
Jde+: an open-source schema-based framework for robotic applications

J.M. Cañas, D. Lobato & P. Barrera
Robotics Group, Universidad Rey Juan Carlos

Abstract— In this paper we present our object-oriented
framework jde+, which is the second implementation of our
cognitive behavior-based architecture JDE. This framework
uses schemas as the building block of robot applications. They
are combined in dynamic hierarchies to unfold behaviors.
The schema interfaces and the distributed action selection
mechanism are key issues in this hierarchical composition. The
lessons learnt in three years using the first implementation are
also described. For instance, the schema communication has
changed from shared memory to message passing, dynamic
load of schemas replaces the static linking, and a hierarchy
oscilloscope has been introduced for debugging purposes.

I. INTRODUCTION

Beyond the sensor and motor capabilities, the intelligence
of a robot lies on its software. For simple behaviors almost
any software organization works. If we want the robot to
unfold complex behaviors or integrate several functionalities
in the same system then to have good organization principles
and a good software architecture makes the difference.

Robot programmers have to deal with heterogeneous hard-
ware and software. There is no widely accepted software
standards to develop robot applications. In the last years,
several frameworks and middleware have been created to
help in that task. Robot manufacturers and private companies
provide their own development kits. ARIA from ActivMedia,
ERSP from Evolution Robotics, Open-R from Sony and
Microsoft Robotic Studio are just a few examples. Many
universities and research centers have also created their own
frameworks. For instance, Player/Stage [8][14][24], Carmen
[17], Marie [10], Miro [22], CLARAty [18], etc.

Each framework encapsulates functionality in different
ways, providing different abstraction levels and making
easier complex behavior generation. Modern middlewares
provide methods to reuse code or behaviors in order to
increase productivity. They impose several constraints to the
organization of the robot software and split functionality into
small building blocks or components that are easier to reuse.

Traditionally the organization of the robot capabilities to
unfold autonomous behavior has been the focus of robotics
research. Reactive, behavior-based, deliberative and hybrid
paradigms are the most relevant schools. The cognitive
architectures provide valuable guiding principles to organize
the robot software. In addition, as any other computer science
area, robot programming can also take advantage of the most
advanced techniques and tools from the software engineering
(object orientation, design patterns...).

This work was funded by Spanish Education and Science Ministry under
project DPI2004-07993-C03-01 and by Comunidad de Madrid under project
RoboCity2030 S-0505/DPI/000176.

There are two kinds of robot middleware: those with
underlying cognitive basis and those without it. A framework
that has no underlying cognitive architecture is developed
using purely software engineering criteria, such as scalability
or ease of reuse. However it lacks of the theoretical basis to
lead the design process. This can become a major limitation
for complex behaviors, as long as the software engineering
approach has been unable to solve the whole robot program-
ming problem. Architectures that grow on cognitive basis
have stronger design ways to divide complexity, for instance
using models extracted from other fields for animal or human
behavior.

Cognitive basis are interesting as they propose a methodol-
ogy to face robot behavior generation. They also provide ab-
stractions easy to understand. This is important in academic
environments with high programmer rotation where the
learning curve must be minimized. For all these reasons we
developed the jdec framework following our JDE cognitive
architecture. After using jdec for three years we have found
several limitations of this framework so we started the jde+
framework development. In this new platform we solved
various drawbacks of jdec and we also included software
engineering techniques to increase our productivity.

In the second section the cognitive architecture JDE un-
derlying jde+ is briefly presented. It provides the schema and
hierarchy concepts that will be used in the rest of the paper.
Third section describes jdec, the first implementation of JDE,
its features and limitations to develop robotic applications.
Fourth section describes the jde+ framework, the new object-
oriented implementation of JDE. Finally, some conclusions
summarize the lessons learnt and current state of the project.

II. JDE COGNITIVE ARCHITECTURE

The idea of hierarchy has been widely used to cope with
complexity in robotics. Hybrid cognitive architectures have
successfully been used in the last years. Their ability to
combine deliberation and reactiveness is very convenient
for robotic applications. The behavior-based architectures are
another approach to the idea of hierarchy. They have received
new support in several works [1][19][23].

