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Abstract— Autonomous mobile robots need a reliable and
accurate self-location information to perform complex tasks
which interact with their environment. To address this problem,
this paper presents a novel method of self-localization based on
a combination of extended Kalman filters and Markov methods,
obtaining the best features of both methods. This method
combines the accuracy and robustness of the Kalman filter
and multi-modality of a probabilistic grid. The probabilistic
grid generates and validates a dynamic population of extended
Kalman filters which compete to represent accurately the robot
location. The novelty of this system is to obtain a multimodal
estimation of robot location with a simple and effective way
for generating, fusing, removing and rating extended Kalman
filters. We demonstrate the effectiveness and correctness of this
approach in maintaining the position of a humanoid robot in
the robot soccer environment, being also suitable for other
environments.

I. INTRODUCTION

We are interested in developing intelligent behaviors for
autonomous mobile robots in a variety of scenarios. Many
of these behaviors require reliable information on the robot
location. The state of the art in self-localization is quite ad-
vanced and many of the efforts are refocusing on solving the
specific problem of simultaneous localization and mapping
(SLAM), in which environment knowledge is built while the
robot is positioned in the environment. However, we believe
that there is still much work to do in the general case, where
the environment is known apriori. Proof that this problem
is still active can be seen in soccer humanoid robots [1].
The location information is critical for the robot to make
good decisions. Robots fall, are pushed and displaced during
operation. Odometry information is not reliable and the main
sensor, a camera, faces problems such as occlusions and
false positives. Additionally, the game is so dynamic that
the response times of each of the modules of the system
must be extremely short. It is not easy for a system of self-
localization to work properly under these conditions.

We provide a new approach that meets the requirements
previously planted as an alternative to the predominant solu-
tion in this environment, Monte Carlo Localization (MCL)
[2]. The extended Kalman filter, a nonlinear version of the
Kalman filter [3], is a good solution for the problem of
state estimation, in particular for self-localization. It is robust
and fast, but is adequate to maintain the robot location
once known, i.e, for a tracking of the robot location. Its
weakness is its initialization and face kidnapping situations.
Simply it does not work in these cases. This method does
not allows to maintain inherently multi-modality in the
estimation of the robot location. There are many efforts to

achieve a correct and elegant mathematical formulation of
the multimodality of these filters, so far unsuccessfully. In
contrast, our approach is based on maintaining the current
mathematical formulation and generate a population of in-
dependent extended Kalman filters. Each of these filters are
updated independently with the same sensory information.
This solve the problem of multi-modality, but we still have
to solve the problem of initialization.

To address this problem, we divided the environment
into a probabilistic coarse grain grid, large enough to avoid
performance problems and small enough to be useful for our
purposes. Each of the cells of the grid has an associated
probability which is updated using the available sensory
information in a Markovian way [4]. The information grid
enables us to define new locations in the environment where
it is appropriate to initialize new extended Kalman filter.
Finally, based on the grid information and the uncertainty of
each of the filters we obtain the robot location. Our approach
has many features that make it suitable for highly dynamic
environments with real-time requirements. First, extended
Kalman filters are suitable for intervals in which the only
available information is the displacement of the robot. The
uncertainty in the estimate represents the absence of sensory
information, but there will still be an estimation about the
robot location. Secondly, the initialization is effective at the
start of the operation of the robot and after kidnappings,
collisions or falls. After incorporating sensory information to
the grid, the probability of the cell where the robot actually is
rises. If there are no filters previously initialized to represent
this new situation, it creates a new one in this cell. The
previous existing filters are maintained to deal with situations
of false positives. Finally, the performance of the system
are suitable for systems with limited computing capacity.
The population extended Kalman filter is limited to a small
number, and the coarse grained grid also makes the number
of cells very low.

