
12º WORKSHOP

ROBÓTICA
COGNITIVA

RoboCity2030

Universidad Nacional
de Educación
a Distancia
Julio 2013

Editores
Carlos Cerrada

José A. Cerrada
Enrique Valero

Ismael Abad

Robótica Cognitiva

Editores
Carlos Cerrada
José A. Cerrada
Enrique Valero
Ismael Abad

Editado: Universidad Nacional de Educación a Distancia
(UNED)

Madrid, Julio de 2013

Edita:
Universidad Nacional de Educación a Distancia (UNED)
Imprime:
Universidad Nacional de Educación a Distancia (UNED)

D.L. M-20260-2013
ISBN: 978-84-695-8175-9

CAPÍTULO 1

RECENT ADVANCES IN THE JDEROBOT
FRAMEWORK FOR ROBOT PROGRAMMING

JOSÉ M. CAÑAS1, MAIKEL GONZÁLEZ1, ALEJANDRO HERNÁN-
DEZ1 and FRANCISCO RIVAS1

1 Universidad Rey Juan Carlos, Spain

Most of the intelligence of cognitive robots lies on their software, the way
they manage knowledge and coordinate their sensing and actuation capa-
bilities. In the last years several frameworks have appeared that simplify
and speed up the development of robot applications. They favor the code
reuse and take benefits from modern software engineering techniques.

This paper presents recent advances in the open source robotics framework
Jderobot (http://jderobot.org). It is a distributed and component oriented
software architecture which uses explicit interfaces among components
and ICE as communication middleware. Jderobot provides many tools for
the programming of cognitive robots: a template for controller compo-
nents, visual Finite State Machine creation, a library for fuzzy controllers,
recording and replaying sensor data, etc. It also includes tools to use new
RGB-D sensors like Kinect or Xtion and support for the newest release of
Gazebo simulator, which is becoming a de facto standard. The main new
features and tools are described in detail.

Jderobot framework has more than 60000 lines of code and includes more
than 30 different components. Two recent improvements are related with a
better project management using CMake and simpler installation using
Debian packages. This software has been used for more than ten years in
research, teaching and commercial applications. More than one hundred
fifty different users, mainly robotic students and developers, have taken
advantage of it. Lessons learnt using this robot middleware are also sum-
marized in conclusions.

2 Robótica Cognitiva

1 Introduction

Most of the robot intelligence lies on its software. Once the robot sensor
and actuator devices are set, the robot behavior is fully caused by its soft-
ware. There are many different ways to program in robotics and none is
universally accepted. Some choose to use directly languages at a very low
level (assembler) while others opt for high-level languages like C, C++ or
Java.

Good programming practices are an emerging field in the software en-
gineer area but also in robotics. Several special issues of robotics journals
(ARS Special Issue on Software Development and Integration in Robotics,
2006), books on the topic have been published (Kernighan, 1999) and also
specific workshops and tracks have been created inside ICRA and IROS.
The Journal of Software Engineering for Robotics (www.joser.org) has
been promoting the synergy between Software Engineering and Robotics
meanwhile the IEEE Robotics and Automation Society (TC-SOFT) have
founded the Technical Committee for Software Engineering for Robotics
and Automation.

Compared with other computer science fields, the development of robot
applications exhibits some specific requirements. First, liveliness and real-
time processing: software has to take decisions within a fast way, for in-
stance in robot navigation or image processing. The second requirement is
about the software architecture; robot software has to deal with multiple
concurrent sources of activity, and so tends to be multitasking. Third,
computing power is usually spread along several connected computers,
and so the robotic software may be distributed. Fourth, the robotic soft-
ware typically deals with heterogeneous hardware. New sensors and actua-
tor devices continually appear in the market and this makes complex the
maintenance and portability to new robots or devices. Fifth, the robotic
software usually includes a Graphical User Interface (GUI), mainly for
debugging purposes. Sixth, the robotic software should be expansible for
incremental addition of new functionality and code reuse. Seventh, the
simulators are very useful in robotics software debugging.

