
RoboCity2030

Javier Fdez. de Gorostiza
Eduardo Silles

Sonia Mata
Miguel Ángel Salichs

Carlos Balaguer

Editores:

Universidad Carlos III de Madrid          Marzo 2013

11º WORKSHOP

ROBOTS SOCIALES



Edita: Universidad Carlos III de Madrid
Imprime: 
Depósito Legal: M-7239-2013 
ISBN: 978-84-695-7212-2 



CAPÍTULO 5 

Programming a Humanoid Social Robot Using 
the JdeRobot Framework 

B. MENÉNDEZ1, J. M. CAÑAS2, E. PERDICES3, J. VEGA4,                   
R. SALAMANQUÉS5, F.RIVAS6, F.MARTÍN7  

Robotics Group, Universidad Rey Juan Carlos. 
1b.menendez.moreno@gmail.com,  2jmplaza@gsyc.es,
3eperdices@gsyc.es, 4julio.vega@urjc.es, 5rubensalamanques@gmail.com, 
6franciscomiguel.rivas@urjc.es,7fmartin@gsyc.es 

Social robots awake great research interest as there are many potential ap-
plications in this field where robots can be beneficial. Humanoid robots are
good platforms for social applications as their appearance facilitates their 
acceptance and natural interaction with humans. The Aldebaran's Nao is a
cheap and robust humanoid platform which was chosen by the RoboCup
Standard Platform League and has spread over many research centers in 
last years. We have developed a RoboTherapy software application for this
humanoid, which has already been utilized in the therapy of real dementia 
patients. This paper shows three different frameworks that we have used to
program it: the manufacturer's middleware, NaoQi, and two frameworks 
developed at our group: BICA and JdeRobot. In particular, we describe in
detail the last one including several tools specifically developed to simpli-
fy the programming of this social robot (like its support in Gazebo) and al-
so including some of our research in enabling technologies like walking 
gaits, visual localization and visual memory, that can be used in new hu-
manoid applications.  

1 Introduction 

One field of growing interest in robotics is humanoids. Prototypes such 
as the Honda Asimo or the Fujitsu HOAP‐3 are the basis for many re-
search efforts, some of them designed to replicate human intelligence and 



72      Robots sociales

manoeuvrability. Their appearance, being similar to people, facilitates their 
acceptance and natural interaction with humans as a personal assistant in 
the field of service robotics. As a representative sample, the functionality 
achieved in the Asimo humanoid has progressed significantly in recent 
years, allowing it to run, climb stairs, push carts and serve drinks. 

QRIO humanoid robot was created by Sony but was never sold to the 
general public. A few years later came the Nao robot, replacing the quad-
ruped AIBO from Sony in the RoboCup Standard League. Both robots,
QRIO and Nao, have a height of about 60 centimeters, being a bit lighter
Nao than QRIO (4.3 kg versus 7.3 kg, respectively). One new example of 
humanoid is Roboy3, which will be presented in early March-2013. It has 
been developed by the Artificial Lab of the University of Zurich and its 
purposes will be helping with housework, job security, cleaning or even
robotherapy in hospitals. Its creators also plan to use it as a service robot to
help elderly or disabled people, thanks to its powerful autonomous behav-
ior set. 

One increasing application field of robotics is medicine. Beyond 
DaVinci robot used in surgery, there are also examples of robots used with
elderly and in therapy for dementia patients. For instance, Paro is one ther-
apeutic robot that has the form of a harp steal, intended to have a calming 
effect on and elicit emotional responses in patients of hospitals and nursing 
homes. This harp steal robot can be used with disabled or autism patients; 
it succeeded in reducing the stress of both patients and their caregivers, 
stimulating the interaction of the people.

Helping the humans suffering some type of dementia is a growing target 
market for robotics. Estimates point that by 2016 there will be 26.6 million 
people worldwide with Alzheimerʹs disease, and this figure will be three 
times bigger by 2050 when Alzheimer�s will affect 1 in 85 people of the 
total world population. In addition, 40% of them will be in an advanced 
state of disease, requiring a level of care that involves high consumption of
resources (A. Tapus, 2009). Neurodegenerative dementia is a disease that 
progressively deteriorates brain functionality. One of its most common
symptoms is memory loss. In addition, patients usually lose the ability to
solve problems or control their emotions and present changes in personali-
ty and normal behavior. Current therapy aims to practice and stimulate the
cognitive abilities of the patients to slow down the advance of the desease.

