
Robot navigation combining the Gradient Method and VFF inside
JDE architecture ∗

José Maŕıa Cañas J.Raúl Isado Ĺıa Garćıa
Grupo de Robótica Grupo de Robótica Ing. Sistemas y Automática

Univ. Rey Juan Carlos Univ. Rey Juan Carlos Univ. Carlos III

ESCET ESCET Esc. Politécnica Superior

28933 Móstoles 28933 Móstoles 28911 Leganés

jmplaza@gsyc.escet.urjc.es jraul@gsyc.escet.urjc.es lgperez@ing.uc3m.es

Abstract

The integration of several behaviors into a sin-
gle versatile robot is still an active research
topic, mainly focused on architectural issues.
This paper presents our architecture JDE and
how it has been applied to solve the robot
navigation combining two well known tech-
niques: Gradient Path Planning and Virtual
Field Forces. Deliberative and reactive com-
ponents are merged together in the behavior
system, in a different way from layered hybrid
approaches. Some experiments with the com-
posed behavior are also described.

1 Introduction

Behavior generation is a very complex issue,
even harder in multi-goal robots. In order
to get useful applications in the near future,
like service robots or personal assistants, we
need to improve their behavior systems. More
than on the specific control or perception algo-
rithms, a significant part of such improvement
lies on the robot architecture. The architec-
ture integrates all the robot capabilities and
determines most of the robustness and flex-
ibility of the system. It has been an active
area for a long time, but more research is still
needed to reach an acceptable performance.

∗This work has been funded by Spanish Ministerio
de Ciencia y Tecnoloǵıa, under the project DPI2004-
07993-C03-01

Several architectures have been historically
proposed for behavior generation in robots.
Dynamic and uncertain environments forced
the evolution from symbolic AI to reactive
and behavior based systems (BBS). BBS were
a revolution [3], but have shown poor scala-
bility for complex systems. Hybrid architec-
tures have been predominant since mid 90s [4;
8], mainly those three-tiered ones that add two
layers to BBS, usually a sequencer and a de-
liberator.

Several hierarchies have been explored after
the hybrid architectures became the de facto
standard. In particular, many reviews of the
hierarchy principle have been proposed in last
years [2], trying to overcome subsumption lim-
itations. In this way, a novel hierarchical ap-
proach named JDE is presented in this paper.

Navigation is an ubiquitous problem for mo-
bile robotics, as long as the robot has to
move through its environment in order to per-
form its goals, whatever they were. For in-
stance, commercial robots like Roomba1 vac-
uums a room by following an spiral naviga-
tion. Urbano2 or Minerva robots guide people
through the different rooms of a museum with-
out colliding with people neither walls. The
autonomous harvesters of Demeter project3

travel through huge cereal crops following a
GPS route.

The goal of this work is to achieve a com-

1http://www.irobot.com/
2http://www.disam.upm.es/robotica/Web robotica/proyectos/Urbano/
3http://www.ri.cmu.edu/projects/project 149.html



plete navigation using two well known tech-
niques, Gradient Path Planning and VFF, and
combine them inside the aforementioned JDE
architecture.

Second section introduces the JDE control
architecture foundations. Third section de-
scribes the design of the navigation behavior
implemented inside JDE architecture. Several
tests and experiments have been conducted
and they are commented in fourth section. Fi-
nally, fifth section presents some conclusions of
our work.

2 JDE control and perception ar-
chitecture

In JDE stance, behavior is considered the
close combination of perception and actuacion.
Both are splited in small units called schemas
[1]. Nothing new so far. JDE proposes the
schemas can be combined in a dynamic hier-
archy to unfold the behavior repertoire of the
robot accordingly to current goals and envi-
ronment situation [7].

2.1 Schemas

JDE follows the Arkin’s definition [1]: “a
schema is the basic unit of behavior from
which complex actions can be constructed; it
consists of the knowledge of how to act or per-
ceive as well as the computational process by
which it is enacted”. In JDE, each schema has
a time scale and a state associated. They can
be switched on and off at will and they accept
some modulation parameters.

There are two types of schemas, perceptive
and actuation ones. Each perceptive schema
builds some information piece about the envi-
ronment or the robot itself, which we’ll call a
stimulus, and keeps it updated and grounded.
That’s its output. It can take as input the
value of sensor readings, or even stimuli elab-
orated by other schemas. Perceptive schemas
can be in slept or in active state.