Mobile robot programming has evolved significantly in recent years,
and two approaches are currently found. In the classical approach, the ap-
plication programs for simple robots obtain readings from sensors and
send commands to actuators by directly calling functions from the drivers
provided by the seller. In the last years, several frameworks (SDKs) have
appeared that simplify and speed up the development of robot applications,
both from robotic companies and from research centers, all of them with
closed and open source. They favor the portability of applications between

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 3

different robots and promote code reuse.
First, they offer a simple and more abstract access to sensors and actua-

tors than the operating systems of simple robots. Using the SDK hardware
abstraction layer it deals with low level details accessing to sensors and
actuators, releasing the robotics programmer from that complexity.

Second, the SDK provides a software architecture for robot applications.
It offers a particular way to organize code, handling of code complexity
when the robot functionality increases. There are many options: calling to
library functions, reading shared variables, invoking object methods, send-
ing messages via the network to servers, etc. Depending on the program-
ming model the robot application can be considered an object collection, a
set of modules talking through the network, an iterative process calling to
functions, etc.

Third, usually the SDK includes simple libraries, tools and common
functionality blocks, such as robust techniques for perception or control,
localization, safe local navigation, global navigation, social abilities, map
construction, etc. This way SDKs shorten the development time and re-
duce the programming effort needed to code a robotic application as long
as the programmer can build it by reusing the common functionality in-
cluded in the SDK, keeping themselves focused in the specific aspects of
their application. The robot manufacturers sell them separately or include
them as additional value with their own SDKs. For example, ERSP in-
cludes three packages in the basic architecture: one for interaction, one for
navigation and another for vision.

We present our open-source robotic software framework, named
Jderobot, which is component oriented, uses ICE as communication mid-
dleware and includes several useful tools and libraries. Several sensor and
actuator drivers have been programmed or reused from the open-source
community. This framework has been widely used in our group for re-
search and teaching for more than ten years. Jderobot has been designed
for scenarios with sensors, actuators and intelligent software in between.

The typical scenario is robotics, but also computer vision and home au-
tomation.

Why open-source in robotics research? It provides independence on ro-
bot manufacturers and so it may support robots from different companies.
With the freedom to use and modify the software its final quality does not
depend so much on the debugging speed of a single company. The distri-
bution of the source code makes (the distribution) debugging faster. In re-
search, algorithms and results can be replicated and compared. Standard
tools (for instance, simulators) and public access to sensor and data reposi-
tories (for instance, databases with input data and ground truth for robot

4 Robótica Cognitiva

localization), etc. help on this. This sharing makes the improvements come
more easily and speeds up the advances in the robotics community. In ad-
dition, one strong motivation is the feeling of contributing to the communi-
ty and returning the favor. We have extensively used open-source libraries
and tools in our research (OpenCV, Gazebo, GTK, etc.).

Jderobot has enhanced thanks, in a large part, to the robotics community
of the Universidad Rey Juan Carlos (Spain). New versions have been re-
leasing including new functionalities. The last version, which is the 5.1,
includes new applications, tools to facilitate and improve the management
and features to make easier both the use and installation to standard users
and also to developers. The new features to highlight on this version are
the support to newer versions of the Gazebo simulator. This support is im-
plemented by the gazeboserver driver which acts as an intermediary be-
tween the simulator and other applications though ICE interfaces. Another
improved component is introrob, a teaching tool successfully used in the
robotics subject in the Universidad Rey Juan Carlos.

Tools like CMake (see section 7.1) are also included in the new version
of Jderobot. The use of this powerful tool makes the compilation task of all
the framework libraries, components and interfaces so simple. In addition,
Jderobot has also a set of Debian packages allowing to the user to install
each of the components either individually (using atomic packages) or
jointly (using virtual packages).

2 Related works

Robotic frameworks can be grouped in two main paradigms, those tightly
coupled with a cognitive model in their designs and those designed just
from a pure engineering criteria. The first ones force the user to follow a
set of rules in order to program certain robotic behavior, while the second
ones are just a collection of tools that can flexibly be put together in sever-
al ways to accomplish the task.

Cognitive robotic frameworks were popular in the 90s and they were
strongly influenced by the Artificial Intelligence (AI), where planning was
one of the main keys. Indeed one of the strengths of such frameworks was
their planning modules built around a sensed reality. A good example of
cognitive frameworks was Saphira (Myers, 1998), based on a behavior-
based cognitive model. Even though the underlying cognitive model usual-
ly is a good practice guide for programming robots, this hardwired cou-
pling often leads the user to problems difficult to solve when trying to do
something the framework is not designed to do.

