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Dynamic gridmaps: comparing building techniques

José M. Canas, Vicente Matellan

Abstract— Mobile robots need to represent obstacles in
their surroundings, even moving ones, to make right move-
ment decisions. For higher autonomy the robot should au-
tomatically build such representation from its sensory in-
put. This paper compares the dynamic character of several
gridmap building techniques: probabilistic, fuzzy, theory of
evidence and histogramic. Two criteria are defined to rank
such dynamism in the representation: time to show a new
obstacle and time to show a new hole. The update rules for
first three such techniques hold associative property which
confers them static character, inconvenient for dynamic en-
vironments. Two new approaches are presented to improve
the perception of mobile obstacles: one uses a differential
equation to update the map and another uses majority vot-
ing in a limited memory per cell. Their dynamisms are also
evaluated.

Keywords— Mobile robots, dynamic maps, evidential rea-
soning, Bayes theorem, fuzzy logic.

I. INTRODUCTION

NE main capability in mobile robots is the environ-

ment representation, especially representing obstacles
which the robot can collide with while it is moving around.
Historically this environment map was introduced in the
robot by the robot engineer. The advance towards increas-
ing autonomy in mobile robots has led to provide them
with mechanisms to build and autonomously update those
maps from their sensor measurements.

Besides topological maps, two paradigms can be distin-
guished in metric maps: geometric elements models [7] and
occupancy grids [4][12]. In the first one there is a set of
representation primitives (such points, corners, walls, etc)
whose position is constantly estimated from sensor infor-
mation. We use the second one, that partitions the space
in a regular net of cells. Each cell stores the belief in
its occupancy or emptiness. It doesn’t need structure in
the environment to build a convenient representation and
makes easier the fusion of data coming from different sen-
sors. Figure 1 shows an example of occupancy grid around
the robot, dark cells mean obstacle surface in them and
clear ones mean empty space.

Most literature in environment representation divides
the information in two parts attending to their nature.
First, a global map including the static obstacles such walls,
furniture, etc. allows long term path planning. Second, an
instantaneous representation, mainly the last sensor read-
ings, allows fast reaction to unexpected obstacles. The last
reading of all sensors provides an snapshot, continuously
updated, of robot surroundings’ state, as shown in right
part of figure 1. Due to its simplicity (in Pioneer robot 15
integers coming from 15 sonar sensors) and its liveliness,
this representation has been used in many cases to build
reactive behaviors upon it, for instance obstacle avoidance.
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Fig. 1. Occupancy grid example (left). Instantaneous sonar readings
(right)

In this paper we will compare several map building tech-
niques, with the aim of keeping a representation local to
the robot that implements sensor fusion to some extent and
at the same time catches the dynamism of mobile obstacles
in its surroundings. We use a grid to fuse data coming from
different sensor readings. The grid can store information
of nearby areas that suddenly become occluded by an ob-
stacle. Fusion also helps to eliminate sensor errors and to
obtain better obstacle surfaces, balancing faulty readings
with correct ones, hopefully more frequent. This counter-
balance is very convenient, especially with sonar sensors
because they are noisy and error prone.

Finally, fusion also allows identification of more complex
stimuli, that don’t fit into one single sensor reading. It al-
lows accumulation of suspects and partial evidence integra-
tion. This is crucial when a sensor measurement, by itself,
it is not concluding about the existence of such an such
stimulus. For instance the wall stimulus. The last sonar
reading it is already affected by the wall existence but from
that reading it is impossible to distinguish whether there
is a wall or another object. The accumulation of several
readings and the alignment of occupied cells will allow us
to infer that the object is actually a wall and not another
different obstacle.

The main requirement about this local representation is
that it has to be dynamic. The environment maps are
intended to be the information platform to build all robot
behaviors, including the reactive ones. So it has to timely
catch the changes in the environment, not only the new
appearing obstacles, but the new holes that appear when
the obstacles move around or a door is opened.