Each actuation schema takes control de-
cisions in order to achieve or maintain its
own goals, taking into account the informa-
tion gathered by the associated perceptive

schemas. The outputs of an actuation schema
are tipically commands to actuators, and can
also be the activation of other schemas, both
perceptive and actuation ones. Such new
schemas are regarded as its children, and the
parent schema often modulates them. Actua-
tion schemas can be in several states: slept,
checking, ready and active, closely related
to how action selection is solved in JDE. Con-
trol schemas have preconditions.

The algorithm running inside the schema
contains all the task-knowledge about how to
perceive relevant items or how to act, what-
ever technique be used. JDE architecture only
imposes the interface: selective activation (on-
off) and parameters for modulation, as long as
it affects the way all the pieces are assembled
together into the system. Concurrent contin-
uous (iterative) execution is assumed, where
each schema actively maps its inputs into its
outputs.

2.2 Hierarchy

All awake schemas (checking, ready and ac-
tive) run concurrently, similar to the distri-
bution found in behaviour-based systems. To
avoid incoherent behaviour and contradictory
commands to actuators JDE proposes hierar-
chical activation as the skeleton of the collec-
tion of schemas. It also claims that such hier-
archical organization, in the ethological sense,
provides many other advantages for roboti-
cists like bounded complexity for action se-
lection, action-perception coupling and dis-
tributed monitoring. All of them without los-
ing the reactivity needed to face dynamic and
uncertain environments.

In JDE there is hierarchy as long as one
schema can activate other schemas. An actu-
ation schema may command to actuators di-
rectly or may awake a set of new child schemas.
These children will execute concurrently and
they will in conjunction achieve the father’s
goal while pursuing their own. Actually, that’s
why the father awoke such schemas, and not
others. A continuous competition between
all the actuation siblings determines whether
each child schema will finally get the active
state or remains silent in checking or ready



state. Only the winner, if any, passes to ac-
tive state and is allowed to send commands
to the actuators or spring their own child
schemas. The father activates the perceptive
schemas that provide the information needed
to solve the control competition between its
actuation children and the information needed
for them to work and take control decisions.
This recursive activation of perceptive and ac-
tuation schemas conforms a schema hierarchy.

Once the father has awaken their children it
keeps itself executing, continuously checking
its own preconditions, monitoring the effects
of its current kids, modulating them appro-
priately and keeping them awake, or maybe
changing to other children if they can face bet-
ter the new situation. So the hierarchy is dy-
namic.

2.3 Action selection

JDE decomposes the whole Action Selection
Mechanism (ASM) into several simpler action
selection contests. At each level of the hier-
archy there is a winner-takes-all competition
among all actuation schemas of such level.

Before a given schema wins the control, it
has to go through four states. First, when
the parent awakes it, it passes from slept
to checking state. Second, the schema pro-
motes from checking to ready when its pre-
conditions match current situation. Precondi-
tions define the set of situations in which such
schema is applicable and may achieve its goal,
which in JDE is named the activation region
of such schema. And third, typically the pre-
conditions of only one schema will hold and
it will move from ready to active state. In
case of several (or none) ready siblings, the
parent is called for choosing a single winner.

For instance, in figure 1 the activation re-
gions of schemas 5, 6 and 7 are displayed.
They are defined over the space of possible val-
ues for stimuli built by perceptive schemas 3
and 4. Impossible combinations are displayed
in shadow. The current situation is a point in
such space and it may fall inside an activation
region (such schema will promote to ready) or
outside. This picture is similar to state-space
diagrams in [2].

���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������

���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������

CONTROL
ABSENCE

OVERLAP
CONTROL

ACTUATION
SCHEMA 5

ST
IM

U
L

U
S 

fr
om

 S
C

H
E

M
A

 3

ACTUATION
SCHEMA 5

ACTUATION
SCHEMA 6

SCHEMA 7
ACTUATION

STIMULUS from SCHEMA 4

Figure 1: Activation regions of three schemas

The JDE ASM is goal oriented and situated.
Goal oriented because the winner lies in the set
of schemas already awaken by the father, and
no others. And situated because the environ-
ment chooses among them the most suitable to
cope with current situation. It is also fast: a
new action selection takes place at every child
iteration, which allows timely reaction to en-
vironment changes. It is also flexible, as one
schema may have priority over another in some
contexts, but not in others.

3 Position based navigation with
JDE schemas

Once foundations of JDE have been presented
we will comment in this section how we have
used it to solve the navigation of our mobile
robot combining two diferent techniques in-
side JDE: Gradient Path Planning (GPP) [5]

and Virtual Force Field (VFF) [6]. The GPP
will take care of the global navigation, and the
VFF will avoid collision with obstacles, even
with those not considered in the map. Both
have been implemented as JDE-schemas. We
have designed and implemented a small hierar-
chy of JDE-schemas, shown in figure 2, which
generates the safe navigation behavior.