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 5

Key achievements of modern frameworks are the hardware abstraction,
hiding the complexity of accessing heterogeneous hardware (sensors and
actuators) under standard interfaces, the distributed capabilities that allow
to run complex systems spread over a network of computers, the multi-
platform and multi-language capabilities that enables the user to run the
software in multiple architectures, and the existence of big communities of
software that share code and ideas.

Current robotic frameworks focus their design on the requirements that
robotics applications need and let the users (the programmers) to choose
the organization that better fits with their specific application. Main re-
quirements driving the designs are: multi-tasking, distributed, easy to use
and code reusability. Another requirement, probably the main key, is the
open source code. That creates a synergy between the user and the devel-
oper.

That is why two of the most popular robotic frameworks in the last
years are open-source: Player/Stage (Gerkey, 2003) which has been the
standard de facto in most of the last decade and ROS (Quigley, 2009)
which is taking the place currently. As seen in other major software pro-
jects as GNU/Linux kernel or the Apache web server, to name but a few,
the creation of communities that interact and share code and ideas, could
be a great benefit to the robotic community. Main examples of open source
modern frameworks are the aforementioned Player/Stage and ROS. An-
other important example is ORCA (Brooks, 2005). We briefly describe
them.

There are other open source frameworks that have had some impact on
current the state of the art, like RoboComp (Cintas, 2011) by Universidad
de Extremadura, CARMEN (Montemerlo, 2003) by Carnegie Mellon and
Miro by University of Ulm. All of them use some component based ap-
proach to organize robotic software using ICE, IPC and CORBA, respec-
tively to communicate their modules.

We can find non open source solutions as well, like Microsoft Robotics
Studio or ERSP by Evolution Robotics. Those are also very powerful plat-
forms but their main disadvantage is just the open-source advantage: you
cannot share code with other robotics groups without a license of the cor-
responding software.

2.1 Player/Stage

This framework provides a robotics environment dividing it into two sides:
Player which is a robot device server and the multiple robots simulator

6 Robótica Cognitiva

named Stage. To support the development of robotic applications this suit
also includes several tools and libraries. Player/Stage has been the most
popular framework in the last decade with a big community giving support
and also developing a great collection of drivers and algorithms around it.
It is completely platform independent and most common programming
languages, like C/C++, Python or Java, are supported.

Player provides a network interface to the robot hardware through a col-
lection of standard interfaces that provides a hardware abstraction layer.
These standard interfaces are implemented by drivers, one for each differ-
ent hardware. Following this idea, the user only needs to know the stand-
ard way to use of each type of device not every device of every different
manufacturers or models. Player exports its devices through a standard
TCP network connection (other transport layers are available as well) ena-
bling the user to build distributed systems across a network of computers.
Even though, Player was not designed as a component based software, its
architecture employs many component based ideas. In addition to hard-
ware drivers, Player has a collection of algorithms like local navigation
algorithms, vision related algorithms or localization algorithms.

Stage is a 2D multiple robot simulator that can provide its simulated de-
vices through a Player server. There is a big variety of devices Stage can
simulate, like laser rangers, robotic platforms and cameras, to name a few.

The typical organization of a robotic application written in Player/Stage
is one or more client programs subscribed to a Player server which are
serving the robot hardware. Clients send and receive the data using the
known interfaces. So, we can say Player/Stage has a centralized architec-
ture, where Player server assumes the main role.

To implement a new functionality on the server side the user can write a
new driver which implements an interface. This is not usual due that de-
veloping on this side is a bit harder than on the client side.

2.3 ORCA

Another important example is ORCA which is a component based frame-
work released several years before ROS. ORCA is multi-platform and
multi-language as well. The aim of its developers was to increase the soft-
ware reuse among the robotic community, so they create a component re-
pository for robotics applications and they provide some of the needed
glue to connect them. In a previous version, they coded the middleware
that enabled components to communicate. Later, they realized that pro-
gramming a middleware was out of the range of their interests, besides
being a complex and time consuming task, so they replaced it with the pro-

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 7

fessional grade middleware Ice from ZeroC (Henning, 2004) that allowed
them to focus in the robotic problems. ORCA is the major source of inspi-
ration for the actual version of the Jderobot and some of its core compo-
nents are closely related to our framework.