An important aspect of this work is that it must operate in
real time on the actual humanoid robot. The timing require-
ments are important when limited computing time has to be
shared with other processes such as perception, calculations
for the actuators, coordination, behavior generation, and so
on. The software architecture used, BICA[5], implements
graceful degradation to face heavy load situations. As we
have real-time requirements, this mechanism can solve speci-
fic problems, but it is important that strict time requirements
are met by all processes. Therefore, these requirements have
great impact on the design of this system of self-location.
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The experimental results carried out on the actual robot show
that our approach produces reliable self-location information
in case of occlusion, collisions and false positives. Although
to date this approach has been used successfully in several
editions of the RoboCup robot soccer championship, our
work opens up new applications in environments where the
robot coexists with humans, such as offices and hospitals.

This paper is structured as follows. After discussing related
work in the followings section, we will present our extended
kalman filter population approach to mobile robot self-
localization in section III. In section IV we will present
experimental results demonstrating the advantages of our
algorithm. Finally, in section V we will discuss the results
of the present approach and the possible improvements to be
done.

II. RELATED WORK

Extended kalman filter is a widely used method of estima-
ting the state of a process. The system state is represented
as a Gaussian distribution, with an associated uncertainty.
This system has been applied in the location of a mobile
robot in several works [6][7]. All of them seeks to address
the problem of initialization from the total ignorance, but
the solutions are not definitive. We provide a solution to
this problem by relying on a probabilistic grid. To determine
whether an extended Kalman filter is correct, we use the
information in this grid, as well as the uncertainty associated
with the filter.

Markov methods have traditionally been successfully used
in self-localization of mobile robots. These methods are
based on discretizing the environment in a set of states where
the robot can find, and keep the probability of being in each
of these states. States may have a regular size, building a
grid [4], or have topological meaning [8][9]. Typically one
location contains several states to represent the orientation
of the robot. This method is simple and very flexible to
the requirements of many applications, integrating robot self-
localization and actuation using partially observable markov
decision process models (POMDPS) [10]. However, the
major problem of this approach arises when the set of states
is high because the environment is too large or because the
application requires high precision. some researchers have
developed methods to overcome this performance problem
trying to reduce the space of states. In the environment of
the robot soccer, in [11] is proposed that the orientation
is not encoded as a set of states, but as a fuzzy variable,
reducing computing needs. Although these requirements are
reduced, it still remains a compromise between performance
and accuracy. Our approach uses a probability grid is updated
using markovian algorithms. The aim of this grid is not to
obtain the final robot location, but to point out the locations
where starting a new filter extended kalman, or where
discard hypothesis. For this reason, we have not performance
problems because the grid size is large and thus state space
reduced.

More recent work in self-localization of mobile robots
are based on particle filters [12], also called Monte Carlo

methods [13]. Particle filters metric determine the robot
location by sampling the state space where the robot can
be. Each particle represents a possible robot location with
an associated weight. The weight of each particle varies
depending on the robot’s sensory information. Those par-
ticles with low weights are replaced by others close to
those with more weight. The accumulation of particles in a
certain location determines where the robot is. This approach
is attractive because it does not depends on the the size
of the environment and it is able to recover from initial
unknowledge or kidnappings, and therefore it is used for
many applications [14][15][16]. In particular, some works in
soccer robotic bring new features to this method. In [17],
it takes advantage of the existing mark locations in the
environment to better suit kidnappings and restarts. Lines
are also used in [18], in which this algorithm is tuned for an
excellent solution, highly adapted to this environment. This
method, however, has some problems when there are sym-
metries in the environment can often decant for the wrong
choice prematurely. Furthermore, although able to recover
from kidnappings, the dynamics of the particles can make
recovery take longer than desired. In contrast, our approach
assumptions about the robot location are not dependent on
the accumulation of sampling, but complete Gaussian esti-
mations. This allows previously discarded hypothesis can be
re-considered. In addition, different symmetrical estimations
can be maintained without discarding any hypothesis until to
end up with symmetry. Recoveries from kidnapping are faster
and do not depend on creating a new cluster of samples, but
starting a new Kalman filter extended to the new location.