When interacting with people, robots should include strong social capa-
bilities. Maggie robot (González, 2008), from Universidad Carlos III, is
another example of social robot. It is able to interact with humans through
its speech recognition, being also able to speak. It also offers facial recog-

                                                     
3 http://www.roboy.org 



Programming a Humanoid Social Robot Using the JdeRobot Framework      73

nition and can even feel when is touched. All these characteristics make
this robot a very good candidate to work in robotherapy. Maggie can help 
visually impaired people reading books, navigate accompanying a person 
or act as playmate.

Regardless the final application, robot's hardware is composed of sen-
sors, actuators and one or more computers. Their intelligence, behavior 
and capabilities mainly lie on its software (Brugali, 2007) on what they 
have been programmed to do. Some years ago the robot applications were 
typically developed using the manufacturer drivers to the sensors and actu-
ators, usually over a specific operating system. In the last years general 
operating systems have been incorporated to the robots and several pro-
gramming frameworks have been created to make simpler the development
of robot applications (José M. Cañas, 2007).

Player/Stage, ERSP from Evolution Robotics, OROCOS, ORCA [(A. 
Makarenko, 2006), (A. Brooks, 2007)], ARIA from ActivMedia Robotics, 
Microsoft Robotics Studio (J. Jackson, 2007) and ROS4 (Robot Operating 
System (M. Quigley, 2009)) from WillowGarage are some succesful 
frameworks. Maybe ROS has become a de facto standard. Some of them 
were created in private companies and others in research centers. Most of 
them are open-source. These platforms tipically provide (1) a Hardware
Abstraction Layer for accessing to robot sensors and actuators, (2) a par-
ticular software architecture for the applications and (3) tools, libraries and 
software modules with common functionalities for developers. They fa-
vour code reuse speeding up the development time for new applications 
and reducing programming errors. 

One common tool for robotics engineers are simulators. They allow test-
ing the software on simulated environments and debug it before probing it
on the real robots. Some of them only support 2D worlds; others fully sup-
port 3D worlds, complex sensors like cameras, laser, etc. and different ro-
bot geometries and platforms. Webots, Stage (Brian P. Gerkey, 2003), Ga-
zebo5 (Howard, 2004), V-REP, Morse (G. Echeverria, 2011) and
USARsim (S. Carpin, 2007) are some successful simulator examples. 

In this paper we present the Nao humanoid as a social robot, describe 
three frameworks that we have used to develop applications for it, includ-
ing their relevant tools and some lessons learnt. All of them are component
oriented frameworks which allow the robot programming in C++. First, 
NaoQi is the manufacturer's environment. Second, BICA platform has 
been developed at Universidad Rey Juan Carlos (URJC) and it has been 
used to develop the Nao RoboTherapy application, which has been used

                                                     
4 http://www.ros.org 
5 http://gazebosim.org 



74      Robots sociales

with real dementia patients in collaboration with medical experts at the 
Neurological Desease Researh Center (CIEN, Centro Investigación de
Enfermedades Neurológicas). And third, we will make emphasis on the
JdeRobot framework. It was developed at URJC for programming of sev-
eral sensor and robot platforms. Its support for the Nao robot has been de-
veloped, several tools and components with enabling functionalities have 
been created and can be reused in new Nao applications. 

The remainder of this paper is organized as follows. The second section 
exposes how to program the Nao humanoid using the manufacturer's plat-
form. The third section presents RoboTherapy application and the BICA 
framework. The fourth section describes in detail the JdeRobot framework 
and its tools to develop applications for the Nao robot. Finally some con-
clusions are summarized. 

2 Nao robot and NaoQi 

The Nao robot is an autonomous, programmable and medium size robot,
developed by the French company Aldebaran Robotics, based in Paris. On 
2008 Nao replaced the robot dog Aibo from Sony as the official platform 
for the RoboCup Standard League. Since then the Nao platform has been
continuouly improved, both in hardware and software, in part due to the 
feedback provided by its intensive use at RoboCup. Today there are two 
models of Nao, one designed for use in the RoboCup and a second type,
which includes gripping capabilities in both hands, for universities and ac-
ademic purposes.

Its main features are:
  58 cm tall. 
  4.3 kg weight. 
  Autonomy of 45 minutes (15 minutes walking).
  Degrees of freedom: 21 to 25. 
  CPU: x86 AMD Geode at 500 MHz.
  Ethernet, WiFi. 
  Inertial sensor. 
  4 ultrasonic sensors. 
  4 microphones, 2 Hi-Fi, 2 CMOS cameras. 
  Voice synthesizer.