2.2 ROS

ROS is one of the biggest frameworks nowadays. It was founded by Wil-
low Garage as an open source initiative. Currently, it has a growing com-
munity and its site hosts a great collection of hardware drivers, algorithms
and other tools. It is a multi-platform and multi language framework.

The main idea behind ROS is an extremely easy to use middleware that
allows connecting several components, implementing the robotic behavior,
in a distributed fashion over a network of computers using hybrid architec-
ture. ROS is developed under hybrid architecture by message passing and
RPCs. Message passing of typed messages allows components to share
information in a decoupled way, where you do not know which component
send you a message, and vice versa, you do not know which component or
components will receive your message. RPC mechanisms are available as
well. Resources can be reached through a well defined naming policy.

The ROS core libraries implement the communication mechanisms and
a set of tools to help with tasks as project management (CMake based),
system debugging and centralized logging. A set of official libraries im-
plements standard messages (sensors, geometry, action...), well known
robotic algorithms for navigation or sensor analysis, and powerful tools as
the Rviz 3D visualization environment for robots. A simulation environ-
ment is provided through the Gazebo 3D simulator, which started as part
of the Player/Stage project, but now is supported by Willow Garage.

A typical application written in ROS is a collection of components in-
teracting with each other (no server/client model) distributed among a
network of computational nodes. Often a user can just use some of the
components found in the ROS repositories, tweak some parameters and
make them interact with his own coded components.

3 Jderobot

The Jderobot platform is a component based framework that uses the pow-
erful object oriented middleware Ice from ZeroC as glue between its parts.
This important design decision allows Jderobot to run in multiple plat-

8 Robótica Cognitiva

forms and to be programmed with the most common programming lan-
guages (all the languages supported by Ice indeed). Jderobot components
can also be distributed over a network of computational nodes and by ex-
tension use all the mechanisms provided by Ice as secure communications,
redundancy mechanisms or naming services.

3.1 Design principles

Following current trends in robotic software engineering, we aimed to de-
sign a framework with these major requirements:

- Component based.
- Multi-platform and multi-language support.
- Distributed.
- Strongly typed interfaces.
- Open source.

The main unit is the component. A component is an independent process
which has its own functionality, although it is most common to combine
several of these in order to obtain a more complex behavior. There are
several types of components, according to the functionality of the compo-
nent could be classified in:

- Driver-components: offer to developers a HAL (Hardware Ab-
straction Layer) to communicate with the different devices that are
equipped by the robot (sensors and actuators).

- Tools-components: This kind of components uses the driver-
components to communicate with the robot (real or simulated) and
process the received data. Then the result of this process is sent to
the robot through the driver-component.

The communication between Jderobot components occurs through the
ICE (Internet Communications Engine) middleware. Using this concept,
Jderobot allows directly these components to be distributed as it uses the
network as a link. The ICE communication is based on interfaces. This
middleware has its own language named slice which allows the developer
to define their custom interfaces. Those interfaces are compiled using ICE
built-in commands, generating a translation of the slice interface to various
languages (Java, C++, Python…). This allows communication between

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 9

components implemented in any of the languages supported by ICE.
The entire configuration needed by the components is provided by its

configuration file.
Another important feature of Jderobot is the wide use of third party

software and libraries (all of them open source) which greatly extends its
functionality. Among them include: OpenCV for image processing; PCL
for point cloud processing; OpenNi for the RGB-D support, Gazebo as the
main 3D robot simulator and GTK+ for the GUI implementations. Besides,
Jderobot provides its own libraries which give to robotics commonly used
functionality for the developing of applications under this framework.

3.2 Open source project

As project, Jderobot stands out for being maintained by a community of
developers formed largely by the Robotics Group at the Universidad Rey
Juan Carlos. As a source of documentations, this framework has its official
wiki (http://jderobot.org/index.php/Main_Page) where everyone is able to
download the entire project. To complete the support, a mail list is also
available to interact with other developers.