The robot sensors are continuously sensing the environ-
ment. The map building algorithm should be efficient
enough to run on the fly and should consume low com-
puter power to work together with decision making pro-
grams. This dynamic, continuous scenario is completely
different to static map building, where the main purpose
of maps is to store the location of static obstacles and they
can be built off line from a finite set of readings.



II. DYNAMIC APPROACHES

Map building and maintenance has been broadly dealt
with in the robot community. As it will be shown in III
most popular approaches have an implicit static nature, in
which the speed in getting a occupancy belief doesn’t mat-
ter as much as its correctness. This way, balance between
different readings aims to correct uncertainties inherent to
sensors. In dynamic maps the real state of a given cell can
change in time, so the update rule must also balance old
readings with recent ones. Belief should change very fast
if new readings pointed to a real occupancy state different
from the current one, lively showing an obstacle moving.

We propose in this section two new approaches to im-
prove the dynamism of the representation exhibited by
most popular techniques, and the metrics used to compare
such dynamism.

A. Dynamic ratings

We define two features to measure the dynamic behavior
of representation building algorithms: time to show an ob-
stacle (TSO) and time to show a hole(TSH), which give the
number of readings required to accept a change in belief,
confirming a new surface or a new empty cell. To measure
such quantities we have used test series that correspond to
sequences of independent observations impinging the same
given cell.
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Fig. 2. TSO and TSH in probabilistic approach.

For instance, horizontal axis in figure 2 holds time, each
tick represents a new sensor observation: positive bars
(40.1) mean surface evidence in the cell and negative ones
(-0.1) emptiness. All those readings seen in sequence are
the test series. In figure 2 such test series has 10 ini-
tial readings pointing emptiness and 40 following readings
pointing surface in the cell. In this case vertical axis holds
the current probability estimation, normalized to [—1,1]
(the sensor model was p(oce/obs(t)) = 0.7 and 0.3). It can
be seen that strong probability change takes 15 readings
long, from tick 10 to tick 25, that is, time to show an o0b-
stacle is 15 ticks for probabilistic approach. In the same
figure time to show a hole is measured at the end of that
test series.
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Opposite to liveliness criterion (low TSO and TSH) we
have the robustness against uncertain observations crite-
rion. The balance among readings needed to have robust
estimations requires some latency to take place, and a sin-
gle new reading doesn’t bias significantly the global belief
until it is confirmed with new ones. Whatever the map
building algorithm was, it sets a tradeoff somewhere in be-
tween this two criteria.

B. Differential equation approach

Usually map building has been divided in two steps.
First, a sensor model catches all the information about
space occupancy carried in every sensor reading. Second,
this model is used to update the current belief, fusing it
with all the prior readings. In this work sensor model’s
geometry has been ignored, focusing on the dynamic char-
acter of the update rule. For simplicity we will deal with
digital observations obs(t) = %1, -1 for emptiness and +1
for surface evidence although this approach accepts gradual
evidence according to different readings reliability.

The occupancy state of a given cell in this proposal is
a continuous variable taking values inside [Ein, Emaz]-
Enar shows surface certainty in that cell and F,, =
—Fq: means emptiness certainty. Its value is updated
using the differential equation (1), which stems in the equa-
tion proposed by Hans Moravec in [12].

e(t) = e(t — 1) + obs(t) = sat(t) = seq(t) * speed (1)

obs(t) >0 ‘Ema:c - e(t - 1)|
sat(t) = { obs(t) <0 |Enin —e(t—1)] @)