Our software frameworks are all based on JDE, an ethol-
ogy inspired and behavior-based cognitive architecture [7].
Its name comes from its acronym in Spanish: Dynamic
Schema Hierarchy. The goal of this architecture is to reduce
the overall system complexity with a divide and conquer
approach, similar to some hierarchies proposed by ethologist
to explain the behavior generation in animals.



Fig. 1. JDE hierarchy. Motor schemas are represented by circles and
perceptual schemas by squares. Current WINNER schemas are shaded.

A. Schema as the behavior unit

The JDE main component and building block is the
schema. A schema is a task-oriented piece of software that
is executed independently. Everything in the system is repre-
sented as a schema. At any time there can be several schemas
in execution. Each one is built to complete a particular task
or to achieve some goal or mission. There are perceptive
schemas and motor schemas. Perceptual ones transform
sensor data or simple information into more complex stimuli
that can be used by other schemas. Motor schemas access
to perceptual data and generate control outputs which can
be motor commands or activation signals for other low
level schemas (perceptual or motor) and their modulation
parameters.

Perception and control are the two behavior components,
related but different. Both are complex and have to be solved
in separated modules of the program. The fragmentation into
smaller units makes also easier the code reuse and reduces
the complexity in the subproblems faced in each fragment. It
also allows locating several schemas in different processors,
facilitating distributed implementations.

Each schema has an associated state. The state defines the
current schema’s activation level. For example a perceptive
schema can be in any of SLEPT or WINNER states. A motor
schema, on the other hand, can be in four different states:
SLEPT, CHECKING, READY and WINNER. Those states are
closely related to how action selection is made in JDE.
Control schemas have preconditions.

In addition to its task-oriented nature, a schema has other
characteristics in JDE: (1) it is tunable, it accepts some
parameters to modulate its behavior; (2) it is an iterative pro-
cess that makes its work by periodical iterations, providing
an output at the end of each one; and (3) it can be stopped
or resumed at the end of any iteration.

B. Schemas are combined in dynamic hierarchy

Once the basic behavior unit has been introduced, there
are many options to assemble the whole system. Each
JDE schema has its own goal, and performs a particular
function in which it is an expert. Hierarchy appears because
a schema can take advantage of the functionality of others to
perform its mission. This is implemented in JDE by means
of activation and continuous modulation. This activation can
be recursively repeated, so various levels appear, where the
low level schemas are awaken and modulated by the higher

ones. The chain of activations creates a specific hierarchy of
schemas for generating a particular global behavior.

The hierarchy that JDE proposes is not the classical
one based on direct function invocation, where the father
activates a son to carry out a mission and waits for the result
while the son does the job. Instead of considering the mission
of the son as a step in the sequential plan of the father,
JDE understands hierarchy as a co-activation that only means
predisposition. In JDE a father can activate several sons at
the same time, because this does not mean that the sons
gain control of the robot, just that they are awaken. Their
real activation is left to an action selection mechanism that
selects which son must be finally used. This selection is done
by competition among brothers in the same level.

All awake schemas (CHECKING, READY and WINNER) run
concurrently, similar to the distribution found in behavior-
based systems. To avoid incoherent behavior and contradic-
tory commands to actuators JDE proposes hierarchical acti-
vation as the skeleton of the collection of schemas. It claims
that such hierarchical organization, in the ethological sense,
provides many other advantages for robotics like bounded
complexity for action selection, action-perception coupling
and distributed monitoring. All without losing the reactivity
needed to face dynamic and uncertain environments.

A motor schema may command to actuators directly or
may awake a set of new child schemas. These children will
execute concurrently and they will in conjunction achieve
the father’s goal while pursuing their own. Actually, that’s
why the father awoke such schemas, and not others. A
continuous competition between all the actuation siblings
determines whether each child schema will finally get the
WINNER state or will remain silent in CHECKING or READY
state. Only the winner, if any, passes to the WINNER state
and is allowed to send commands to the actuators or spring
its own child schemas. The father activates the perceptive
schemas that provide the information needed to solve the
control competition between its actuation children and the
information needed for them to work and take control deci-
sions. This recursive activation of perceptive and actuation
schemas conforms a schema hierarchy (figure 1).

