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Abstract— Cameras are one of the most relevant sensors
in autonomous robots. This paper proposes a dynamic visual
memory to store the information gathered from a moving
camera on board a robot, an attention system to choose where
to look at with this mobile camera, and a visual localization
approach which uses this visual memory. The visual memory is
a collection of relevant task-oriented objects and 3D segments,
and its scope is wider than the current camera field of view.
The attention system takes into account the need to reobserve
objects in the visual memory and the need to explore new
areas. The visual memory is useful also in localization tasks
since it provides more information about robot surroundings
than the current instantaneous image. Several experiments have
been carried out both with simulated and real Pioneer and Nao
robots to validate the system and each of its components.

I. INTRODUCTION

Cameras have been incorporated in the last years to robots
as common sensory equipment. They are very cheap sensors
and may provide much information to robots about their
environment, but extracting relevant information from the
image flow is not easy. Vision has been used in robots for
navigation, object recognition, 3D mapping, visual attention,
robot localization, etc.

Robots usually navigate autonomously in dynamic envi-
ronments, and so they need to detect and avoid obstacles.
Many works have been presented in vision based navigation
and control, even without requiring any reconstruction of
the environment [Remazeilles et al., 2006]. Obstacles can
also be detected through 3D reconstruction. Recovering
3D-information has been the main focus of the computer
vision community for decades. Stereo-vision methods are the
classic ones, based on finding pixel correspondences among
the two cameras and triangulation, despite they fail with
untextured surfaces. Vision depth sensors like Kinect offer
now a different technology for visual 3D reconstruction.

The visual representation of interesting objects around
the robot may improve the quality of robot’s behavior as
it handles more information when making decisions. This
poses a problem when the objects lie beyond the current
field of view of the camera. To solve it, some systems
use omnidirectional vision. Others, like humanoids or robots
with pantilt units, use mobile regular cameras that can be
orientated at will and manage a visual memory of robot
surroundings that integrate the information from the images
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taken from different locations. The problem of selecting
where-to-look-at at every time, known as gaze control or
overt attention ([Cañas et al., 2008],[Zaharescu et al., 2005]),
arises there. Usually the need to quickly explore new areas
and the need to reobserve known objects to update their
positions, etc. influence that selection.

Arbel and Ferrie presented in ([Arbel and Ferrie, 2001])
a gaze-planning strategy that moves the camera to another
viewpoint around an object in order to recognize it.

Robots need to know their location inside the environment
in order to unfold the proper behavior. Using robot sensors
(specially vision) and a map, the robot estimates its own
position and orientation inside a known environment. Robot
self-localization has proven to be complex, especially in
dynamic environments and in those with much symmetry,
where sensors values can be similar at different positions.

Grid based probabilistic localization algorithms were suc-
cessfully applied with laser or sonar data in small known
environments [Burgard and Fox, 1997]. They use discretized
probability distributions and update them from sensor data
and movement orders, accumulating information over time
and providing a robust position estimation. Particle filters
use sampled probability functions [Dellaert et al., 1999]
and extend the techniques to larger environments. At the
beginning the maps were provided in advance but in the
last years the SLAM techniques tackle localization simul-
taneously with the map building. There are many particle
filter based SLAM techniques. In addition, one of the most
successful approaches is Mono-SLAM from Andrew Davi-
son [Newcombe and Davison, 2010; Gerardo Carrera and
Davison, 2011] based on a fast Extended Kalman Filter for
continuous estimation of 3D points and camera position from
relevant points in the image.

In ([Mariottini and Roumeliotis, 2011]) Mariottini and
Roumeliotis presented a strategy for active vision-based
localization and navigation of a mobile robot with a visual
memory where previously visited areas are represented as
a large collection of images. It disambiguates the location
taking into account the sequence of distinctive images, while
concurrently navigating towards the target image. In [Jensfelt
and Kristensen, 2001], Jensfelt et al. presented an active
global localization strategy that uses Kalman filtering (KF)
to track multiple robot pose hypotheses. Their approach can
be used even with incomplete maps and the computational
complexity is independent on the size of the environment.

