People exercise the drone helps to locate survivors in the sea after a plane crash in unknown coordinates, so the ER team may go directly to the survivor positions. The drone explores the accident area and looks for humans using its onboard camera.

Regarding social robots, Follow Person exercise¹² is provided. The students have to program a social robot endowed with a camera in order to follow a moving

⁸ https://jderobot.github.io/RoboticsAcademy/exercises/

⁹ https://youtu.be/-Uwl4TQNVpU

¹⁰ https://youtu.be/O8atiuEamp4

¹¹ https://youtu.be/IAGZmqNrmio

¹² https://www.youtube.com/watch?v=eSwLHWgYMsY

5

person inside a hospital scenario. Yolo deep learning perception is typically used to detect the person in the image and a local obstacle avoidance algorithm such as VFF is a reference navigation solution.

Unibotics also provides several exercises about Autonomous Driving: obstacle avoidance, global navigation ¹³, AutoParking and FollowLine. And regarding Logistics, it includes the Amazon Warehouse exercise. We are going to describe with some details these last two exercises, as they were used in the teaching experiences of section 4.

3.1 Follow Line exercise

In this exercise¹⁴ the robot is a Formula1 car with an onboard camera, steering wheel and throttle. Several Formula1 circuits are provided (MonteCarlo, Nürburgring, MontMeló...), with a red line in the middle of the road to simplify the perception. The challenge for students is to program the navigation software of the car to follow the red line and complete the circuit lap in the shortest time.

Two Python programming API are provided: HAL-API and GUI-API. HAL-API is the Hardware Abstraction Layer, it includes functions such as HAL.getImage() to get the image (BGR8), HAL.setV(velocity) to set the linear speed and HAL.setW(velocity) to set the angular velocity. GUI-API provides the GUI.showImage(image), so the student may show the output of her/his perception and debug it.

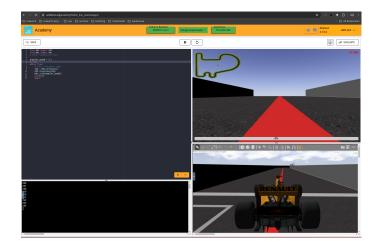


Fig. 2. Webpage for the Follow Line exercise in Unibotics.

A reference solution is a PID visual control algorithm in a reactive infinite loop. It involves a color filter and image processing for identifying the red line in

 $^{^{13}\} https://jderobot.github.io/RoboticsAcademy/exercises/AutonomousCars/global_navigation$

¹⁴ https://jderobot.github.io/RoboticsAcademy/exercises/AutonomousCars/follow_line

the frame, and a PID control for commanding the steering speed and the linear speed for each iteration.

3.2 Amazon Warehouse exercise

The challenge in this exercise is to program a logistics robot for moving goods inside a warehouse. The goods are stored in shelves. Two robots (Figure 5) and two warehouses (Figure 3) are provided. In the warehouse there are several shelves (Figure 4), boxes and obstacles. First robot is an holonomic one (Figure 5 (right)) which can turn in the spot and includes a lifting platform. Second robot is a rectangular one, with Ackermann dynamics (Figure 5 (left)), which is inspired on a real AMR at BMW factories.

The Python HAL-API provides HAL.getPose3d(), HAL.setV(velocity), HAL.setW(velocity) and two functions for the lifting platform: HAL.lift() and HAL.putdown(). The GUI-API provides GUI.showPath(array) to show a path on the map, as a 2D array containing the sequence of waypoints, and GUI.getMap(url) to get the warehouse map as a 2D image.

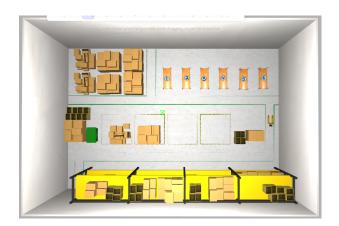


Fig. 3. Warehouse #1 for Amazon logistics exercise.

The reference solutions for this exercise use the Open Motion Planning Library ¹⁵ [17], as it is a requirement and an academic goal. Three solutions have been developed: (a) using pure spatial path planning assuming circular or square geometry of the robot; (b) using spatial path planning with rectangular geometry (Figure 6); and (c) planning with control constraints [10] (Ackermann) and rectangular geometry (Figure 7).