Programming a Humanoid Social Robot Using the JdeRobot Framework      75

Figure 1: Nao hardware

One way to program the Nao robot is with the manufacturer's platform, 
named NaoQi. The Nao robot runs on the Linux platform and the NaoQi 
software development kit provides the ability to program it in C, C++, Ru-
by and Urbi. It is available for both Windows and Linux. This develop-
ment kit is compatible with the Webots simulator from Cyberbotics. 

This SDK is based on a client-server architecture where NaoQi itself 
acts as a server. NaoQi bases its programming architecture in separate 
modules called Brokers, which are executable programs connected via IP
address and port. All these new Brokers are connected to a main Broker 
called MainBroker, as shown in Figure 2. This architecture allows to exe-
cute some code on the robot and some on remote machines. 

Some of the modules used for programming social robots offered by
NaoQi are:

 ALCamera: this module is responsible for communication with
both cameras of the robot. Without access to the two cameras 
simultaneously is also responsible for managing the switch be-
tween cameras, and all the camera settings. 

 ALMotion: this is the module responsible of robot's locomotion. It
is responsible for the control of Nao movements, providing
simple functions for controlling the actuators in space, the han-
dling of center of mass and high-level motion such as: 10 cm 



76      Robots sociales

walks straight. This module offers different possibilities for the 
following features: 

Solving the kinematic model of the robot. 
 Controlling the robot joint space.
 Control the orientation of the torso.
 Control the center of mass.
 Create and control patterns. 
 Controlling parameters of the physical components of the 

robot, such as stiffness of the joints. 
This module gives access to gaits offered by the manufacturer, 
which are basically four: Straight line walking, Circular walk-
ing, Sideways walking and Turn on himself. In all cases, the 
walking speed is not set following a temporal-space parameters,
but in the time it takes for the robot to take a step. 

 ALMemory: event-based memory, used primarily to read sensor 
values. This implementation is very useful because it is capable
of generating events or notifications whenever a stored value is
modified. 

  ALTextToSpeech: voice synthesizer module. 
  ALSonar: module that provide access to the ultrasonic sensor. 

The NaoQi SDK includes some relevant tools like Coreographe, which 
allows the definition of new movements, decomposing the robot motion in
sequence of several joint movements. 



Programming a Humanoid Social Robot Using the JdeRobot Framework      77

Figure 2: NaoQi software architecture using Brokers

3 BICA framework and the RoboTherapy application 

The Robotics Group of URJC created a programming framework to devel-
op autonomous applications for the Nao robot. It is named Behavior‐based 
Iterative Component Architecture (BICA) (F. Martín, 2010), and has been 
used in research for several years around the RoboCup scenario, in teach-
ing robotic courses.

BICA has been also used as the software base for the RoboTherapy ap-
plication (F. Martín, 2013). In this application, developed in collaboration
with medical experts at CIEN, the Nao robot has been used with real de-
mentia patients in their therapy sessions. The main purpose of this pilot 
study is to test the use of the humanoid as a cognitive stimulation tool. The 
robot behaviors in therapy sessions are described mostly as a sequence of 
basic movements, music or text playing and light turning on-off opera-
tions. A file format syntax has been created to store these behavior descrip-
tions (session scripts). Some specific components inside BICA have been 



78      Robots sociales

developed, like one that runs session scripts or another that provides access
to robot lights from the application software. In addition, some specific 
tools have also been created: a session script generator that allows easy 
and visual "programming" of robot behavior in therapy sessions, and the
session monitor tool that helps the human therapist to control the session 
progress. They are all described in this section. 

3.1 BICA Architecture 

The software of our humanoid robot is organized as behavior‐based archi-
tecture. It is implemented in component‐oriented software architecture 
programmed in C++ language. Components are independent computation
units which periodically execute control iterations at a pre‐configured fre-
quency. Every component offers an explicit interface to modulate its exe-
cution and to retrieve the results of its computations. 

Some disadvantages of NaoQi are that module communication using 
SOAP was too slow for our requirements, and we did not find an efficient 
way to program the iterative nature of our Nao applications. BICA was 
created to overcome these limitations. 