Once the father has awaken its children it keeps itself ex-
ecuting, continuously checking its own preconditions, mon-
itoring the effects of its current children, modulating them
appropriately and keeping them awake, or maybe changing
to other children if they can face better the new situation.

Several instances of the same schema can be activated
simultaneously or at different moments, probably by different
fathers, using different modulations and running in different
levels of the hierarchy. This is an example of re-usability.

Hierarchies are built and modified dynamically and are
specific for each behavior. Among brothers at a given level,
the winner could change if the environment conditions or the
final goals of the robot were modified. This would change
the one selected, and consequently the whole hierarchy
underneath would also be modified: All the active schemas
underneath the previous winner would then be deactivated,
and a new tree generated under the new winner.



initialization code
loop

if (slept) stop the schema
action selection

check preconditions
check brother’s state
if (collision OR absence) father arbitrates

if (winner) then schema iteration
msleep

end loop

Fig. 2. Pseudo-code of an schema in jdec

Reconfigurations in JDE use to be very fast, given that the
arbitration and the decisions made by the schemas are made
periodically and at a high enough rate.

III. JDEC SOFTWARE PLATFORM

The JDE cognitive architecture was implemented, written
in C language, in the jdec software platform. jdec has been
the framework for several robot applications [5], [6], both
research and academic, for three years.

A. Schema

In jdec the schemas are implemented as threads (pthreads
library in GNU/Linux), one per schema. All of them follow
the skeleton shown at figure 2 in pseudo-code. When active,
each schema executes iterations. All the task dependant code
lies in the iteration function, which is called periodically at
a controlled frequency.

Following the JDE action selection mechanism, the
schema continuously checks its preconditions and the state
of its brothers. In case of control overlap with brothers
or control absence, it invokes the arbitration function at
the father level. The schema that wins the current control
competition at that level of the hierarchy gains the WINNER
state and executes its schema iteration in that iteration.
Passive perceptive schemas always gain the WINNER state at
each iteration, as they do not generate control conflicts.

The iterative execution avoids excessive CPU consumption
and forces to design the application in a reactive way. For
instance, instead of having a ”rotate-90”, command we prefer
the loop rotate-rotate-...-rotate-stop; the iteration realizing
that no more rotation is need directly stops the motors. This
is very convenient to reactive applications and also provides
room to deliberative schemas that use plans as resources
instead of explicit courses of action.

B. Hierarchy

Each schema provides a set of shared variables to com-
municate with other schemas. Such communication is carried
out by shared memory in a very efficient way, using mutexes
to prevent race conditions. This is fully asynchronous and
straightforward as all schemas are threads of the same
process.

First, the schema defines and updates continuously its
output variables when is in WINNER state. They are offered to

other schemas, which can read them. For instance, they can
be used to store the outcome of a perceptive schema. Second,
the schema defines and continuously reads its modulation
variables when WINNER. Other schemas may write there
the modulation to bias the current behavior of the schema,
mainly its father. The interaction is not constrained to a given
instant (as in the parameters of a function invocation) but
carried out as a continuous modulation, which may change
from one iteration to the next.

The API to the robot hardware itself is a set of global
variables: on the one side sensor variables like encoders,
laser, etc. that schemas may read and, on the other side,
motor variables like rotation and translation speeds, that
schemas may write.

In addition, each schema provides four compulsory func-
tions that allow the hierarchical activation and deactiva-
tion: startup, resume, suspend and iteration.
Startup is called by the system to initialize the schema.
Resume and suspend allow other schemas to sleep or
activate the schema. Resume call has two main parameters:
the list of brothers (as long as the same schema can be used
in different contexts) and the arbitration function from the
father. When a father loses the competition control at its level
it deactivates its children calling their suspend functions.