Depending on the sign of obs(t) the occupancy belief will
increase or decrease. The change amplitude depends on
several terms:
« Saturation term, sat(t) (2), truncates the increment size
to keep state within boundaries. It makes the same read-
ing to have different impact on overall belief depending on
current state. In addition, when the grid is very confident
on cell occupancy, new surface readings add almost no in-
formation and so they don’t change cell state much.
o Sequence term, seq(t), takes values in [0, 1] and is calcu-
lated over a small memory attached to each cell. If current
obs(t) appears in coherent sequence with the last readings,
that is, has the same sign then seq(t) will be close to 1.
The longer the sequence the bigger the value. If the cur-
rent reading contradicts the last observation then seq(t)
will be close to 0. This term delays the effect of surprises a
little bit until the trend is confirmed. Doing so it reduces
the influence of spurious faulty readings.
o Finally, Speed term, ranging from 0 to 1, modulates the
state change speed. It is constant for the whole grid .
Equation (1) can be seen as Integral controller from
PID family, ¢ = %(e,ey — €), where belief e is the con-
troller output and obs(t) sets the target belief reference
eref = £Epmae. The well known solution to such equation
is an exponential function e(t) = epef(l — e~ 7'). So in
this approach the belief evolves as a negative exponential
function trying to reach the current belief target, which
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can change in time. Such evolution has a time constant
% = seq(t) * speed which determines the speed of such
change: high 7 means slow belief change.

One of the advantages of this approach is that all the
parameters of the dynamism are explicitly in the equation,
and can be tuned at will, choosing a tradeoff between live-
ness and robustness criteria. For instance, tuning speed
term we can set the critical mass of readings required to
change the belief completely: smaller the term, faster the
change. Figure 3 shows the negative exponential evolution
of belief in this approach for speed parameters 1, 0.6, 0.4
and 0.25. In this case, the test series used is a sequence of
five fixed intervals alternating among occupancy and free
space evidence. It also displays that differential equation
belief takes short to reflect possible obstacle movements,
it has small TSO and TSH, so occupancy state follows
changes in reality with a short tunable delay.

In addition saturation can be observed in figure 3 when
several evidences with same sign are accumulated, so re-
current incoming readings cause shorter increments in be-
lief. It can also be seen that first contradictory observation
doesn’t have as much impact on certainty value as the sec-
ond and third ones, due to sequence term.
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Fig. 3. Latency in differential equation approach.

The proposed differential equation, by its own nature,
offers a high dynamism in the belief evolution and makes
recent readings to have systematically more influence on
current belief than older ones. Additionally we have in-
cluded a forgetting mechanism that periodically (i.e. each
second) multiplies the belief by a forgetting_term = 0.98
This mechanism pushes iteratively the belief in all cells to
the unknown state e(t) ~ 0, even in the absence of incom-
ing observations and forces them to refresh their belief with
new readings.

C. Majority voting

A second map building approach is proposed to work
on dynamic scenarios. In this one, each cell stores in
temporal order the last N readings impinging the cell:
obs(t—1),0bs(t—2),...0bs(t— N). Adding all evidences in
memory we have the accumulated evidence, ZZI\; obs(t—1),
that ranges from -N to +N. The occupancy state of the cell

is estimated with this accumulated evidence using a shap-
ing function as the one in figure 4.

Occupancy
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Fig. 4. Occupancy state estimation given the accumulated evidence

Vertical axis represents the occupancy state estimation
and horizontal axis the accumulated evidence for that cell.
The noise threshold in figure 4 shows the minimum evi-
dence required to start believing that the cell is either oc-
cupied or empty as shown in picture 5. True surface cells
or true empty ones quickly surpass that threshold as new
readings impinge them.

As new occupancy evidences are stored in the cell mem-
ory the occupancy state estimation increases linearly until
it reaches a saturation threshold as can be seen in 5. This
threshold equalizes areas where the robot has been most of
the time and the areas with less observations, but enough
to conclude something about occupancy state.

There can be several contradictory evidences on the same
cell. The balance among emptiness evidences and surface
ones is pretty clear in this approach, they have different
signs and are all added up. A single faulty reading doesn’t
bias the belief against a majority of good ones. This ap-
proach also allows different weight to each reading accord-
ing to its sign, distance, probability of specular reflection,
angle, etc. to tune such balance, but it falls outside the
scope of this paper.

As new readings are inserted in cell memory the older
ones are forgotten, so the surface belief is always fresh. Ad-
ditionally we have included a forgetting mechanism which
periodically inserts neutral observations to push old read-
ings out of memory. This way the belief tends slowly to
unknown if no new readings are obtained.