III. SELF-LOCALIZATION METHOD

The approach proposed in this work tries to self-localize
the robot in its environment. The main information source
is the one extracted by the images taken from the robot’s
camera. It also uses the information that provides the robot
framework related to the movement and the motor odometry.

The robot is in a real 3D world, with three values to
represent the location, and another three to represent the
orientation. We assume that the robot is (or should be) always
in vertical position, and with any foot on the floor. So, the
robot location can be simplified to three values (x, y, θ),
taking the robot location as a point on the floor, between both
legs. Then, It represents the robot location, in 2D (z = 0),
and a orientation with respect the Z axis.

To illustrate the concepts more clearly, we will focus on
the environment of soccer robots. This environment has a
size of 6 × 4 meters, and has a set of visual characteristics
(color goals and field lines) whose location is known a priori.
Still, the method proposed in this paper is applicable to any
environment where there is a set of elements whose location
is known a priori, and a set of lines that can be visually
detectable (junction between walls and floor, for example).

III-A. Individual extended Kalman filter

Extended kalman filter is an effective method to estimate
the state of a process. This method has been used successfu-
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lly to self-localize a mobile robots, but mainly for tracking,
ie this is a local method. The state we want to estimate the
robot location defined as the state vector s =

(
x y θ

)T

and its uncertainty P . The update process will be guided by
two nonlinear functions, f and h. First, f relates the previous
state st−1, the odometry ut−1, and the noise in process σu

t−1,
to the present state st, according to Figure III-A.1.

st = f(st−1, ut−1, σt−1) (1)

Each component of st is calculated independently using
the following decomposition of f :

xt = xt−1 +(ux
t−1 +σx

t−1)cosθt−1− (uy
t−1 +σy

t−1)senθt−1

(2)
yt = yt−1 + (ux

t−1 + σx
t−1)senθt−1 + (uy

t−1 + σy
t−1)cosθt−1

(3)
θt = θt−1 + uθ

t−1 + σθ
t−1 (4)

III-A.1. Prediction step: In this step we calculate s−t
and P−

t . s−t is the location in which the robot will be
according to its previous location and the information of the
odometry using the movement model, which is based on the
displacement of the robot calculated by the motion module.
Left side in Figure III-A.1 shows the information related
to a displacement. This information is the displacement
vector u = (ux, uy, uθ) and its associated uncertainty σu =
(σx

u, σy
u, σθ

u).

uθ

uy
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σx
u
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u
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Fig. 1. Odometry based movement model and observation model

s−t =
(

x−t y−t θ−t
)T

= f(st−1, ut−1, 0) (5)

P−
t = AtPt−1A

T
t + WtQt−1W

T
t (6)

Where Pt−1 updates to AtPt−1A
T
t for representing the

previous noise after control input u (Figure 2) and Qt is the
noise in the prediction process. WtQt−1W

T
t represents the

noise Q added to P−
t from Pt−1. Applying transformation

matrix Wt(equation 9), we add this noise to the uncertainty.

At =
∂f

∂s
=

 1 0 −uy
t−1cosθt−1 − ux

t−1senθt−1

0 1 ux
t−1cosθt−1 − uy

t−1senθt−1

0 0 1


(7)

Pt−1

ut−1

Pt

APAT

WQWT

Fig. 2. Combination of the new uncertainty P−t from the prior Pt−1

Qt = E[σtσ
T
t ] =

(
(σx

u)2 0 0
0 (σy

u)2 0

0 0 (σθ
u)2

)
(8)

Wt =
∂f

∂σu
=

 cosθt−1 −senθt−1 0
senθt−1 cosθt−1 0

0 0 1

 (9)