In this paper we propose a visual perceptive system for an
autonomous robot composed of two modules. First, a short
term visual memory of robot surroundings fed with images
from a mobile camera. The memory stores 3D segments of
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the environment and objects. A gaze control algorithm has
been developed to select where the camera should look at
at every time. Second, a visual localization algorithm that
uses current image or the current contents of this memory
to estimate robot position.

The remainder of this paper is organized as follows.
Second section presents the design of the proposed visual
system. The next two sections describe its two building
blocks: attentive visual memory component and localization
component. The fifth section includes some experiments,
both with simulated and real robots, performed to validate
our system. Finally some conclusions are summarized.

II. DESIGN

The proposed perceptive system is designed for au-
tonomous robots that use a mobile camera, like that on
the head of humanoids or in robots with pan-tilt units. The
block diagram of the robot control architecture is showed
in Figure 1. It has been divided into two main compo-
nents: active visual memory and localization.
They will be described in detail in the following sections.

Fig. 1. Block diagram of the proposed visual system

First, the active visual memory component builds
a local active visual memory of objects in the robot’s
surroundings. The memory is built analyzing each camera
image looking for relevant objects (like segments, parallelo-
grams, arrows, etc) and updating the object features already
stored in the memory like their 3D position. The memory is
dynamic and is continuously coupled with camera images.
The new frames confirm or correct the object features stored
in memory, like their 3D relative position to the robot,
length, etc.. New objects are introduced in memory when
they appear in images and do not match any known object.

This memory has a broader scope than the camera field of
view and objects in memory have more persistence than the
current image. Regular cameras typically have 60 degrees
of scope. This would be good enough for visual control but
a broader scope may improve robot responses in tasks like
navigation, where the presence of obstacles in the robot’s

surroundings should be taken into account even if they lie
out of current field of view.

This memory is intended as local and short-term. Relative
object positions are estimated using robot’s odometry. Being
only short term and continuously correcting with new image
data there is no much time to accumulate error in the object
relative position estimation. Currently the system deals only
with objects on the floor plane (ground hypothesis) and uses
a single camera. It can be extended to any 3D object position
and two cameras.

In order to keep this short term visual memory consistent
with reality, the system has mechanisms to properly refresh
it. The camera is assumed to be mobile, typically mounted
over a pan-tilt unit. Its orientation may be controlled and
changed during robot behavior at will, and so, the camera
may look towards different locations even if the robot
remains static. In order to feed the visual memory, an overt
attention algorithm has been designed to continuously guide
camera movements, choosing where to look at at every time.
It has been inserted inside the active visual memory
component and associates two dynamic values to each object
in memory: salience and life (quality). Objects with low
life are discarded and objects with high salience are good
candidates to look at.

The position of objects already in memory are themselves
foci of attention in order to refresh their perceived features.
Random locations are also considered to let the robot explore
new areas of its surroundings. In addition, new foci of
attention may also be introduced to check the presence of
some hypothesized objects. For instance, once the robot has
seen three vertices of a parallelogram, the position of the
fourth one is computed from the visual memory and ordered
as a tentative focus of attention for the camera.

Second, a vision based localization algorithm has been
developed in the localization component. It uses a
population of particles and an evolutionary algorithm to
manage them and find the robot position. The health of
each particle is computed based on the current image or
based on the current contents of the visual memory. The
local visual memory provides information about robot’s
surroundings, typically more than the current instantaneous
sensor readings. In this way, the visual memory may be
used as a virtual sensor and its information may be used
as observations for the localization algorithm. Because of its
broader scope it may help to improve localization, especially
in environments with symmetries and places that look like
similar according to sensor readings.

III. ATTENTIVE SHORT TERM VISUAL MEMORY

The goal of our visual memory is to do a visual tracking of
the various basic objects in the scene surrounding the robot.
It must detect new objects, track them updating its relative
position to the robot and remove them from the memory
once they have disappeared.

The first stage of the system is a 2D analysis, in which
2D segments in the current image are detected using the
Solis algorithm [Solis et al., 2009]. Then the system puts
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these objects in 3D space according to the ground-hypothesis,
assuming they all are flat on the floor, and stores them in
memory maybe merging with already existing 3D segments.