In (a) and (b) the state space is the XY world, and the state validity checking tests whether or not a pose in the map is free of collision for the robot body with its geometry. Several planning algorithms are available in OMPL (PRM,

¹⁵ https://ompl.kavrakilab.org/

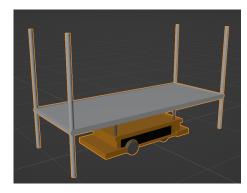


Fig. 4. Shelf in the Amazon Warehouse exercise in Unibotics.

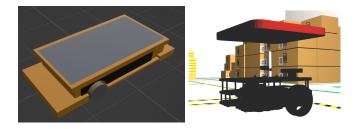


Fig. 5. Provided robots for Amazon Warehouse exercise in Unibotics.

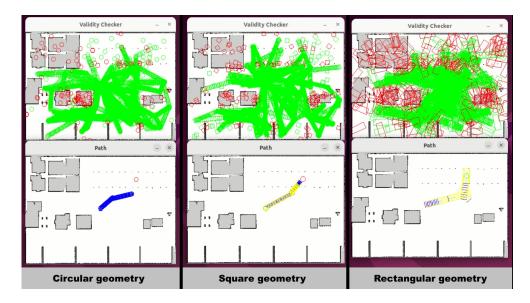


Fig. 6. Spatial path planning with different robot geometries $\mathbf{F}_{\mathbf{F}}$

RRT, Batch Informed Trees, SPARS, etc.) and they find the optimal path from initial position to destination. The geometry of the robot is different in the path towards the shelf and with the shelf onboard, and that has to be taken into account. Beyond the path planning the students have also to program the path execution, a position based controller. A video of typical execution is publicly available ¹⁶.

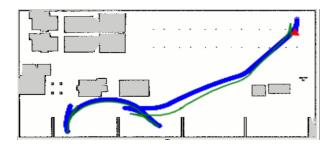


Fig. 7. Planned and achieved path when considering motion constraints.

In (c) the planner delivers a temporal sequence of commands to be sent to the robot motors. Figure 7 shows an illustrative example and a video of a typical execution is also publicly available ¹⁷.

4 Teaching experiences

The service robotics contents of Unibotics have been recently used in two different European universities in the 2023-2024 course. Those teaching experiences are briefly reported in this section.

4.1 Baden-Wuerttemberg Cooperative State University

This institution (DHBW) of higher education is known for its 'dual' education system, where students are employed in a company while studying. The mix of theoretical input and practical sessions prepares the students for their future workplace. In Karlsruhe, Computer Science students have the opportunity to choose the elective "Applications of Robotics". This course provides an introduction to ROS, different robot systems, industrial robots, collaborative robots, mobile robots and manipulators. The course is offered once a year and in 2024 13 students participated. The students come from different companies and their prior knowledge of robotics varies widely. This makes it difficult to design laboratory exercises for the course that are understandable and challenging for all participants [16]. In terms of time, 36 hours of lectures and 39 hours of follow-up

¹⁶ https://youtu.be/EVt9vYqEoDg

¹⁷ https://youtu.be/0PO4S8Omn30

are planned. In Karlsruhe, this time is divided into six sessions, two of which were used for the Unibotics platform. The students worked only on the exercise "Follow Line". They were divided into groups of two to three students who competed against each other. For the lecturers the Unibotics platform offered a very easy setup with support for almost every device in the classroom, e.g. Windows laptops with reasonable hardware specifications and Macs for which Docker Desktop should be used to avoid performance problems.

For the students' feedback they were asked to rate the following statements on a scale of 1 (="I strongly disagree") to 5 (="I strongly agree"):

- S1 I had prior knowledge for this exercise.
- S2 The exercise was at an appropriate level.
- S3 I have learnt something new.
- S4 I would have liked to get a deeper insight into the topic.

In addition to S1 they were asked what prior knowledge they had.

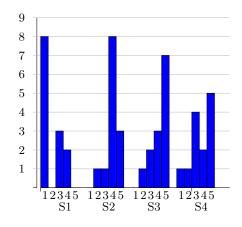


Fig. 8. Visual representation of DHBW students' feedback for "Follow Line" exercise.