C. Limitations and lessons learnt
jdec has been the software platform for many robot

applications with the Pioneer robot at our lab. Many schema
based behaviors have been developed in the last three years:
person following [5], laser-based and vision-based localiza-
tion, Virtual-Force-Field reactive navigation, Gradient-Path-
Planning deliberative navigation [6], etc1.

To write a robot application the programmer has to design
it in schema terms. Each schema is written in two separate
C files: myschema.h with the declaration of shared vari-
ables of the schema and the four mentioned functions, and
myschema.c with their definitions and implementation.
Both are compiled together in a single C object module. All
the schemas of the application are statically linked together
in the executable. In order to speed up the development,
there is a schema template with common parts of code ready
to reuse, so the programmer focuses herself just on the
iteration function of her schemas, their preconditions and
their arbitration functions.

One lesson learnt with jdec is the importance of distri-
bution. Despite of having the functionality split in several
schemas, all of them have to run in the same machine.
This imposes a computational bottleneck if, for example,
the application deals with vision. Two network servers (otos
and oculo) have been developed to provide remote access
to sensors and actuators. Using them the application can be
placed at a different computer from those with the sensors
and motors attached. But in essence jdec has centralized
execution and so, it is computationally limited.

Although schemas were designed to ease the component
reuse, in practice, such a reuse in jdec is still a difficult

1More information can be found in http://www.robotica-urjc.es



task. Each application starts from the bare software platform
and adds its own schemas. There is a strong coupling be-
tween schemas and it is difficult to remove the dependences
between object modules. Moreover, adding the graphical
interface of a schema requires the modification of the system
GUI, as it is unique for the application. Truly distributing the
GUI is necessary to simplifying the reuse of schemas.

There are also limitations inherent to the C language.
For example, using shared variables opens the door to
name collisions. All the schema variables are joint in a
single name space. The variable names must be unique in
a given application, but the system does not provide with
mechanisms to detect that two schemas in the application
offer different variables with the same name.

This software implementation does not capture in full ex-
tent the capabilities and constraints imposed by the cognitive
architecture. For example, in jdec there is only one thread per
schema and no chance for simultaneous schema instances,
which is explicitly allowed by the cognitive JDE architecture.
In addition, the data communication is bounded to father-
son interactions in JDE, but it is not restricted in jdec. One
schema can read the perceptive variables defined by another
schema, even if they are not related at all, or even while the
second one is slept and its variables are not updated. There
is no protection mechanism so errors are more difficult to
debug.

IV. JDE+ FRAMEWORK

Jde+ framework is the new implementation of the JDE
cognitive architecture, written in C++ programming lan-
guage. We chose this language because its time performance
and to reuse most of the work done with jdec but taking
advantage of the object oriented paradigm and its benefits.
The jde+ implementation follows a careful software design
and adds new features like schema dynamic loading, a
debugging tool and automatic code generation through a
simple XML definition of schemas.

A. Schema

In jde+ the schemas are implemented as objects with
their own execution flow. To simplify the design, a schema
class is composed by a set of classes, each one with a
particular functionality. The abstract design is shown in
figure 3 which contains the five most important pieces of
jde+. Three of them are directly related with the build-
ing unit: schemainstance, schemaimplementation
and schemainterface.
Schemainstance represents a schema instance, specif-

ically the instance common part (schema identification, state,
etc.). The programmer of a given robotic application must
know this main class because it defines the API to work
with the system (send messages, get relationship information,
manage perception and modulation data, etc.). Using classes,
it is straightforward to have several different instances of
the same logical schema activated at the same time in
different places of the hierarchy, as proposed by the cognitive
architecture. State design pattern [13] is applied to represent

Fig. 3. Class diagram of jde+

schema state of an instance and different behavior for each
state. Moreover, to achieve concurrent interactions Active
Object design pattern [21] concepts are applied to avoid
locking on Schemainstance methods invocation.
Schemainterface defines what that schema offers to

the others, and the way to use it (based on the Interface de-
sign pattern). In addition, a schema defines its dependencies
enumerating the interfaces that it needs in order to achieve
its own target. The interfaces have a name and a description
of the data they contain. This way, jde+ allows a formal
definition of what a schema provides and what it requires.
This emphasis on clear interfaces for information exchange
has been widely acknowledged in other component-based
robotic frameworks [11][12].