III-A.2. Update step: The robot detects the visual land-
marks of the environment using the images from its camera.
In this work, the relevant landmarks are the goal posts and
the center of the field, as shown at right side in Figure III-
A.1.Each image has an associated information of the angles
of each of the actuators of the robot. This information is used
to perform 2D to 3D transformations of image points to real-
world coordinates. We do not want to go into detail about the
image processing because we do not want to distract from the
central part of this work, so we briefly describe this process.
First, we filter and segment the image depending on the color
of each pixel. From groups with similar color, we detect the
field and the candidates for visual landmarks: goalposts and
field lines. Finally, we convert the image space to real-world
space to check the dimensions and locations of each of these
candidates. Those with valid properties are definitely used.
We do not use instant perceptions, but an estimate of each
using Joint Probabilistic Data Association Filter (JPDAF)
[19]. This filter updates a estimation each landmarks, which
are represented as z = (ρ, θ) in polar coordinates with res-
pect the robot, with an associated uncertainty σz = (σz

ρ, σz
θ),

as shown at right side in Figure III-A.1.

Fig. 3. Visual landmarks for the self-localization method.

The uncertainty associated with both the movement and
the perceptions is empirically calculated. After intensive
testing, we can measure the accuracy of the information from
the camera and the module that calculates the movement of
the robot from the parameters of the walk. The uncertainty
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is high compared to a wheeled robot because our robot is a
biped and accuracy in the calculation of the position of the
camera depends on all the joint sensors from the floor to the
robot head. We update the robot state using the observations
zi related to the landmark mi.

st = st−1 + Ki
t(z

i
t − ẑi

t) = st−1 + Ki
t(z

i
t − hi(st−1)) (10)

Pt = (I −Ki
tH

i
t)Pt−1. (11)

where h(st−1) is a nonlinear function that give us the
theoretical observation of z in the state st−1.

ẑi
t = hi(st−1) =

( √
(mi

t,x − st−1,x)2 + (mi
t,y − st−1,y)

atan2(mi
t,x − st−1,x, mi

t,y − st−1,y)− st−1,θ

)
(12)

Ki
t is known as the Kalman gain, calculated as:

Ki
t = Pt−1(Hi

t)
T (Si

t)
−1 (13)

Si
t = Hi

tPt−1(Hi
t)

T + Ri
t (14)

Hi
t =

∂hi(st−1)
∂st

=

 −mi
t,x−st−1,x√

q −mi
t,y−st−1,y√

q 0
mi

t,y−st−1,y

q −mi
t,x−st−1,x

q −1
0 0 0


(15)

q = (mi
t,x − st−1,x)2 + (mi

t,y − st−1,y)2 (16)

Ri
t = E[σz(σz)T ] =

(
(σz

ρ)2 0
0 (σz

θ)2

)
(17)

III-B. Markovian grid
We represent the robot’s environment as a regular grid.

The cell size is configurable, setting it to 50 cm wide. A
environment which size is 6 × 4 meter is represented with
a grid composed by 96 cells. Since it is a regular grid,
is easy to calculate from metric coordinates (x, y) to the
coordinates (i, j) in the grid. To set some terminology, the
grid is a set of states S. Each state si,j ∈ S corresponds to
a specific cell. Bel(S = si,j) is the probability of being at
state si,j , which can be also represented as p(si,j). At each
state si,j , the movement model defines a p(si,j |s′m,n, u) for
all s, s′ ∈ S using the robot displacement u. The observation
model defines p(z|si,j) as the probability of perceiving the
visual feature z at si,j . These models are calculated from the
models presented in the previous section, which updates the
probability distribution over all the states using equation 18
and 19.

When the robot moves, the movement u updates
each cell probability using the movement model
p(si,j |s′m,n, u).

ppost(si,j) = α×
∑

s′m,n∈S

p(si,j |s′m,n, u)× pprior(si,j)

(18)

When the robot perceives a visual feature z, each cell
is updated using the observation model p(z|si,j).

ppost(si,j) = α× p(z|si,j)× pprior(si,j) (19)

where α is a normalization factor to ensure that the
probabilities all sum to one.

Most of markov models define several states at each
location to represent the orientation of the robot. This is quite
expensive, as it can multiply the computation time required
depending on the desired resolution. Instead of using several
states in each cell, our solution consists in representing the
orientation as a Gaussian distribution in the range [−π, π].
This distribution is updated with the sensory information z
and the robot rotation uθ. We name Θ(si,j) as the mean of
this distribution, and σΘ(si,j) the standard deviation.