Experiments done with N = 10, noise.th = 2 and
saturation_th = 8 are displayed in figure 5, which shows
that majority voting belief can change from one end to
the other as many times as required whenever enough new
readings support that change. TSO and TSH depend on
memory size, N, and threshold values.

III. EXPERIMENTAL COMPARISON

In this section we have grouped most representative ap-
proaches to store occupancy belief and to update such be-
lief from sensor readings: probabilistic Bayesian approach,



Fig. 5. Latency in majority voting.

theory of evidence, fuzzy sets and Borenstein’s histogramic
algorithm. There are many comparisons in the literature
[5],[18],[17],[10] but none of them have explicitly evaluated
the dynamic behavior of map building algorithm.

A. Probabilistic approach

Probabilistic approach is the most popular one to build
occupancy grids. It was developed by Alberto Elfes [4]
and Hans Moravec [12]. It assumes each grid cell can only
be in one of two states, empty or occupied, and that has
to be estimated from sensor observations. The knowledge
that robot has in time ¢ about occupancy of a given cell
is stored as probability of those two states, given all the
prior sensor observations (3), that is, the current sensor
value obs(t) and the set of sensor readings up to ¢ — 1,
data(t — 1). When occupancy probability falls near 0 then
the robot is very confident that the cell is empty. On the
other hand, when yields a value close to 1 there are strong
evidences to support the belief the cell is occupied. At the
beginning all cells are initialized at 0.5 to mean absolute
ignorance about their state.

In recent probabilistic papers [10] the posterior sensor
model is used which states the occupancy probability of a
cell given certain sensor reading obs(t), i.e. p(occ/obs(t)).
For instance given a sonar measurement r, [10] uses a cone
model with p(occ/obs(t)) = 0.4 in cells closer to the sen-
sor and p(oce/obs(t)) = 0.6 in cells on that radius. For
further cells p(oce/obs(t)) = 0.5, that doesn’t provides any
information in probabilistic approach.

A.1 Update with Bayes rule

As new readings are collected by sensors the stored prob-
ability changes to integrate their information. Incremental
Bayes rule in (5) can be obtained following a development
similar to [9] and [8]. This equation uses a posterior sensor
model and probability ratios, defined in (4).

Doce(t) = p(oce/obs(t), data(t — 1)) (3)
Pmap = pocc/(l - pocc) (4)
pmap(t) = 22 (2= 1) (5)

Pprior
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If a sensor measurement provides information about cell
then the sensor model value p(oce/obs(t)) for that cell de-
termines, through peps(s), Whether the stored probability
increases of falls down after that observation. The denom-
inator pprior normalizes the effect of pyps;). When both
are equal then the new observation doesn’t give any addi-
tional information and the probability doesn’t change. If
Pobs(t) > Pprior then the stored probability increases and
decreases when pops () < pPprior-

Probability provides a reliable theory framework to make
inferences, calculi, and hypothesis with available informa-
tion. Another advantage of this approach is the incremen-
tal formulation of Bayes rule (5), that allows an efficient
implementation of the algorithm both in update time and
in required memory space. A relevant drawback is that
it doesn’t provide any confidence measurement in current
probability value.

A.2 Probabilistic dynamism

Its implicit static nature is shown when we have
got a absolutely reliable sensor reading. For instance
p(occ/obs(t)) = 0 if the cell is empty, S0 popsry = 0 and
using (5) it pushes the stored probability ratio py,qp(t) and
p(oce/data(t)) to 0, and they will not change ever regard-
less the following readings. Similarly when p(oce/obs(t)) =
1 pmap(t) is pushed to co , probability will get trapped
in p(oce/data(t)) = 1 and will not change ever. These
deadlocks are due to the static nature of probabilistic esti-
mation. When a reading is absolutely reliable then it gives
the real state, whatever the current estimation was, and
probability should not change anymore. Nevertheless this
feature doesn’t take into account that real state can change
in time.

LA AL AEARERERLA

Fig. 6. Probability inertia depends on number of evidences support-
ing current value.