Behaviors in BICA are defined by the activation of perception compo-
nents and actuation components. Actuation components take movement
decisions, send commands to the robot motors, or locomotion system, or 
activate other actuation components. They run iteratively to periodically
update their outputs. Perception components take data from the robot sen-
sors or other perception components and extract information. They basical-
ly provide information to the actuation components. The output of a per-
ception component is refreshed periodically and can be read from many 
other components in the system.

Beyond being a framework to integrate perceptive and actuation capa-
bilities for autonomous behaviors, the BICA architecture also includes
components that provide access to the basic sensors and actuators of the 
robot, a Hardware Abstraction Layer (HAL) for robot applications (Body, 
Head, Music and Led components). BICA is built on top of NaoQi and 
offers this HAL as a set of object method invocations. 

In addition, BICA offers some tools for creating and debugging soft-
ware components. For instance, the JManager tool allows to manage from
an external computer the set of active or inactive components onboard the
robot, and to monitor them in real time displaying their results. The Vicode
tool allows the graphical definition of automata for robot behavior, and it
automatically generates the corresponding BICA component in C++. More
details of the architecture and its tools can be found at (F. Martín, 2010).



Programming a Humanoid Social Robot Using the JdeRobot Framework      79

3.2 RoboTherapy application 

A high level language has been developed to describe the robot behaviors
in the RoboTherapy application. They can be stored in text files following
a given syntax and read from them ‐ they are called session scripts. The 
language includes three basic instructions: move, music and light. Two or 
three basic operations of different type can be grouped together, in group
instructions, to be executed simultaneously. The robot behavior is a se-
quence of basic instructions and/or group instructions. In the script some
synchronization points can be included to wait for the termination of all
the basic instructions inside a group. In addition, the wait instruction caus-
es the robot to stop execution until the human therapist provides the con-
tinue order, striking one button on the robot body or by using any monitor-
ing tool. This allows the human therapist to control the session progress.

Figure 3: Session script generator

The scripts are generated and stored in text files. Their contents are de-
signed by medical doctors and health assistants, attending to the desired 
stimulation in the dementia's patients. At the beginning they were created 
by directly editing text files, however more recently we have developed a
graphical tool, the session script generator (Figure 3), that allows a fast and 
visual creation of these scripts. 

One specific component has been developed inside BICA for the
RoboTherapy application, Movie component. It accepts session scripts as 
input and runs the corresponding orders to robot motors and actuators, at 



80      Robots sociales

the proper timing, unfolding the specified robot behavior. It uses several
HAL components available in BICA, like the Body, LED, Music and 
Head components. 

The therapist needs a way to communicate with the robot, for instance, 
to start a RoboTherapy session, to stop its execution while the patients an-
swer one of the robot questions, to repeat any script step, among other
tasks. The basic interface with the real robot was the set of buttons on the 
humanoid's feet and chest. At the beginning these buttons were used, but 
we developed two session monitor applications to allow an easier way to 
control the robot.

The first session monitor is an application running on a regular comput-
er. It offers a GUI with sliders, selectors, visual buttons, etc. This allows 
the teleoperation of the robot body and head, so that the robot can ap-
proach the patients at the beginning of the sessions, for instance. It can be
operated from an external computer or used in conjunction with a
Wiimote. This Wiimote device is more convenient than the regular screen,
keyboard and mouse configuration. In this case the session monitor reads 
the therapist's orders from the Wiimote buttons and accelerometers using 
Bluetooth.

In order to improve the tool usability, a second session monitor has been 
created. It runs on mobile devices like Android tablets or smartphones. 
With it the human therapist has full control of the progress of the therapeu-
tic session without requiring any neither extra computer nor Wiimote, just
the robot and the tablet or smartphone. 

4 The JdeRobot tools for Nao programming 

The third way to program the Nao robot that we have used is JdeRobot6. It 
is an open source software framework for robotic, computer vision and
home automation applications created by Robotic Group of URJC. Robotic
applications inside JdeRobot are a set of components that run simultane-
ously in parallel as individual processes. They perform simple specific 
tasks and interact with each other. The concurrent execution of multiple
components results in a behavior. JdeRobot uses ICE as communications
middleware between these components, which can be written in different 
programming languages (C++, Java, Python...) and run on distributed ma-
chines. 