When the robot moves, the component of rota-
tion of the movement uθ updates the distribution
N(Θ(si,j), σΘ(si,j)).

Θpost(si,j) = Θprior(si,j) + uθ (20)

σpost
Θ (si,j) = σprior

Θ (si,j) + σuθ
(21)

When the robot perceives a visual feature z, it updates
the distribution. In this equations, h(si,j) is a function
that give us the theoretical observation of z in the state
si,j .

Θpost(si,j) = Θprior(si,j) +
σΘ

σΘ + σz
(z − h(si,j))

(22)

σpost
Θ (si,j) =

σΘ

σΘ + σz
σprior

Θ (si,j) (23)

III-C. Population dynamics

The real value of this work is how to design a method
of self-localization effective from the best characteristics of
the elements previously described. The grid of probability is
an global self-localization method that allows multimodality
and error recovery. As a weaknesses, it lacks of enough
robustness, and it is necessary to choose between accuracy
and performance. Extended kalman filter is a lightweight and
robust method, but it lacks of multimodality and recovery
from errors.

The central idea is to control the population dynamics of
extended kalman filter. This population grows and reduces
using information Markovian grid. Once an extended Kalman
filter is created, it runs in parallel with the rest of the filters
in the population. Each filter independently, incorporates
information from sensory perception and movement. Figure
4 shows the overall system. The robot position is selected
among the filters taking into account the markovian grid
information, which is also used for creating new filters. The
population is updated using three rules: creation, destruction
and combination:

Creation. This rule is executed when the Markovian
grid indicates that the robot is likely to be in any
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Fig. 4. Diagram of the overall system.

location that is not covered by any filter forming part
of the population. This happens at the start of robot
operation or after a kidnapping.
Destruction. There are two factors affecting the des-
truction of an extended Kalman filter. First, the un-
certainty of the filter has overgrown because it does
not incorporate perceptions consistent with its status.
Second, the probability of the cell corresponding to the
location of the filter is very low.
Combination. If two filters of the population converge
to the same location and orientation, we remove the
filter with higher uncertainty. This rule makes lower
the workload and eliminates expendable filters.

The algorithm which describes how to apply these opera-
tions is shown in the Algorithm 1. Lines 11-17 define the
combination rule, lines 18-22 define the destruction rule
and lines 23-29 define the creation rule. We choose the best
estimate of the extended Kalman filter of the population
as the robot location. This choice is made based on the
probability of the grid cell in which it is, and its similarity
to the orientation that is in the cell, which also defines the
reliability of this information.

IV. EXPERIMENTATION

The approach presented in this paper is intended to be
robust, efficient and reliable. It is necessary to provide expe-
rimental evidence that this method meets these expectations.
Although this method is intended to be general and not
focused on a robot and a particular environment, we must
set the environment and platform that will be used in the
experimental stage. The experimental platform is the Nao
humanoid robot. This robot has become very popular in
recent years due to its low cost and its advanced features. It
is 55 cm tall, has 25 dof and the main sensor is a camera
on his head. The test environment is the real field of robot
soccer shown in Figure III-A.1. We are working in ground
truth system for an accurate test and comparison with other
self-localization methods. Unfortunately, it was not ready for
using it in these tests. We hope that the experimental results
are good enough to provide evidence of the correct operation
of this system.

Algorithm 1: Combination of a Markovian grid and a
population of extended Kalman filters.