Fig. 4. Schema implementation class

Finally, schemaimplementation is an abstract class
that user must derive to add the particular behavior of the
schema. It defines several abstract methods that must be filled
with code in order to implement the particular schema behav-
ior. Figure 4 shows a detail of schemaimplementation
and the methods that the application programmer has to
implement.

This design allows the user to create schemas defin-
ing which schemainterface they provide and which
schemainterfaces they need to operate. The schema’s
own code is confined to the Schemaimplementation
class.

All schemas are compiled separately as plugins and placed
together in several directories. The set of schemas in such
libraries provide all the functionality to the system. At run-
time, when a schema requires a given interface, the system
searches for schemas that provide that interface, looking at
some directories. When it finds the right schema, creates an
instance of it, and recursively resolves its dependences too.



To locate a particular schema it is only necessary to know its
interface and the system will load the correct schema from
the libraries. Some concepts from Abstract Factory design
pattern [13] and object auto registration [2] are applied to
the design of these mechanisms.

This approach allows easy software reuse because you can
use any existing schema only knowing its interface. More-
over, it allows easy system maintenance because you can
reimplement schema internals keeping the same interface,
without further recompiling or linking of other parts of the
system.

B. Hierarchy

As seen in figure 3, jde+ has two more pieces, the
hierarchy and the isc. They are responsible for man-
aging the schemas and providing all the glue between them.
Hierarchy class is responsible for containing all instances and
their relationships. Isc class contains the communication
mechanisms and allows the interaction between schema
instances.

Each schema instance interacts with others through a
message passing mechanism. This mechanism is provided
by jde+, specifically with the isc class. Communication
is asynchronous to allow schema execution flows to run
decoupled. This decoupling has been identified as desirable
in other component based architectures [16].

There are five types of messages, two top-down messages
and three bottom-up ones. The top-down messages are
modulation and state change request. They flow
from a father to its children, which asynchronously receive
them and react properly. For instance, the father activates a
son sending it a state change request to the schema
instance that implements one of the interfaces it depends
on. This triggers the instance creation. The bottom-up
messages are perception, arbitrate request
and state change notification. A perceptive
schema uses perception messages to send new
computed values of the information it elaborates
to its father. arbitrate request messages are
generated when a control overlap or absence is detected.
state change notifications are sent from one
schema instance to its father when the instance changes its
state, for instance from READY to CHECKING.

Hierarchy also provides a dynamic schema loading mech-
anism based on dynamic class loading. With this mechanism
the framework is separated from the schemas so new schemas
can be added without rebuilding the whole system. All
schemas are dynamically linked in runtime. This feature adds
flexibility to the development.

Hierarchy class applies Monitor Object design pat-
tern [21] on its public interface, allowing multiple method
invocations from schema instances.

C. New programming tools

Jde+ framework also includes some add-on tools that
simplify the robot application development process. The first
one is a tool to debug a live hierarchy and the second one is a

parser of schema definitions in XML files that automatically
generates most of the schema code.

Fig. 5. Oscilloscope of the hierarchy of schemas

Jde+ message passing mechanism through a central com-
municator class (isc) allows sniffing schemas interactions.
In this way it is simple to log schema traffic and to verify the
system operation. The tool is similar to an oscilloscope that
can trace the behavior generation. The tool is called jdescope
and it is used as the main GUI. It allows schema loading,
select a root, and starts or stops the hierarchy. When the
hierarchy is running, jdescope logs all messages generated
in the system. Figure 5 shows a simple hierarchy and
several message logs. The hierarchy in the figure has seven
schemas. Root schema starts running when jdescope sends it
a stage change request message to CHECKING (=alert
in figure 5), this is logged as a ROOT to ROOT message.
Later on, the schema promotes its state to WINNER (=active
in figure) and activates and modulates child 2 that does the
same with its own children, 4 and 5.