                                                     
6 http://jderobot.org 



Programming a Humanoid Social Robot Using the JdeRobot Framework      81

In this section we are going to present some specific components and 
tools developed for the Nao humanoid: NaoServer and the Nao support 
in Gazebo, an evolutive algorithm that learns motion gaits for the human-
oid, the Recorder and Replayer tools to store and replay sensor data, 
the VisualHFSM tool to create Nao behaviors as hierarchical finite state
machines, a component to teleoperate the humanoid from a smartphone,
the VisualMemory component that builds a persistent local map from 
the images of the Nao camera and the VisualLocalization compo-
nent that estimates the humanoid position inside a map using the images 
from its camera. The two last components include enabling technology that
can be used in new Nao applications. 

4.1 Real robot driver NaoServer 

NaoServer is the JdeRobot component that provides access to sensors 
and actuators from other application components. It may serve several 
connections at the same time. It periodically makes calls to NaoQi API to
query for sensor data and to send orders to the Nao actuators, and it offers 
a set of ICE explicit interfaces to receive sensor queries or motion com-
mands from other JdeRobot components. It provides the following inter-
faces:

 Camera: for camera descriptions and the possibility of start and 
stop the streaming. 

 Motors: it provides the motion interface. Instead of using an inter-
face for each humanoid joint an abstract motion interface has 
been preferred, with three attributes: v for translation speed of 
the robot, w for rotation speed of the robot and l for side speed. 
This abstract interface has been matched to the corresponding 
walking gait offered by NaoQi. 

 Pose3DEncoders: it provides position data of the head, its pan and
tilt. 

  Pose3DMotors: it provides motion orders to the head.
Exactly these interfaces have been also used with different robot plat-

forms like the Pioneer from ActivMedia. This way some tools like the im-
age monitorization tool (CameraView component) can be used with both
robots without any change in code. The images come from the same inter-
face, but provided by different servers.



82      Robots sociales

4.2 Gazebo support for Nao 

Gazebo is an open source 3D simulator that provides an environment to
test and develop multi-robot systems quickly and even cameras that simu-
lates realistically. It was born in the project Player/Stage (B. Gerkey, 2007) 
and WillowGarage has recently centralized its development as an auxiliary 
tool for ROS, becoming as an independent project. It integrates ODE phys-
ics engine, OpenGL rendering and support code for sensor simulation and
actuator control.

The reference simulator for Nao with NaoQi and BICA frameworks is 
Webots from Cyberbotics. We wanted to avoid this dependence on propri-
etary software, so we developed a Gazebo plugin for the Nao robot. It in-
cludes the humanoid mechanical parts, with their weights and sizes, the
joints and one camera sensor on the Nao head. It also includes the corre-
sponding skins matching the real appearance of the robot. Figure 4 shows
two instances of a Nao simulated in Gazebo with and without its skin.

           
                          (a)                                                    (b)

Figure 4: Nao robot in Gazebo (a) without skins and (b) with skins 

In addition, the GazeboServer component has been extended to pro-
vide ICE interfaces to the simulated Nao. Initially GazeboServer was
created for the support of simulated Pioneer robot, but it has been im-
proved and now includes the same interfaces offered by NaoServer. The 
underlying code under the abstract motion ICE interface, motors, now



Programming a Humanoid Social Robot Using the JdeRobot Framework      83

moves the simulated joints. This way, the humanoid application can be 
tested seemlessly both on real robot (using NaoServer) and on the simu-
lated Nao in Gazebo (using GazeboServer). 

4.3 Walking gaits for Nao 

Despite major advances in humanoid robots, locomotion of these is still an
open problem, while still far from the flexibility, robustness and plasticity 
of natural movements of people. Generating ways of walking in humanoid
robots is part of a more general problem: the coordination of N articula-
tions. We currently use the locomotion subsystem provided by NaoQi, but
we have also created an algorithm that explores the space of possible walk-
ing gaits for the humanoid and finds good ones to be used as locomotion
subsystem in Nao applications. 

The most widely used technique for humanoid locomotion has been for 
many years the ZMP (Zero Moment Point), which calculates the trajectory 
of the center of mass for the walk is stable. Complex robots as ASIMO or
HRP use this algorithm. However, to operate properly it is necessary to
perform a very accurate modeling of both the robot and actuators. There-
fore, more and more authors are using bio-inspired models humanoids. We
used the central pattern generators (CPGs) idea (Ijspeert, 1998), that sim-
plifies the walking as a set synchronized waves (patterns) along the differ-
ent joints of the robot arms and legs. This way each walking gait is repre-
sented by a set of parameters like angular offsets between the waves and
relative amplitudes. 