Each 3D visible object already stored in memory is
projected on the current image plane. The system re-
futes/corroborates such predicted segments, comparing them
with those extracted from current image. This comparison
leads to three sets of segments. First, in case of matching
the features of the stored 3D segment are updated taking
into account the new observation. Second, if a segment
is identified in the current image but does not match any
prediction, the system creates a new one in 3D. Before
inclusion in the 3D memory some post-processing is needed
to avoid duplicates due to noise in the images, for instance
comparing the relative position between segments, as well
as its orientation and proximity. And third, for predicted
segments not really observed in current image their quality
goes down and eventually will be removed from memory.

The memory content is a set of 3D segments situated on
the robot coordinate system as can be seen in Figure 2. In
addition, the memory can establish relationships between
them to make up more complex elements such as arrows,
parallelograms, triangles or other objects. The 3D analysis
of the angles formed by each segment provides information
about how the segments are connected to each other. This
feature can be used to merge incomplete or intermittent
segments. Similarly, we can extract the position of a possible
fourth vertex using the information about other edges and/or
possible parallelogram vectors. This capability makes our
algorithm robust against occlusions, which occur frequently
in the real world.

Fig. 2. Visual memory with 3D segments coming from four images of
robot surroundings

The objects may eventually disappear from the scene, and
then they should be removed from the memory in order to
maintain coherence between the representation of the scene
and the reality. To forget such old elements, we created the
life dynamics. Every time an object is observed in current
image, its life is increased, with a maximum saturation
limit. Life of unobserved objects decreases over time. It is
a measurement of the quality of the object estimation, the
inverse of its uncertainty. When the object’s life goes below

a given threshold it is simply discarded from visual memory.
This way, there is a need to periodically reobserve objects
to keep them alive in memory.

Life(t) =


min(MAXLIFE , Life(t− 1) + ∆)

if object observed
Life(t− 1) − 1

otherwise

We have designed a mechanism to control the camera
movements to track objects and explore unknown areas from
the scene. To control the movement of the pan-tilt unit, we
introduced the dynamics of salience and attention points.
Each memory element has a 3D position in the scene (XYZ)
and an associated salience that summarizes the system’s
desire to look at it. It grows over time and vanishes every
time that element is visited, following the next equation.

Salience(t) =

{
Salience(t− 1) = 0 if object attended
Salience(t− 1) + 1 otherwise

The point with highest salience will be the next to be
visited. If the salience is low, it will not be visited now. The
mechanical commands for the pan-tilt unit in order to look
at that location can be computed using inverse kinematics.
When the gaze-control module chooses a given object, it is
going to look at it for certain interval (3 seconds), tracking it
if it moves spatially. For this tracking, and to avoid excessive
oscillations, we use a P-controller to control the speed of
the pan and tilt and thus continually focus that object on the
image center.

Furthermore, it may be interesting to look for new objects
in the scene. For this our system periodically inserts scan-
ning points with high salience in memory. This search is
especially interesting at the beginning, when there are many
unknowns areas of the scene where the objects of interest
can be.

IV. EVOLUTIONARY VISUAL LOCALIZATION

We have designed a new approach to solve robot self-
localization specifically designed to bear symmetries. It is an
evolutionary algorithm, a type of meta-heuristic optimization
algorithm that is inspired by the biological evolution.

In this kind of algorithms, candidate solutions are so-called
”individuals”, which belong to a population that evolve over
time using genetic operators, such as mutation or crossover.
Each individual is a tentative robot position and is evaluated
with a quality function which calculates its ”health”, that
is, a measure to know how good its localization is with
regard to the optimal solution. We have defined two different
health functions, one based on instantaneous measures of
robot sensors and another one based on the visual memory
contents.

The main idea of the algorithm consists of keeping several
races competing among each other in several likely positions.
In case of symmetries from observations, we will create
new races on various positions where the robot might be
located. After some iterations, predictably, new observations
will provide information to reject most of races and we
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will obtain the real robot pose from the best race. On each
iteration the algorithm performs several steps:

• Health race calculation using the information obtained
after analyzing images

• Explorers creation: We spread randomly new individu-
als with the aim to find new candidate positions where
new races could be created.

• Races management: We create, merge or delete races
depending on their current state.

• Races evolution: We evolve each race by using genetic
operators. Besides, if the robot is moving, we update
all races taking into account this movement.

• After calculating each race health, we will select one of
them to set the current robot pose.