Jderobot is a platform that has evolved significantly since its inception
and it is currently at 5.1 version. The following sections describe some of
the latest developments.

4 VisualHFSM and fuzzy controllers

There are many ways to organize the control and perception code on board
a mobile robot. One successful way is the Finite State Machines (FSM).
With them the robot behavior is defined by a set of states, each of which
performs a particular task. The robot can switch from one state to another
through transitions (conditions of stay or change), depending on certain
events or conditions, internal or external. A tool has been developed and
included in Jderobot to graphically design hierarchies of FSM, insert the
specific code of states and transitions, and automatically generate the com-
ponent source code in C++.

10 Robótica Cognitiva

Fig. 1. VisualHSFM Graphic User Interface

Another tool when programming cognitive robots is the fuzzy logic. It
allows programming the robot behaviors in terms of simple words and
rules which are close to the natural language. In Jderobot we have devel-
oped the Fuzzylib library to design and program fuzzy controllers. The
control rules are written in a file with simple rules like:

IF (left_obstacle_distance = small)
AND (advance_speed = high)

THEN (rotation_speed = right_high)

The fuzzy labels and variables are also described in such file following a
trapezoidal pattern and they are linked in the software to input and output
variables of the control program. The controller automatically fuzzyfies
the input variables, apply the rules and defuzzifies the output following a
Center of Mass combination.

5 Gazebo support

Gazebo1 (Koening, 2004) is the preferred simulator in Jderobot framework.
It is a 3D open source simulator which offers a rich environment to quickly

1 http://gazebosim.org

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 11

test multirobot systems and which simulates several robots and sensors
(such as cameras, laser, etc) in a realistic way. All simulated objects have
their own mass, velocity, frictions and numerous other attributes that allow
them to behave realistically when pulled, knocked over or pushed.

Fig. 2. Gazebo with Autonav robot.

Recently Defense Advanced Research Projects Agency (DARPA) an-
nounced its Robotics Challenge for disaster robots. The goal of this chal-
lenge is to develop ground robots capable of executing complex task in
order to extend aid to victims of natural or man-made disasters and con-
duct evacuation operations. Selecting Gazebo simulator as the standardized
simulation environment and will be provided by the Open Source Robotics
Foundation. The teams that do not want or cannot afford to build their own
robots will be able to prove themselves using Gazebo simulation environ-
ment and later may receive a real robot to use in the competition. The
choice of this simulator is successful since it has become a standard in one
of the main research project around the world.

Gazebo offers a big variety of sensors, actuators, robots, objects and
maps. Also it incorporate tools to design new elements, which integration
with the simulator is very simple. Fig. 2 shows a robot integrated in the
simulator. This robot is defined with a drive and steering wheel and three
sensors such as Kinect, laser and encoders. In the world files is possible to
define the simulated world and the different elements that defined the envi-
ronment. This allows creating a simulated world very close to the real en-
vironment where the robot is going to be deployed.

Jderobot 5.1 offers support for the last version of this simulator (Gazebo
1.8). It offers a driver-component call gazeboserver who intermediates be-
tween Gazebo and the components in Jderobot 5.1. The architecture of
gazeboserver is based on plugins. A plugin is a dynamic library load in

12 Robótica Cognitiva

execution time when the simulator starts. In each plugin, the functionality
of the different devices, what are contained in the robot, is defined. The
plugins that the simulator should load must be indicated in the configura-
tion world file.

Plugins are not only connected with the simulator, they also create an
ICE interface which allows communicating the simulator with Jderobot
components, sending or receiving information about the robot state. Fig.3
shows an example of a component connected with gazeboserver. We can
observe that the components of the system are connected to the platform
without taking into account if we are using a simulator or the real robot.

Fig. 3. ICE communication example between a component and Gazebo

6 Introrob component for teaching robotics

Introrob is a teaching tool that Universidad Rey Juan Carlos master stu-
dents use to develope their practice into the Robotics subject. This compo-
nent is connected to the Gazebo simulator using gazeboserver. The simu-
lated robot used with introrob is the pioner2dx with a set of sensors (laser
ranger, odometry and cameras) and actuators (motors, and cameras
Pan&Tilt).