Our algorithm chooses a set of patterns and searches in the parameter
space for the best walking gait. For evaluation of tentative walks we use a 
simulator where we let the model run for some time and numerically ob-
serve properties as stability, speed and linearity of generated movement. 

All these factors are combined in a single health function that indicates
the final quality of the walk. This health function is used both in systemat-
ic search o in an evolutionary algorithm along the parameter space. 



84      Robots sociales

Figure 5: Ankle�s pitch of the Nao robot

The final result is a parameter set that describes a gait, with the patterns
(sequence of joint positions) for the hips, knees and ankles of the Nao ro-
bot. This gait is stable and provides an advance speed close to the gait de-
ployed by NaoQi locomotion subsystem. Figure 5 shows the angles of the
robot's left and right ankles over time. As expected they are in antiphase.
More details can be found at (F. Rivas, 2011). We are working more fine 
grained search to find faster gaits. 

4.4 Recorder/Replayer

Recorder and Replayer are two JdeRobot tools. Recorder component is
able to collect information provided by a robot or sensor server, like
kinectServer or GazeboServer, and store it in a log file in the hard 
drive. Replayer component is able to reproduce recorded information
saved in the log file. 

Theese tools allow the offline testing of perceptive components which 
can be fed with exactly the same sensor data as input, because they have 
been stored in the log file. It is possible to configure recording speed and 
which ICE interfaces are selected for the log. For instance, many ICE in-
terfaces are supported in Recorder and Replayer, like Camera, Laser, 



Programming a Humanoid Social Robot Using the JdeRobot Framework      85

Encoders, Pose3DEncoders and cloud points from Kinect type devices. 
The replaying speed and which stored ICE interfaces should be provided
off-line can also be configured. 

Figure 6: Recorder and replayer tools
The already mentioned NaoServer component can be configured to

act as a recorder for Nao sensor data, as shown in Figure6. This capability 
has been used to test the VisualLocalization component, feeding it 
with off-line sensor and image data. 

4.5 Generating Nao behaviors with VisualHFSM 

We have created the VisualHFSM tool inside JdeRobot for the pro-
gramming of robot behaviors using finite state machines with hierarchy 
(HFSM - Hierarchical Finite State Machine). It represents the robot's be-
havior graphically on a canvas composed of states and transitions. The 
source code to be executed at each state or when checking each transition 
can be also introduced. This tool decreases the development time of new
applications, putting the developer into a more abstract visual language. It
also increases the quality of these applications, automatically generating 
most of their code. The tool allows the engineer to focus on specific parts
of his application, automatically generating the rest, getting a code more 
robust, less prone to failure. 



86      Robots sociales

Figure 7: Graphical editor of the VisualHFSM tool

VisualHFSM is divided into two parts: the graphical editor and the au-
tomatic code generator. The graphical editor allows the user to visually 
represent, edit and add the states and transitions in a clear and simple way
(Figure7). The GUI is divided into three parts: the tree view, the canvas 
and action buttons. The tree view is the area where you can see the hierar-
chical tree of the generated automata, the canvas is the area where it is 
drawn with circles for states and arcs for transitions, and the different ac-
tion buttons allow editing and programming. The graphical editor saves in 
an XML file all the features of the developed component: the structure of 
the automata, the characteristics of each node and transition, etc. 

The automatic code generator takes that XML file and generates the 
source code in C++ of a single JdeRobot component that implements the 
designed FSM (Figure 8). It uses a component template which has two 
parts: one thread for control and another one for graphics. The control
thread iteration contains the entire code for the behavior of the robot. In
every iteration of the control thread it checks in which state it is and exe-
cutes the code. In each state it does the following steps: run perception 
code for action, run the code for concrete action, execute perception code
for the transition, check the condition of the transitions and change to the
corresponding state. The iteration of the graphic thread is used to display 
sensor data or internal structures at runtime in the component's GUI. 



Programming a Humanoid Social Robot Using the JdeRobot Framework      87

Figure 8: Automatic code generator of VisualHFSM tool

4.6 Mobile Teleoperator 

MobileTeleoperator is a JdeRobot component for Android
smartphones to teleoperate either a Pioneer robot through the
PlayerServer or a Nao robot through the NaoServer. In Figure9 we 
can see NaoServer running on the Nao robot and providing its ICE in-
terfaces and the MobileTeleoperator component interacting with
them and with the human user. 