A. Health calculation from instantaneous images

In this version of the algorithm we analyze the current
image to obtain characteristic lines (Figure 3 (left)), with
the Solis line detection algorithm. Besides, we sample these
observed lines with points to make the comparison between
lines easier. All these selected sampling points will be used
as input data to calculate the health of each individual. In
addition, when computing the health of an individual placed
at certain location the theoretical observation is computed
using the map, projecting the map’s lines into the camera
placed at that location. It contains the lines the robot would
see if it were placed at that location (Figure 3 (right)).

Fig. 3. Lines detected in current image and theoretical image

The health of an individual placed at certain location is
computed comparing the theoretical set of visible objects
from that location (theoretical observation, Figure 3 (right))
with objects currently observed (real observation,3 (left)).
The more similar the predicted objects and the observed ones
are, the more likely such location is the correct one. We
cover all sampling points (N ) over the detected lines and
calculate for each one the Euclidean distance di in pixels
to the closest theoretical line with the same type than the
point. After calculating di for each point, we can compute
the health with the next equation, where M is a normalization
factor.

H = 1 −
∑N

i=0
di

N

M
(1)

B. Health calculation from visual memory

In case of using the visual memory we don’t need to
analyze each image, just the current visual memory contents
from the active visual memory component, that is, the
set of 3D segments inside, relative to our robot. So we can’t

compare lines in image as we did before. Besides, we have to
take into account that lines may not be detected completely
or they may be divided into several small lines. Thus, to
calculate the current health of an individual we cover all
lines belonging to the visual memory, for each line we get
its extremes and calculate the Euclidean distances djs and
dje to the closest theoretical line with the same type, that
is, similar to health function with instantaneous images but
in 3D. After calculating djs and dje for each line, we can
calculate the health as follows:

H = 1 −
∑N

i=0
(
djs

+dje
2 )

N

M
(2)

C. Race management and evolution

Since our algorithm handles several races at the same time,
we need to know when to create a new race, delete it, or
merge two races. Besides, our approach has a maximum
number of races N to keep computation time low enough.
A new race is created whenever we have new candidates
(coming from the explorers creation), whose health is better
than in our current races. Furthermore, races are merged
when they are very close to each other, and deleted if their
health is lower than a threshold.

In each iteration, each race evolves all its individuals
through three genetic operators, elitism (select the best ex-
ploiters), crossover (mix two explorers), and mutation (apply
a thermal noise). Besides, in case the robot has moved since
the last iteration, we apply a motion operator to all race
individuals and explorers using robot odometry.

V. EXPERIMENTS

To verify our different approaches of visual memory,
visual attention and visual localization, we conducted sev-
eral experiments. Our experimental real platforms were an
ActivMedia Pioneer 2DX robot equipped with a Logitech
Autofocus camera (2 mega-pixels) and a Nao Robot from
Aldebaran Robotics (v.3). Besides, we have used Gazebo 0.9
as robot simulator. All our experiments are implemented on
C++ under JdeRobot robotics software platform, which uses
ICE as a middle-ware.

A. Attentive visual memory

In the first experiment we want to show how the robot is
unable to navigate using only the instantaneous information
received from the camera. If robot only uses instantaneous
image while it is navigating through a corridor and it is
approaching a curve area, it is able to see just some lines
in front of itself (4-a), but with short-term memory it can
observe that the path in front of itself is a curve (4-b).

In the second experiment, the situation is presented to
solve a temporary occlusion. This happens very often in
real environments where there are dynamic objects which
can obstruct the robot field of view. After a few seconds,
robot has recovered environment information thanks to the
short-term memory and the visual attention system. This
information is showed in Figure 5-a. Then another robot
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Fig. 4. (a) Instantaneous field of view (b) Short-term memory

appears (Figure 5-b) occluding the field of view of our robot,
so it is unable to see anything. This situation is solved by our
system because of the persistence of the objects in the short-
term memory. As we discussed in section III, the memory
is refreshed over time. If it is inconsistent, that is, what the
robot sees does not match with the information stored in
memory, we give a confidence interval until this situation is
solved.