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 13

Fig. 4. Introrob running on Gazebo

This component provides to the students a GUI (Fig. 4) where they can
find all the data collected from the sensor of the simulated robot. This GUI
also includes some features to make easier the debug of their own algo-
rithms. It also gives some functionality to teleoperate the robot using some
joysticks changing the linear and angular speed as well as changing the
cameras orientation. In addition, introrob shows a 3D viewer based on
openGL from which it is possible to perform certain interactions (change
the point of view, draw objects, etc…). This GUI also includes a play but-
ton to start a certain algorithm developed by the student.

For the algorithm developing, there is available a file called MyAlgo-
rithms.cpp which is launched when pressing the PLAY button. In this way,
the student can be abstracted from the rest of the application code and fo-
cus only on a single file. Besides, this file also contains a template with
examples that allows students to speed up their learning with the tool.

Introrob has also an own API that simplifies even more the developing
task to the students offering fully abstract functions. They do not need any
prior knowledge about the communications protocol nor data structure.
Some examples of this API functions are:

- setV(5): receives as a parameter the speed in mm/s and it is sent
to the robot.
- getLaser(): returns a 180 position vector with all the measure-
ments of the laser range scanner.

It also provides some graphical functions to simplify the visualiza-
tion of their algorithms results.

14 Robótica Cognitiva

- drawSphere(x,y,z): receives a 3D point and draws a sphere there
in the OpenGL world.
- drawSegment(p1,p2): receives two 3D points and draws a seg-
ment that joins them.

Fig. 5. Introrob execution flow

Internally, the architecture of this component is divided into two main
threads: control thread and GUI thread.

- Control thread: this thread asks gazeboserver for the data from
the sensors of the simulated robot and locates them in shared
memory. Then, it gets the data generated by the GUI thread from
shared memory and sends the corresponding orders to gazeboserv-
er.

- GUI thread: this thread is always taking the data allocated by the
control thread and displaying it in the GUI. Besides, it puts again

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 15

in shared memory the data generated, or by the user interaction or
their code, to send them to the simulator through the control
thread.

Students from Computer Vision (Master degree) use introrob to de-
velope algorithms oriented to the recognition of the environment using
cameras carried by a robot. Furthermore, Telematic and Computer Systems
(Master degree) students are focused on navigation algorithms with the
aim of recognizing and following a line drawn on the floor.

Fig. 6. Student's example algorithm

7 CMake and Debian packages

Jderobot 5.1 has new features that facilitate the management and mainte-
nance of the entire platform and its source code. On the one hand, Jderobot
includes the new CMake tool that lets you build simply the entire source
code of the platform. On the other hand, it also has a set of Debian packag-
es to simplify the Jderobot installation, both the platform itself and all their
third part dependences. These packages are available for the two Linux
distributions: Ubuntu 12.04 and Debian Wheezy, both for the 32 bits ver-
sion.

7.1 CMake

CMake is a build software tool that makes easier the multiplatform code
compilation both for users and developers.

At the user level, a feature that highlights is the information it provides
about what is happening during the compilation process. This helps the

16 Robótica Cognitiva

user to resolve any problems that arise. But mostly, the main advantage
using CMake is its easiness. To compile a whole project (regardless of the
complexity or size) the user has only to execute two commands: cmake
and make.

At developer level, CMake provides agility when adding new items to
project and it needs too few configurations to compile and link a lot of
software.

The CMake configuration is based on CMakeLists.txt files. These files
include everything needed to build the code. The designed solution in
Jderobot divides its configuration into two different types of CMakeLists
files:

- Type 1 or primary: these files are used directly from the cmake
command and are the responsible for initiating the process of
building. Into them are defined common characteristics for all el-
ements to be compiled and linked (libraries, interfaces and execut-
ables).
- Type 2 or secondary: these files are called by other primary files
and/or secondary files recursively. They define the relevant data of
each element, such as:
+ Source files.
+ Dependences.
+ Location of the dependences (both, headers and libraries).