We have observed that the more evidences support the
current probability value, the longer it takes to change the
probability estimation (bigger TSO and TSH). This can
be observed in figure 6, where the test series is a sequence
of alternating periods, progressively longer, of occupancy
readings and emptiness ones. The TSO to TSH ratio de-
pends on the concrete sensor model, but for symmetric
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values (around 0.5) both features hold exactly the same
number. This inertia slow down the speed in probability
change when current belief has many readings supporting
it. It seems sensible, but if we look at it carefully it is not.
Let’s imagine a cell that has been empty for a long time,
and we have got a series of 1000 independent readings con-
firming such belief. Suddenly an obstacle in the environ-
ment moves and its surface enters into that cell. After 20
new readings pointing to occupancy in the cell the probabil-
ity hasn’t changed much, it will need another 980 readings
to discount the effect of past observations. Nevertheless
20 independent readings are enough to be confident they
come from a change in real state, not from faulty readings.

o AL LU

Fig. 7. Probability evolution with symmetric sensor models
p(oce/obs(t)) =0.55, 0.6, 0.7 and 0.8.

It can be argued that stronger sensor models, with val-
ues closer to probability extremes, may speed up this dy-
namism. Experiments about this are displayed in figure 7,
where the evolution of probability estimation is shown us-
ing different symmetric sensor models, p(occ/obs(t)) =0.55,
0.6, 0.7 and 0.8 (and so p(emptiness/obst(t))=0.45, 0.4, 0.3
and 0.2 respectively). Nevertheless time to change proba-
bility are exactly the same for 0.55, 0.6 and 0.7. This la-
tency is constant regardless the sensor model. This can be
explained from equation (5) where the balance among dif-
ferent readings is determined by pops(;). Using symmetric
models around 0.5 that term holds inverse values. For in-
stance for p(occ/obs(t)) = 0.6 and 0.4 it can be proven that
Pobs(t)(0.4) = m. So multiplying by pops(+)(0.4) and
later by pops(+)(0.6) lets the probability unaffected. This
means that one surface reading discounts one free space
reading, and vice versa. If the current probability estima-
tion is supported by n observations then another n readings
pointing to the opposite state are required to discount their
effect. For stronger models the probability grows up and
decreases faster than for smoother ones, but it takes the
same time to change its mind because probability reaches
higher values.

In practice, Bayes rule (5) is not applied for probability
values close to the extremes. Due to representation limi-
tations computers can not distinguish values pretty close
to 1 from 1 itself, neither values pretty close to 0 from 0

itself. As we have described once the stored probability
reaches 1 or 0 Bayes rule doesn’t modify its value ever,
regardless the new observations. To avoid this deadlock,
due only to practical implementation, probability values
are bounded to [§, 1—4]. For instance, we used § = 10~" for
our experiments ([9] uses a 128 in the log probability) and
the output value from (5) update is truncated inside that
range. This saturation prevents the evidence accumulation
on the extremes, that would approximate even more the
probability to 1 or 0. This threshold bounds the implicit
probabilistic inertia and makes stronger sensor models ef-
fectively exhibit faster dynamism in belief changes when
they reach saturation. They reach it sooner than lighter
models. This explains smaller latency in belief change for
model p(occ/obs(t)) = 0.8 in figure 7. It is the only one
that really changes the probability according to new read-
ings because it is the only one that reaches saturation in
the test series period. The exact value of § and the sen-
sor model determine TSO and TSH, which are now more
independent of past readings.

B. Theory of evidence

Theory of evidence stems in the definition of a frame of
discernment O, that is a set of labels representing mutu-
ally exhaustive events. As described in [16] the interest-
ing labels for map building application are ® = {E, F'},
meaning that grid cells can be empty E or occupied F. A
basic probability assignment is a function m : ¥ — [0, 1],
where W is the set of all subsets of ©, in our case ¥ =
{0, E, F,{E, F}}.