Initialize grid using full uncertainly;1
while true do2

Predict grid using using motion;3
foreach ekfi do4

Predict ekfi using motion;5
end6
Correct grid using landmark information;7
foreach ekfi do8

Correct ekfi using landmark information;9
end10
foreach ekfi do11

foreach active ekfj do12
if distance(ekfi, ekfj) is near) and angle(ekfi, ekfj)13
is similar then

ekfm = new ekf from ekfi and ekfj combination14
end15

end16
end17
foreach ekfi do18

if grid(ekfi.x, ekfi.y).prob() is low and ekfi.uncertainty19
is high then

remove ekfi;20
end21

end22
if (grid(x, y).prob() is high) then23

foreach ekfi do24
if (distance(ekfi, grid(x, y)) is far) then25

ekfm = new ekf from grid(x, y);26
end27

end28
end29

end30

The first experimental result concerns to the robustness
and accuracy of this method. This experiment has carried out
by making the robot walk on the field for several seconds.
After this time, we stop the robot and compare the estimation
method of self-localization with the actual robot location,
measured manually. Each iteration of this test takes about
30 seconds in which the robot moves forward, sideways and
rotates. We have performed 15 trials of this test. After this
experiment, the average error in estimating the location is 23
cm, with a standard deviation of 10 cm.

The second experiment measures the time it takes the robot
to recover after a kidnapping. During this experiment, the
robot is stopped, but his head moves in search of visual
stimuli. Once self-localized, the robot is moved manually to
another location in the field. We repeated this operation 15
times and we measured the time the robot takes to recover
(when the location error is less than 20 cm and the orientation
is less than 0.2 radians). The results show that the robot
spends on recovery 8.3 seconds, on average, with a standard
deviation of 7 seconds. In all cases, the previous estimate
continues to exist, but their uncertainty increases and the
probability of the lower cell at that location. If there had been
no kidnapping and perception was due to a false positive,
the recovery would be very efficient when the false positive
disappeared.

Finally, we have collected information from the computa-
tion time of each module involved in a real game situation.
During this situation the robot must perceive the ball and
the goal, be self-localized, generate behaviors, use visual
attention for controlling the camera position and generate
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Module Median Average Stdev
Actuation 0.120 ms 0.458 ms 0.017ms
Perception 9.34 ms 7.3087 ms 11.995 ms
Behaviors 0.031 ms 0.173 ms 1.030 ms

Visual Attention 0.111 ms 0.541 ms 1.7304 ms
Self-localization 0.364 ms 1.736 ms 3.0762 ms

TABLE I
COMPUTATION TIMES FOR THE MODULES

the commands for robot’s actuators. The table I contains
the results. In a system that obtains images at 30Hz, 1.736
ms on average in self-localization is very low computation
consumption. Compared with the time spent on perception,
7.3 ms on average, is a quite acceptable time.

V. FUTURE WORK AND CONCLUSIONS

This paper has presented a method of visual self-
localization of autonomous mobile humanoid robots. This
method allows to maintain a dynamic population of extended
Kalman filters that grows or decreases using a grid Markov
info. The benefits of this method is to take advantage of
the best characteristics of Gaussian and Markovian methods.
Extended Kalman filters are robust and lightweight. A po-
pulation of Kalman filters provides multimodality, extending
this type of algorithms. The markovian grid provides hy-
potheses which create or discard filters in this population.
Under these principles, each possible robot location is co-
vered with a different extended Kalman filter. The system
recovers from kidnapping situations because the markovian
grid generate new hypothesis as soon as the robot perceives
new features. Finally, it is robust to false positives because
it does not immediately discard the correct locations which
are temporary not corroborated perceptively.

This approach has been tested in the real robot in the robot
soccer environment, but is likely to be used in a variety of
environments. Preliminary experiments are promising, but it
must be tested more extensively with a ground truth system
and compared with relevant algorithms (Monte Carlo and
Markov, for example). Still, it has shown its recover ability,
its accuracy and low computational cost.

We are extending this work in several directions. First, we
are evaluating using field lines as a new perception. These
lines are natural to other environments such as offices or
hospitals. This is related to another possible direction for this
work: leave the field of robotic soccer and get into the real
world, where the capacity for self-localization is important in
a wide variety of applications. Finally, we are working on the
detection of other robots to collaborate in self-location. If the
robot A detects the robot B, we can create new hypotheses
on the robot B to improve its self-localization.
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