Following this design, Jderobot 5.1 offers the user three different ways
to build the code:

- Compilation from the trunk. The compilation process is initiated
by the main CMakeLists.txt located at the top of the trunk project
directory. This will build all components, libraries and interfaces
of the platform.
- Compilation by components. This second way allows the users
not to build all the elements, but those they only need. To do this,
the compilation must to start from the main CMakeLists.txt file lo-
cated in the /build directory of the wanted component. This meth-
od requires that the directories hierarchy of the platform has to be
respected. This is because the paths used for dependency resolu-
tion are defined relatively.

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 17

- Independent compilation. This allows the user the ability to
download only the source code of a particular component and
build it without downloading the entire tree directory of the whole
platform. In this case, the prerequisite to build the executable is
that the users must have installed on their computer all the libraries
on which the component depends.

7.2 Debian packages

Debian packages are compressed files that contain the elements to install
on our computer, information on how and where to be installed and infor-
mation about their dependencies.

There is much heterogeneity among the different systems of students
and Jderobot users. This complicates the installation of software consisting
of a large number of applications which depends in turn on external soft-
ware. Debian packages facilitate this task by reducing installation to sim-
ple commands allowing the user to have all the necessary software auto-
matically.

For the management and installation of Debian packages, there are tools
like apt or aptitude. Using these commands any user can download and
install a package from a repository, resolve its dependencies or uninstall it
very easily later.

These tools enhance the user's first experience with the platform, mak-
ing friendlier their first contact with it.

Fig. 7. Jderobot package design

18 Robótica Cognitiva

Packet structure designed for Jderobot 5.1 (Fig. 8) is divided into:

- Atomic packages. Jderobot has a package for each of the compo-
nents (jderobot-componentN) and libraries (jderobot-libraryN) that
make up the platform. This allows the users to install, individually,
those parts their want to use or develop.

- Third part packages. To make easy the installation, not only the
components but the entire external software, Jderobot includes
Debian packages for that software used by the components and
which is not officially available in the repositories (Ubuntu 12.04
or Debian testing).

- Virtual packages. Virtual packages are packages that do not con-
tain the elements to be installed in our system, but information
about which atomic packages should be installed when you install
one of them.
Jderobot 5.1 has different virtual packages that encapsulate:

+ Libraries: All Jderobot libraries are grouped into the virtual
package jderobot-libraries.
+ Driver-components: jderobot-drivers.
+ Tools-components: jderobot-tools.
+ Components with related functionality, as teaching-robotics
which includes introrob, gazeboserver and gazebo.
+ jderobot package. This installs all atomic packages and third par-
ty software packages that make up the entire platform.

8 Conclusions

We have presented the Jderobot open-source framework for programming
cognitive robots. We have used it in teaching, development of robotic ap-
plications and research for more than 10 years. Its software architecture is
based on distributed components using the network as communication
link. It provides several drivers for accessing different sensors, actuators
and robots like Pioneer2DX or Nao humanoid. It also includes a powerful

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 19

set of tools and libraries that speed up the creation of new robotics applica-
tions. In this paper we have described the main new features developed for
the Jderobot-5.1 release.

First, some cognitive tools have been incorporated to the framework.
The visualHFSM provides a tool for generating robot behaviors using hi-
erarchical Finite State Machines. It lets the programmer to focus on the
behavior logic, in terms of states and transitions, more than on implemen-
tation details. Most of the final control code is generated automatically by
visualHFSM using an automata template and an abstract description of the
FSM. Another cognitive tool incorporated is the fuzzy library that eases
the programming of fuzzy controllers.

Second, we have improved the connection between Jderobot and the lat-
est releases of the Gazebo simulator. This open source simulator is becom-
ing a de facto standard after the ROS developer team chose it as its refer-
ence simulator. More recently DARPA chose it for the first stage of the
DARPA Robotics Challenge. We have developed a set of new Gazebo
plugins that provides the standard Jderobot interfaces to sensors and actua-
tors in the simulated world. The model of a brand new robot has been also
created in the new Gazebo.

Third, we have improved the Introrob component that we use in robotics
teaching. This Jderobot component is the base for the practices of students
from several engineering and master courses. More than two hundred stu-
dents in the last years have used Jderobot in the last years. They serve as
testers giving feedback of the performance of the framework to the devel-
opers and providing experimental validation to the system. The specific
Introrob component hides some of the complexity of robot programming,
and so the students take shorter time to start using the framework, focusing
on the robotics algorithms and techniques more than on the platform itself.