A basic probability assignment is used to define the cur-
rent state of each cell, in our case four numbers. They
can be reduced to two of them (Mpap(E), Mmap(F)), as-
suming Myy,q,(0) = 0 and applying (6). (0,0) means total
ignorance, and so Mpqp(E, F) = 1. When robot can be
sure of cell occupancy then 1,4, (F) = 1, and that makes
0 the other labels. Reversely m,qp(E) = 1 when the robot
is sure a cell is empty.

A basic probability assignment also defines the informa-
tion provided by a new sensor reading, (meps(E), Mops(F)).
For instance, the geometry of sonar sensor model used in
[16] is a propagation cone: for cells inside the arc (0, %),
where n is the total number of cells in the arc, and for cells
inside the cone (p,0), where p is a equalization constant.

m(E) +m(F) +m(E,F) =1 (6)

B.1 Update with Dempster-Shafer rule

Dempster-Shafer rule allows to combine independent ev-
idences about a certain event A, mq(A) and ma(A). In our
case they will be the basic probability assignments for the
stored belief and the current sensor reading. For the event
E the update formulation follows (7) as shown in [16].

minap(E) = (mir:alp D mf)bs)(E) =

t—1,(F) t,(E t—1,(F) t,(E,F t—1,(E,F) t,(F
mmap( )mob(s : + mmai"( )mob(s : + mmap( )mob(s : (7>
1 t—1,(E) t,(F) t—1,(F)  t,(E)
— Mmap Meps =~ — Mmap Mops



One advantage of this approach is that explicitly rep-
resents ambiguity not only in sensor readings mps(E, F),
but also in stored belief my,q,(E, F'). Contradiction is also
represented: in a given period a cell can store evidences
pointing at its occupancy (m?,,,(F)) and also contradic-
tory evidences supporting free space (1my,,,,,(E)). As stated
in [13], for a single step contradiction can also be measured
as the denominator in equation (7), which is the Dempster
normalization factor. If we want summarize the belief in
only one number we will have to distill it from these two
accumulated values. Such combination will carry a certain
balance among occupancy and emptiness evidences stored

in each cell.

B.2 Dynamism of theory of evidence

Using Dempster-Shafer combination rule stored evi-
dences Mpqp(E) and mypqp(F) can increase or decrease
in time depending on new readings. As in the probabilistic
case, completely reliable readings, either surface (0,1) or
a free space ones (1,0), push the accumulated evidence to
certainty, and it will remain there forever, regardless new
observations. For the same practical limitation explained
above, stored evidences are truncated inside [4,1 — §] to
avoid the deadlock. This means that we enforce a mini-
mum uncertainty of my,q,(E, F) = 2.

In the experiments performed, using (0,0.7) and (0.7, 0),
the evolution of evidence is very similar to probabilistic one
after some initial readings. Actually those initial readings
reduce the accumulated uncertainty m,q,(E, F) to very
small values and then Dempster Shafer rule exhibits the
same dynamism as Bayes rule. The same comments about
inertia depending on supporting evidence also apply to this
approach.

C. Fuzzy maps

In the fuzzy approach, described in [17], [5], [15] and
[18], the map is stored in two not complementary global
fuzzy sets: the empty area set € and the occupied area set
o. Each cell C(z,y) has a membership degree for both sets,
expressed as a fuzzy membership pe(z,y), po(x,y).

Fig. 8.

Example of fuzzy sonar models for occupancy (left) and
emptiness information (right).

The information in a single sonar reading k is also cap-
tured in two fuzzy sets e y o, representing the emptiness
and surface evidence carried in the reading k for different
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space cells. For instance figure 8 shows the sonar sensor
models used in [17].

C.1 Update with union fuzzy operator

Global fuzzy sets are defined as fuzzy union of all local
evidences from sonar readings. For emptiness it follows
equation (8). Fuzzy union holds the associative property,
and thus equation (8) allows an incremental implementa-
tion, which is very efficient from a practical point of view.
In the classic formulation [17] several union operators were
proposed: algebraic sum (9), bounded sum (10), Dombi
and Yager operators, etc.