Figure 8 shows a visual representation of the evaluated students' feedback forms. 62% had no prior knowledge for the exercise. The five students with prior knowledge mentioned topics such as OpenCV, Python, PID and line following with LEGO robots. For 85% of the students the exercise was at an appropriate level and 77% learned something new. More than the half of them even want to deepen the topics of the "Follow Line" exercise. Some additional comments on the exercise:

- 'The embedded IDE could be better' ⇒ They were missing syntax highlighting and auto-completion
- Simulation errors occurred on relatively low spec hardware \Rightarrow No current hardware

- 10 Lucia Chen et al.
- Some students prefer real hardware and real robots to simulation \Rightarrow Connecting Unibotics to real hardware in the lab

There were no complaints about the setup or the instructions.

Overall, the students liked the course and the Unibotics "Follow Line" exercise. They engaged with the platform and came up with really good solutions in a fairly short time. It is ideal for group work, but can also be solved individually.

4.2 Universidad Rey Juan Carlos

This university offers a Degree on Robotics Software Engineering, which inludes a course on Service Robotics on the fourth year. 25 undergrad students participated in this pilot study from the Service Robotics course, with 4 exercises: "Localized Vacuum Cleaner", "Drone Rescue People", "AutoParking" and "Amazon warehouse". This course lasts 13 weeks, 4 class hours a week (2h for theory classes and 2h for practical classes with Unibotics), and their focus is on the robotics algorithms and the final applications, not in the ROS topics management which are taught in other courses. All the students had ROS prior knowledge, anyway.

Fig. 9. URJC students doing the AutoParking exercise in Unibotics.

Several minor problems arouse along the course, mainly with the new GUI, and they were solved in two working days at most, but the users were frequently required to update their RoboticsBackend images.

The students rated this course using Unibotics with a score of 4.30 out of 5. This ranking is above the mean of the Robotics Software Engineering degree, which is 3.87 out of 5.

5 Conclusions

The last improvements on Unibotics robot programming website regarding Service Robotics have been presented. First, a new exercise about robotics in lo-

gistics has been created and integrated. It is based on real Amazon warehouses where a fleet of robots moves goods inside the warehouse in a very fast and efficient way. The corresponding world models and robot models have been developed for Gazebo simulator, including an Ackermann steering robot. Three reference solutions based on Open Motion Planning Library for path planning were programmed.

In addition, two teaching experiences with Unibotics and Service Robotics have also been described. One with Computer Science students in a German dual university. And another one with students of the Degree on Robotics Software Engineering in a Spanish university. Both were successful, and the presented robotics framework provided an easy setup and probed to be truly multiplatform, as it worked fine for students with Linux operating system, MS-Windows or even MacOS.

As future lines, we aim to provide not only the current simple Python interfaces to students (HAL-API and GUI-API) but also to provide the raw interfaces, the robot ROS-topics. This way Unibotics could also be used not only for teaching robotics algorithms, but also for teaching the ROS middleware itself, including programming the robotics application directly with ROS topics and services. In addition, it may help to expand the scope of the platform, which could be used both by Computer Science students with no prior ROS background and by Robotics Engineering students with some experience on ROS middleware.

Another future line is to migrate from Gazebo 11 to the more recent LTS release Gazebo Harmonic. It is more efficient and it will allow a fluent execution even in computers with limited resources.

Acknowledgments

This research was partially funded by the UNIBOTICS-GAM project Ref. TED2021-132632B-I00, from Proyectos de Transición Ecológica y Transición Digital 2021 call Spain. Authors also appreciate the help of Google for improving RoboticsAcademy through the Google Summer of Code program since 2017.