88      Robots sociales

Figure 9: MobileTeleoperator controlling the Nao's movement

4.7 Visual memory

Cameras are one of the most relevant sensors in autonomous robots. How-
ever, two of their challenges are to extract useful information from cap-
tured images, and to manage the small field of view of regular cameras. 
The Nao humanoid has a pair of cameras (in a non-stereo setup) on its
head as, which can be oriented at will, as its main sensors to perceive its 
surroundings.

We have developed one JdeRobot component, named
VisualMemory, which receives data from robot cameras and encoders, 
and extracts a description of the objects around the humanoid even beyond 
the current field of view (Julio Vega, 2012). This information is provided
to other actuation components like the navigation algorithm or other con-
trol units. 

This component builds a local visual memory of objects in the robot�s
surroundings. The memory is built analyzing each camera image looking 
for relevant objects (like segments, parallelograms, etc.) and updating the
object features already stored in the memory, like their 3D position. The 
memory is dynamic and is continuously coupled with camera images. The 
new frames confirm or correct the object features stored in memory, like 
their 3D relative position to the robot, length, etc. New objects are intro-
duced in memory when they appear in images and do not match any 
known object. This component is also active, as it moves the humanoid
head in order to cover several areas of the robot surroundings. It includes 
gaze control. 



Programming a Humanoid Social Robot Using the JdeRobot Framework      89

Figure 60: Nao visual memory from four camera images

Figure 60 shows a real experiment showing how Nao robot is viewing
its world. In that figure we can see how the Nao robot is viewing some ob-
jects remembering how its world is, it is, the door and walls it saw before. 

4.8 Visual autolocalization 

Many Nao navigation applications need to know where the robot is inside
a map. We have developed a vision-based localization component in
JdeRobot to provide this enabling functionality. This component, named
VisualLocalization, uses a population of particles and an evolu-
tionary algorithm to manage them and estimate the current robot position.



90      Robots sociales

Figure 71: The likelihood of different positions of a corridor when the Nao per-
ceives a door on the left side of its camera

Each particle or individual is a candidate solution. The health of each
particle is computed comparing edge points in the current image with those 
in the predicted image from that location. The whole population of indi-
viduals evolves over time using genetic operators, such as mutation or 
crossover to generate new particles and elitism to keep alive those with 
highest health. More details can be found in (Julio Vega, Robot Evolution-
ary Localization Based on Attentive Visual Short-Term Memory, 2013). 
Figure 71 shows the health of different locations when a door is observed
in the left side of the image of from the humanoid camera. Those locations
close to any door have high likelihood using our health function.



Programming a Humanoid Social Robot Using the JdeRobot Framework      91

5 Conclusions 

In this paper we have presented three different frameworks to program a 
social robot, the Nao humanoid, and introduced some of their tools. First, 
we talked about the manufacturer's software, NaoQi, as the initial platform
we used to program these robots. Second, we talked about BICA, a com-
ponent-oriented software developed by the Robotics Group at URJC. 
BICA has been used to develop the social application RoboTherapy which
has been used with real dementia patients. 

Third, we discussed how to program the humanoid robot with the open 
source JdeRobot framework, also developed at the URJC. JdeRobot offers 
a hardware abstraction layer for the Nao robot: the NaoDriver compo-
nent provides standard ICE interfaces that allow the applications (both 
onboard or at an external computer) receive sensor data like images, head 
encoders, etc. and send motion commands to the humanoid body or the
Nao head. In addition, the support for the Nao in the 3D Gazebo simulator 
has been developed and the GazeboServer component provides those
same ICE interfaces for the applications to use the sensors and motors of 
the simulated Nao. Some tools in this framework have been also described, 
like the MobileTeleoperator to move the humanoid from a 
smartphone and the VisualHFSM to visually program the robot behavior 
using hierarchical automata, efficiently and quickly. Finally, two compo-
nents with enabling tecnologies have been presented:
VisualLocalization provides the robot localization in a known en-
vironment and VisualMemory provides a description of the objects in 
the robot surroundings. They can be used in new applications of this hu-
manoid social robot.

We are working on changing the BICA framework and organizing it as 
different ROS nodes. In addition, we are improving the RoboTherapy so-
cial application with new contents, doing code refactoring in order to 
download the therapies from a web server and allowing it to interact with
other therapy tools like tablets. Regarding Jderobot we are updating the
Nao support in Gazebo to the latest simulator release, preparing new social 
applications with higher human-robot autonomous interaction using vision
and programming new humanoid behaviors useful when the robot moves 
at real people homes, like people following and autonomous navigation.