1=k i=k—1
E=U€i:(UEZ)U5k (8)
i=1 i=1

(AUB)(z) = pa(z) + pp(x) — pa(z) * pp(z) 9)
(AU B)(z) = min(1, pa(z) + pp(x))

One advantage of fuzzy approach, given in [5], stems in
the few assumptions required, far less than probabilistic
approach. This means that the designer has more freedom
to choose sensor model and fuzzy operator.

Occupancy and emptiness evidences are not contradic-
tory in fuzzy theory, so in general p.(z,y) # 1 — po(z,y).
This is the reason for this approach to be more robust to
spurious faulty readings than probabilistic one, as stated
in [5] and [15]. Combining both global fuzzy sets one can
separate ambiguous areas from unknown ones, that is, con-
tradictory information from absence of it. Both sets can
also be combined to summarize occupancy state, balancing
all evidences, for example F' = e No.

C.2 Fuzzy dynamism

In general, any T-conorm can work as fuzzy union op-
erator because all them satisfy commutative, associative,
monotonic properties and boundary conditions. As we will
discuss in IV associative property results in bad dynamic
behavior. In addition any non idempotent operator as al-
gebraic sum (9), bounded sum (10), Dombi and Yager op-
erators used for fuzzy union in [17], [5] and [18] exhibit an
unacceptable block when many readings are fused. With
all of them membership functions are monotonic increas-
ing. When both p. and pu, get closer to 1 then final estima-
tion for the cell state blocks forever, whatever combination
equation be.

The main problem lies in that stored evidence never de-
creases, preventing any correction. This is especially harm-
ful in dynamic maps. For instance, imagine a given cell is
initially empty, so it stores many free space evidences. If its
real state changes, then it will start accumulating surface
evidences so current belief, but prior emptiness evidences
are never forgotten. They affect the final estimation, say
F = N0, despite don’t match with current cell state any-
more. This shortcoming shows the need for a forgetting
mechanism to override the weight of such past readings.

We also claim that results given in [14] with Dombi op-
erator are possible only because there is a finite set of read-
ings and the number of them that impinge any cell is small.
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Additionally, sensor model itself (k.) and A parameter for
Dombi operator were selected looking at the size of the
data set to avoid any saturation. Such adaption is im-
possible with continuous stream of readings, and in such
scenario fuzzy evidence eventually gets blocked.

To avoid such undesirable behavior recent works in fuzzy
maps have explored other fuzzy union operators. For in-
stance, [15] uses a weighted average, biasing the combina-
tion to previous map evidence. In such case, membership
functions p. and p, can already decrease when new read-
ings are fused. Another option is to use mazx or other idem-
potent operator for fuzzy union, because they don’t suffer
from such blocking. Nevertheless, they don’t come to cer-
tainty with infinite number of partial evidences, which is a
useful feature for this kind of maps. A third alternative is
to enforce some normalization among p. and p, to recover
consistency from conflicting readings on that cell, maybe
breaking down the associativity of the maps.

D. Histogramic approach

Histogramic approach was presented by Johann Boren-
stein and Y. Koren [1]. Each cell keeps a Certainty Value
CV showing the confidence in the existence of an obstacle
in such position. It ranges from C'V,,,;, = 0 to C'V,pq, = 15.

Histogramic sonar model used in [1] has axial geometry,
it only modifies the cells located on the central axis of the
beam. For a cell over the distance already measured A(t) =
+3 and for closer cells A(t) = —1.

D.1 Histogramic update rule

Information fusion is done through and additive heuristic
update rule (11), that adds the sensor model value for the
given cell to the already stored value.

CV,;j(t+1)=CV, ;(t) + A1) (11)

In Borenstein’s work [1] there is an explicit study of dy-
namic character of the environment representation. Up-
date rule accepts that belief can change completely with a
finite number of sensor readings, as many times as required,
and independently of readings supporting the prior belief.
It defines the critical mass of readings required to accept a
belief as a solid one which determines the maximum speed
incorporating the obstacles and holes to the grid.