Fig. 5. (a) Short-term memory (b) Occlusion situation

Omnidirectional cameras or even wide-angle cameras can
also improve the instantaneous field of view of a conventional
camera (Figure 4). The main advantage of our technique
compared with them is that the active visual memory can
also solve occlusion situations (Figure 5) better.

B. Visual localization from current image

We have performed several experiments to validate the
evolutionary algorithm, especially with real robots. The
first experiment has been performed with a real Nao robot
travelling through a corridor (Figure 6).

This first experiment shows how the algorithm is able to
follow the real movement of the robot starting on a known
position. Once the robot is located in a known position,
we move the robot around the environment and measure
its localization error. The red line in Figure 7 shows the
calculated positions, the green line the real robot path, and
the brown area is the error measured. The average error
has been 15,4 cm, the algorithm is able to follow the robot
movement even when its instantaneous observations don’t
provide enough information thanks to robot odometry.

The second experiment (Figure 8) shows how the algo-
rithm works with symmetries and kidnappings. At (1.a), we

Fig. 6. Nao robot travelling a corridor for experiments

Fig. 7. Estimated localization and position error over time

locate the robot in front of a door, so the algorithm creates
several races where the robot may be, the algorithm selects
one of them (a wrong one) but keeps another one on the right
location, then the robot moves and obtains more information
from the world and finally rules the wrong location out and
selects the correct one (1.b). Afterwards, we kidnap the robot
to another location (2.a) and it takes a while until the robot
changes to the new right location. It happens because the
location’s reliability changes gradually to avoid changing
with false positives, but after a while, it changes to the
new position (2.b). A second kidnap is performed (3.a), this
case is similar to the first one, at first it selects a wrong
localization (very close to the correct one, 3.b), but after
some iterations it changes to the correct one (3.c).

The average error after selecting the correct race was 14,9
cm and 3,2 degs. The recovery time (the time spent until the
algorithm calculates a new plausible pose after a kidnapping)
was 29,6 secs.

C. Visual localization from visual memory

In this experiment, we tested our whole system including
visual memory, visual attention and visual localization on
the real Nao humanoid. Initially, the robot is located in
the middle of our department corridor gathering information
about its surroundings. It is able to move autonomously
around the corridor, moving its head and body in order to
detect all segments around it in a few seconds. Figure 2
shows some snapshot images taken in this experiment and
the short-term memory built with them. Figure 9 shows the
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Fig. 8. Position error over time

localization estimation obtained using that visual memory
contents.

Fig. 9. Localization calculated with visual memory

VI. CONCLUSIONS

In this paper a visual perception system for autonomous
robots has been presented. It processes the images from a
mobile camera and builds a short term local memory with
information about the objects around the robot, even if they
lie outside the current field of view of the camera. This
visual memory stores 3D segments and simple objects like
parallelograms with their associated properties like position,
uncertainty (inverse of life), color, etc.. It allows better
navigation decisions and even better localization as includes
more information than the current image, which can even be
temporary occluded.

An overt visual attention mechanism has been created to
continuously select where the mobile camera should look at.
Using a salience dynamics and choosing the most salient
point the system shares the gaze control between the need to
reobserve objects on the visual memory and the need explore
new areas, providing also Inhibition of Return.

We developed a visual self-localization technique that
uses an evolutionary algorithm. It keeps a population of
particles to represent tentative robot positions and the particle

set evolves as new visual information is gathered or with
robot movements. It has been especially designed to bear
symmetries, grouping particles into races. There is one race
for each likely position and inside it individuals do the fine
grain search. It can work both with just the current image or
the contents of the visual memory.

This visual perception system has been validated both on
real robots and in simulation. The memory nicely represents
the robot surroundings using the images from the mobile
camera, whose movement is controlled by our attention
mechanism. The memory is dynamic but have some per-
sistence to deal with temporary occlusions. The localization
works in real time, provides position errors below 15cm and
5 degrees and is robust enough to recover from kidnappings
or estimation errors in symmetric environments.

We are working in extending the system to stereo pairs and
dealing with objects at any 3D position, not just the floor. We
are also studying how to deal with more abstract objects like
tables and chairs into the visual memory. Regarding localiza-
tion we are working in introducing a monoSLAM EFK for
each race of the evolutionary algorithm and improve them
to extract localization information from abstract objects, not
only 3D points.
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