92      Robots sociales

Acknowledgements 

This work was supported by the project S2009/DPI-1559, RoboCity2030-
II, from the Comunidad de Madrid and by the project 10/02567 from the 
Spanish Ministry of Science and Innovation.

References

A. Tapus, C. Tapus and M. J. Mataric. �The use of socially assistive robots
in the design of intelligent cognitive therapies for people with dementia�. 
In Rehabilitation Robotics, 2009. IEEE International Conference on
ICORR 2009, pp. 924-929, 2009.

A. Brooks, T. Kaupp, A. Makarenko, S. Williams and A. Orebäck. �Orca: 
a component model and repository�. In D. Brugali, Software engineering
for experimental robotics, pp. 231-251, 2007.

A. Makarenko, A. Brooks and T. Kaupp. �International Conference on
Intelligent Robots and Systems (IROS)�. In Orca: Components for 
robotics, pp. 163-168, 2006.

B. Gerkey and R. Vaughan. 2007. �Reusable robot software and the
player/stage project�. Software Engineering for Experimental Robotics,
pp. 267-289.

Brian P. Gerkey, Richard T. Vaughan and A. Howard. �The Player/Stage
project: tools for multi-robot and distributed sensor systems�. In 
Proceedings of the 11th International Conference on Advanced Robotics, 
Coimbra, Portugal, pp. 317-323, 2003.

Brugali, D. 2007. Software Engineering for Experimental Robotics (Vol.
30). Springer.

F. Martín, C. Agüero, José M. Cañas and E. Perdices. �Humanoid soccer
player design�. In V. Papic, pp. 67-100, 2010.

F. Martín, C. Agüero, J. M. Cañas, M. Valenti and P. Martínez. 2013. 
�Robotherapy with Dementia patients�. Int. J. of Advanced Robotic
Systems. 1268-1299.



Programming a Humanoid Social Robot Using the JdeRobot Framework      93

F. Rivas, José. M. Cañas and J. González. �Aprendizaje automático de 
modos de caminar para un robot humanoide�. In Proceedings of
Robot2011 III Workshop de Robótica: Robótica experimental. Sevilla, 
Spain, pp. 120-127, 2011.

G. Echeverria, N. Lassabe, A. Degroote and S. Lemaignan. �Modular
OpenRobots Simulation Engine: MORSE�. In Proceedings of the IEEE 
ICRA. 2011.

González, A. C. 2008. �Desde la teleoperación al control por tacto del 
robot Maggie�. Leganés, Universidad Carlos III de Madrid.

Ijspeert, A. 1998. Design of artificial neural oscillatory circuits for the
control of lamprey-and salamander-like locomotion using evolutionary 
algorithms. PhD Thesis, Department of Artificial Intelligence, University 
of Edinburgh.

J. Jackson. 2007. �Microsoft Robotics Studio: a technical introduction�.
IEEE Robotics & Automation Magazine, pp. 82-87.

José M. Cañas, V. Matellán, B. MacDonalds and G. Biggs. �Programming 
commercial robots�. In Software Engineering for Experimental Robotics,
Springer-Verlag, pp. 125-132, 2007.

J. Vega, E. Perdices and José M. Cañas. 2012. �Robotic Vision: 
Technologies for Machine Learning and Vision Applications�. In Attentive
visual memory for robot localization, IGI Global, pp. 406-436.
J. Vega, E. Perdices and José M. Cañas. �Robot Evolutionary Localization 
Based on Attentive Visual Short-Term Memory�. Sensors. 2013. 

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler
and A. Y. Ng. �ROS: an open-source Robot Operating System�. In ICRA
Workshop on Open Source Software. 2009.

N. Koening and A. Howard. �Design and Use paradigms for Gazebo, an
open-source multi-robot simulator�. In Proceedings of 2004 IEEE/RSJ 
International Conference on Intelligent Robots and Systems. Sendai,
Japan. 2004.

S. Carpin, M. Lewis, J. Wang, S. Balarkirsky and C. Scrapper. 
�USARSim:a robot simulator for research and education�. In Proceedings 



94      Robots sociales

of the IEEE 2007 International Conference on Robotics and Automation,
pp. 1400-1405, 2007.