The second tool provided is an XML parser that auto-
matically creates most of the code needed to implement a
new schema. We have defined a simple syntax to specify
interfaces and schemas in XML files. This way the program-
mer of robotic applications can write XML definitions for
schema interfaces and schema implementations. The parser
validates definition through an XML-Schema template and
then generates C++ code using these definitions. After that,
a template for the C++ schema has been created and is
ready to be filled. Makefiles and other auxiliary files are
also generated. A simple XML definition snippet is shown
in figure 6. In this example, the S1 schema implements the
I1 interface and depends on I2 and I3 interfaces. Interfaces
are in a dynamic library called interfaces and two external
files, util.h and util.cpp, are included to provide some utility
functions. The parser will generate three files: S1.h with the
declarations, S1.cpp with empty definitions and Makefile to
build the schema.

V. CONCLUSIONS

A new object-oriented software framework for robotic
applications, named jde+, has been presented. It is an



<schemaDef name=”S1”>
<interface name=”I1”>

<library>interfaces</library>
</interface>
<child>

<interface name=”I2”>
<library>interfaces</library>

</interface>
</child>
<child>

<interface name=”I3”>
<library>e1interfaces</library>

</interface>
</child>
<extheader>util.h</extheader>
<extsource>util.cpp</extsource>

</schemaDef>

Fig. 6. XML schema definition

implementation of the behavior-based cognitive architecture
JDE, which uses the schema as the building block for new
robot behaviors and combines them in hierarchies to scale
in complexity.

It was designed to overcome the limitations observed in
the prior JDE implementation, jdec. jdec probed to be good
for reactive behaviors and those not requiring a complex
architecture. It allowed flexible sequences of behavior and
elaborated behaviors using simple schemas. However it was
difficult to generate complex hierarchies in jdec because it
had some limitations on the code reuse and integration. For
this reason, jdec was not tested in complex scenarios.

In jde+ each schema is a component with a clear message
API. The schema interfaces are named, explicitly declared
and linked to the schemas, both to those that provide them
and to those that require them. A well defined API simplifies
the code reuse problem, so jde+ is expected to be the base for
more complex behaviors. It also provides new features and
tools like dynamic load of schemas, XML schema definition
and a hierarchy oscilloscope that makes both developing and
debugging easier.

jde+ is an on going project. The core software architecture
has been designed and fully implemented in C++. We are
currently migrating from jdec to jde+ the drivers for the
different sensors, actuators, robots, and simulators available
at our laboratory. In the near future we intend to develop
new behaviors using this infrastructure in order to get the
experimental feedback about its real usefulness.

REFERENCES

[1] S. Behnke and R. Rojas, A hierarchy of reactive behaviors handles
complexity, Balancing Reactivity and Social Deliberation in Mulit-
Agent Systems, LNCS 2103 Springer, 2001, pp 125-136.

[2] J. Beveridge, Self-Registering Objects in C++, Dr. Dobb’s Journal, pp.
38-41, August 1998, Vol. 23, Issue 8.

[3] J. Bryson and B. McGonigle, Agent Architecture as Object Oriented
Design, 4th Int. Wshp. on Intelligent Agents: Agent Theories, Arqui-
tectures and Languages ATAL’97, SpringerVerlag, 1997, pp 15-29.

[4] J. Bryson and L. Stein, Modularity and design in reactive intelligence,
Int. Joint Conf. on Artificial Intelligence IJCAI-2001, Seattle (USA),
2001, pp 1115-1120.

[5] R. Calvo, J.M. Cañas and L. Garcı́a-Pérez, Person following behavior
generated with JDE schema hierarchy, ICINCO 2nd Int. Conf. on
Informatics in Control, Automation and Robotics, Barcelona (Spain),
2005, pp 463-466.

[6] J. Cañas, R. Isado and L. Garcı́a-Pérez, Robot navigation combining
the Gradient Method and VFF inside JDE architecture, VI Workshop
de Agentes Fsicos, WAF-2005, Granada (Spain), 2005, pp. 153-160.