References

- Cañas, J.M., Martín-Martín, D., Arias, P., Vega, J., Roldán-Álvarez, D., García-Pérez, L., Fernández-Conde, J.: Open-source drone programming course for distance engineering education. Electronics 9(12), 2163 (2020)
- Cañas, J.M., Perdices, E., García-Pérez, L., Fernández-Conde, J.: A ros-based open tool for intelligent robotics education. Applied Sciences 10(21), 7419 (2020)
- 3. Casañ, G.A., Cervera, E.: The experience of the robot programming network initiative. Journal of Robotics **2018** (2018)
- Cervera, E., Martinet, P., Marin, R., Moughlbay, A.A., Del Pobil, A.P., Alemany, J., Esteller, R., Casan, G.: The robot programming network. Journal of Intelligent & Robotic Systems 81(1), 77–95 (2016)

- 12 Lucia Chen et al.
- Dakeev, U., Pecen, R.R., Yildiz, F., Basith, I.I., Obeidat, S.M., Sowell, L.E.: Development of virtual reality robotics laboratory simulation. In: 2022 ASEE Zone IV Conference. No. 10.18260/1-2–44729, ASEE Conferences, Vancouver (May 2022), https://peer.asee.org/44729
- Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M., Sánchez, J., Dormido Bencomo, S.: Platform for teaching mobile robotics. Journal of Intelligent & Robotic Systems 81, 131–143 (2016)
- Gonzalez, E., Alvarez, O., Diaz, Y., Parra, C., Bustacara, C.: BSA: A complete coverage algorithm. In: proceedings of the 2005 IEEE International Conference on Robotics and Automation. pp. 2040–2044. IEEE (2005)
- Gonzalez-Aguirre, J.A., Osorio-Oliveros, R., Rodriguez-Hernandez, K.L., Lizárraga-Iturralde, J., Morales Menendez, R., Ramirez-Mendoza, R.A., Ramirez-Moreno, M.A., Lozoya-Santos, J.d.J.: Service robots: Trends and technology. Applied Sciences 11(22), 10702 (2021)
- Holland, J., Kingston, L., McCarthy, C., Armstrong, E., O'Dwyer, P., Merz, F., McConnell, M.: Service robots in the healthcare sector. Robotics 10(1), 47 (2021)
- Kingston, Z., Moll, M., Kavraki, L.E.: Exploring implicit spaces for constrained sampling-based planning. Intl. J. of Robotics Research 38(10–11), 1151–1178 (Sep 2019). https://doi.org/10.1177/0278364919868530
- Lopez-Nicolas, G., Romeo, A., Guerrero, J.J.: Simulation tools for active learning in robot control and programming. In: 2009 EAEEIE Annual Conference. pp. 1–6 (2009). https://doi.org/10.1109/EAEEIE.2009.5335490
- Roldán-Álvarez, D., Cañas, J.M., Valladares, D., Arias-Perez, P., Mahna, S.: Unibotics: open ros-based online framework for practical learning of robotics in higher education. Multimedia Tools and Applications 83(17), 52841–52866 (2023)
- Roldán-Álvarez, D., Cañas, J.M., Valladares, D., Arias-Perez, P., Mahna, S.: Unibotics: open ros-based online framework for practical learning of robotics in higher education. Multimedia Tools and Applications 83(17), 52841–52866 (2024)
- Roldán-Álvarez, D., Mahna, S., Cañas, J.M.: A ROS-based Open Web Platform for Intelligent Robotics Education, pp. 243–255. International Conference on Robotics in Education (RiE), Springer (2021)
- Roldán-Álvarez, D., Mahna, S., Cañas, J.M.: A ros-based open web platform for intelligent robotics education. In: Robotics in Education: RiE 2021 12. pp. 243–255. Springer (2022)
- Stöckl, F., Müller, S., Strand, M.: Tailored Robotics Lab Sessions Accommodating Undergraduate Students with Diverse Skill Levels. 15th International Conference on Robotics in Education (RiE 2024) (Apr 2024)
- 17. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics & Automation Magazine 19(4), 72–82 (December 2012). https://doi.org/10.1109/MRA.2012.2205651, https://ompl.kavrakilab.org
- Tellez, R.: A thousand robots for each student: Using cloud robot simulations to teach robotics. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R. (eds.) Robotics in Education. pp. 143–155. Springer International Publishing, Cham (2017)
- Zachiotis, G.A., Andrikopoulos, G., Gornez, R., Nakamura, K., Nikolakopoulos, G.: A survey on the application trends of home service robotics. In: 2018 IEEE international conference on Robotics and Biomimetics (ROBIO). pp. 1999–2006. IEEE (2018)