Another advantage is that it doesn’t need the readings be
independent, all of them are integrated. Neither hypoth-
esizes how the sensor data are distributed given a world
configuration. The balance among all of them builds a
probability distribution in the space.

D.2 Histogramic dynamism

This approach has a very clear arithmetic to balance
between free space readings and surface ones. It is given
by sensor model which gives a +3 weight for occupancy
readings and -1 for emptiness observations. For this reason,
it takes three times shorter to realize a new obstacle (TSO)
than to perceive a new hole (T'SH), as shown in figure 9.
Surface belief moves lineally inside [0, 15], with saturation
in both ends.
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Fig. 9. Latency in histogramic approach.

IV. DiscussioN

Most popular approaches in grid maps building have
been reviewed and their dynamism have been evaluated
quantitatively and focusing on its own nature. Probabilis-
tic approach, theory of evidence and fuzzy paradigms are
not suitable to represent features which can change in time,
as occupancy when there are moving obstacles. The main
reason behind this assertion is that Bayes rule, Dempster-
Shafer combination rule, and fuzzy union operator hold as-
sociative property: given a readings sequence, final state
of grid cells is the same regardless the order in which
such readings were incorporated. Dealing with probability
p(oce/r1,ra...rn) = ploce/rpn, Tr—1...r1), fuzzy union oper-
ator ¢ = |JI=} &' is associative and Dempster-Shafer rule
also complies ((mq®mz)®ms3)(E) = ((m2@ms)dmy)(E),
with and without Dempster normalization.

Such property confers an implicit static character to
them and disables them to represent dynamic features.
With dynamic features it is convenient that recent sensor
values weight more in global belief estimation than older
ones, maybe obsolete. Nevertheless, in these approaches
the influence of a reading in the estimation doesn’t depend
on its age and its influence is never forgotten. For clarifi-
cation let’s imagine a given sequence with 200 readings,
the first hundred signaling occupancy and the last hundred
pointing free space on the same cell, corresponding to an
obstacle moving away from its prior location. Let’s have
another sequencep, exactly the inverse one, correspond-
ing to an obstacle arriving to a new location previously
in empty state. Saying nothing about deadlocks, the fi-
nal cell state would be the same for both sequences due to
associative property. Common sense says that final belief
for sequence 4 should the opposite one than for its inverse
sequencep.

Bayesian probabilistic approach has an inertia propor-
tional to supporting evidences, making probability change
too slow. In general it needs as many occupancy readings
as free space readings to change the sign of its estimation.
In practice, it exhibits faster dynamism due to a represen-
tation limitation that enforces to deal only with probability
values inside [d,1 — 6]. This limitation breaks all probabil-



ity assumptions done in theoretical formulation and doesn’t
belong to Bayesian formalism itself.

Classic fuzzy operators cause unacceptable deadlock af-
ter few initial readings. It doesn’t work properly with a
continuous stream of observations. The reason for this
deadlock lies in increasingly monotonic character of some
fuzzy operators as algebraic sum and bounded addition.
Other works inside fuzzy paradigm [15] propose new oper-
ators, closer to weighted average, to overcome such serious
drawback.

One solution for inertia due to associative property is to
set a time window and calculate the current occupancy es-
timation using previous approaches but only for readings
in such window. To make it incremental maybe undo oper-
ators need to be developed to explicitly forget the influence
of an old observation.

We have proposed two new approaches, differential equa-
tion and majority voting, which do follow real dynamism
in objects, as histogramic paradigm. In addition they have
several parameters to tune its dynamic behavior. Both
distinguish among sequences and sequencep, concluding
different final states. No matter how confident the robot
could be about occupancy of a given cell, a significant num-
ber of readings in the opposite way are enough to change
the sign of current estimation. Such dynamism is essential
to represent moving obstacles properly and when the robot
itself moves with imperfect dead reckoning, even if all ob-
stacles are static. Approaches holding associative property,
that is infinite memory, enforce to keep a good localization
to avoid mixing evidences for different cells.
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