[7] J. Cañas, V. Matellán, Integrating behaviors for mobile robots: an
ethological approach, Cutting Edge Robotics, Pro Literature Verlag
/ ARS, 2005, pp 311-330.

[8] T. Collett, B. MacDonald and B. Gerkey, Player 2.0: Toward a Practical
Robot Programming Framework, Australasian Conf. on Robotics and
Automation (ACRA 2005), Sydney (Australia), 2005.

[9] C. Cote, D. Ltourneau, F. Michaud, J. Valin, Y. Brosseau, C. Raievsky,
M. Lemay and V. Tran, Code reusability tools for programming mobile
robots, 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS-04), Sendai (Japan), 2004

[10] C. Cote, Y. Brosseau, D. Letourneau, C. Raievsky adn F. Michaud,
Robotic software integration using MARIE, Int. J. of Advanced
Robotic Systems., vol. 3(1), 2006, pp 55-60.

[11] A. Cowley, L. Chaimowicz and C. Taylor, Design minimalism in
robotics programming, Int. J. of Advanced Robotic Systems., vol. 3(1),
2006, pp 31-36.

[12] A. Farinelli, G. Grisetti and L. Iocchi, Design and implementation of
modular software for programming mobile robots, Int. J. of Advanced
Robotic Systems., vol. 3(1), 2006, pp 37-43.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides and G. Booch, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, Massachusetts, 1998

[14] B. Gerkey, R. Vaughan and A. Howard, The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems, 11th Int. Conf.
on Advanced Robotics (ICAR 2003), Coimbra (Portugal), 2003, pp
317-323.

[15] M. Hattig, I. Horswill and J. Butler, Roadmap for mobile robot
specifications, 2003 IEEE/RSJ Int. Conf. on Intelligent Robot Systems
(IROS 2003), Las Vegas (USA), 2003, pp 2410-2414.

[16] G. Metta, P. Fitzpatrick and L. Natale, YARP: Yet Another Robot
Platform, Int. Journal of Advanced Robotic Systems, vol. 3(1), 2006,
pp 43-48.

[17] M. Montemerlo, N. Roy and S. Thrun, Perspectives on standarization
in mobile robot programming: the Carnegie Mellon Navigation (CAR-
MEN) toolkit, 2003 IEEE/RSJ Int. Conf. on Intelligent Robot Systems
(IROS 2003), Las Vegas (USA), 2003, pp 2436-2441.

[18] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons and T. Estlin,
CLARAty and challenges of developing interoperable robotic soft-
ware, 2003 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS-03), vol. 3, 2003, pp 2428–2435.

[19] M. Nicolescu and M. Mataric, A hierarchical architecture for behavior-
based robots, Int. Joint Conf. on Autonomous Agents and Multiagent
systems, Bologna (Italy), 2002, pp 227-233.

[20] A. Orebäck and H. Christensen, Evaluation of architectures for mobile
robotics, Autonomous Robots, vol. 14, pp 33-49.

[21] D. Schmidt, M. Stal, H. Rohnert and F. Buschmann, Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Ob-
jects, vol. 2, John Wiley and Sons, 2000

[22] H. Utz, S. Sablatng, S. Enderle and G. Kraetzschmar, Miro – Mid-
dleware for mobile robot applications, IEEE Transactions on Robotics
and Automation, Special Issue on Object-Oriented Distributed Control
Architectures, vol. 18, no. 4, 2002, pp 493-497.

[23] H. Utz, G. Kraetzschmar, G. Mayer and G. Palm, Hierarchical behavior
organization, 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS-05), Edmonton (Canada), 2005.

[24] R. Vaughan, B. Gerkey and A. Howard, On Device Abstractions For
Portable, Resuable Robot Code, IEEE/RSJ Int. Conf. on Intelligent
Robot Systems (IROS 2003), Las Vegas (USA), 2003, pp 2421-2427.

[25] E. Woo, B. MacDonald and F. Trépanier, Distributed mobile robot
application infraestructure, 2003 IEEE/RSJ Int. Conf. on Intelligent
Robot Systems (IROS 2003), Las Vegas (USA), 2003, pp 1475-1480.