And fourth, we have changed two issues of the infrastructure of the
whole Jderobot as a software project. We distribute it now as debian pack-
ages, both for Debian Linux and Ubuntu LTS. The creation of debian
packages makes easier the installation and management of the platform.
We have created atomic packages for each Jderobot component, library or
tool. We have also prepared several virtual packages that include those
atomic packages that make sense together. In addition, the last Jderobot
release uses CMake as the project compilation tool, making simpler the
inclusion of both new components and libraries. It has been an improve-
ment from the previous compilation tools, automake and autotools, which
are more complex.

We are currently working on several lines to extend Jderobot. First, to
improve the use of ICE advanced capabilities like Icestorm and Icebox to

20 Robótica Cognitiva

take benefit of them. Second, on the integration of the new RGB-D com-
mercial sensors (Kinect, Xtion, Primesense sensor) which will boost the
developing of reconstruction and localization applications using point
cloud information. Third, to give additional functionality to the Gazebo
simulator, adding complete models of the Nao humanoid and RGB-D sen-
sors. Fourth, to create tools like ROS’s Bags. This kind of applications
provides the developers the ability to record logs of scenarios to recreate
them later. This feature gives the ability to prove different algorithms on
exactly the same data source. Finally, we want Jderobot applications to be
easily interactive with regular web browsers and other frameworks. With
this concept, human users could easily modulate the applications on real
time or see their processing outputs, even in embedded and screenless sys-
tems. In addition, Jderobot applications could easily be integrated with
other existing frameworks. We are exploring new generation webservices
like API-REST for this. Nevertheless these extensions, the framework is
stable and with enough functionality. The main efforts will be devoted to
extensively use it for research more than to expand it.

References

Brooks A., Kaupp T., Makarenko A., Williams S. and Orebäck A. 2005.
Towards component-based robotics. IEEE/RSJ International Conference
on Intelligent Robots and Systems, (págs. 163-168).

Cintas R., Manso L., Pinero L., Bachiller P. and Bustos P. 2011. Robust
behavior and perception using hierarchical state machines: A pallet
manipulation experiment. Journal of Physical Agents , 35-44.

Galvan S., Botturi D., Castellani A. and Fiorini P. 2006. Innovative
Robotics Teaching Using Lego Sets. EEE International Conference on
Robotics and Automation Orlando. Florida.

Gerkey B.P., Vaughan R.T. and Howard A. 2003. The player/stage project:
tools for multirobot and distributed sensor systems. Proceedings of the
11th International Conference on Advanced Robotics ICAR-2003, (págs.
317-323). Coimbra (Portugal).

Henning, M. 2004. A new approach to object-oriented middleware.
Internet Computing, IEEE , 66-75.

RECENT ADVANCES IN THE JDEROBOT FRAMEWORK FOR
ROBOT PROGRAMMING 21

Hunt A. and Thomas D. 1999. The pragmatic programmer: from
journeyman tomaster. Boston: Addison-Wesley Longman Publishing Co.,
Inc.

Kernighan B.W. and Pike R. 1999. The Practice of Programming.
Addison-Wesley Professional Computing Series.

Koening N. and Howard A. 2004. Design and use paradigms for gazebo,
and open-source multi-robot simulator. In proceedings of 2004 IEE/RSJ
International conference on Intelligent Robots and System. Senday
(Japan).

Konolige K. and Myers K.L. 1998. Artificial Intelligence and Mobile
Robots: case studies of succesful robot systems. En R. P. In David
Kortenkamp, The Saphira architecture for autonomous mobile robots
(págs. 211-242). MIT Press, AAAI Press.

Montemerlo M., Roy N. and Thrun S. 2003. Perspectives on
standardization in mobile robot programming: the Carnegie Mellon
navigation (CARMEN) toolkit. Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS-03),
volume 3, págs. 2436-2441.

Quigley M., Conley K., Gerkey B., Faust J., Foote T., Leibs J., Wheeler R.
and Ng A. 2009. Ros: an open-source robot operating system. ICRA
Workshop on Open Source Software .