The GPP has been designed inside JDE
as two separate schemas: Build-Gradient and
Follow-Gradient. The first one builds the dis-
tance field of GPP taking into account the
map of the environment. The second one is an
actuation schema which translates the recom-
mendation of the distance field at the current



Build
gradient

Follow
gradient VFF

Navigation

laserrobot speedsrobot position

Figure 2: Behavior’s schema hierarchy

robot position into motor commands. It reac-
tively executes the implicit plan contained in
the distance field, which avoids the static ob-
stacles of the environment and leads the robot
towards its destination.

The VFF has been designed inside JDE as a
single actuation schema which performs a re-
active control based on data from laser sensor
and on the recommended orientation from the
distance field. It takes into account the ob-
stacles detected by the laser sensor, regardless
they appear in the map or not.

3.1 Build-Gradient Schema

This schema is perceptive, it builds the dis-
tance field typical from GPP techique from
the occupancy map of the environment. The
occupancy map is the schema input and the
distance field is its output. The distance field
requires processing and it is seen in JDE as
a stimulus to guide further movement deci-
sions. An stimulus coming from deliberation,
not from the sensor data, but a stimulus after
all. In addition, such stimulus does not need
any further update once it is built, because it
depends only on the static map of the environ-
ment.

The distance field is the sum of two com-
ponents: an obstacle field and a target field.
The first starts at the cells on the obstacles,
setting high value to such cells and decreases
as the cells are further from them. The sec-
ond one starts at the destination point with
zero value and then expands itself like a wave

propagating through the empty space of the
environment. The wave front does not pass
through the occupied cells. It is a increas-
ing field, points near the robot destination will
have lower values than those far from it, the
further the higher. Actually, the value of such
field at a location is a measurement of the real
distance from such point to the destination
taking into account the geometry of walls and
other obstacles in the environment. A detailed
description of the algorithm can be found at
[5].

This perceptive schema is activated by the
Navigation schema, and then: it creates the
obstacle field expanding it up to a certain dis-
tance from the obstacles; it creates the target
field expanding it until it reaches the current
robot position; and it generates the reference
route following the exact gradient of the field.
The reference route is not used for navigation,
just for visualization and debugging purposes.

The position of the destination point is
a modulation parameter for Build-Gradient
schema. Once it has finished building the field,
it activates a flag and waits doing nothing. Its
father will read the flag and will sleep it in
turn, because its stimulus does not require any
further update.

3.2 Follow-Field Schema

This is an actuation schema in charge of pi-
loting the robot to the destination following
the gradient of the distance field. The field
is considered the input for the schema and its
outputs are the translation speed (V) and ro-
tation speed (W) commanded to robot motors.
The Follow-Field schema takes movement de-
cisions every 100 ms, complying the iterative
nature of schemas in JDE.

The movement decisions are reached in two
steps: first, the orientation recommended by
the distance field is computed searching for the
gradient; second, a fuzzy controller is used to
choose the right V and W commands. The
gradient is computed searching for the lowest
value of the distance field in the 5x5 vicinity
of the current position of the robot, as can be
seen in figure 3.



90º112.5º 45º67.5º

22.5º

0º

−45º

−22.5º

−68.5º−90º−112.5º−135º

−157.5º

180º

157.5º

135º

Figure 3: Gradient definition

This schema uses a fuzzy controller to
smoothly allign the robot with the field gra-
dient. The controller takes into account the
current speeds and the difference between cur-
rent robot orientation and that of the gradient.
It conducts a Proportional control on the ro-
tation speed, and it stops the robot when the
angle difference is high. It also considers the
value of the field at the current position of the
robot, as it indicates how far it is from the
destination. When the robot approaches to
the target it slows down its translation speed.

With only this schema the robot would al-
ways follow the gradient of the distance field,
searching for minimum values of the field. The
V and W commanded by this schema let the
robot to reach destination without colliding
with known obstacles, and lead it along a mini-
mum distance path. The distance field implic-
itly guides the robot away from obstacles (the
obstacle component of the field gives high val-
ues to dangerous areas) and towards the desti-
nation (the target component decreases as the
positions are closer to the goal).

The preconditions of Follow-Gradient are
set always true.

3.3 VFF Schema

This actuation schema is responsible of avoid-
ing near obstacles. The laser readings and
the distance field are the inputs of the VFF
schema. The outputs are the V and W com-
mands to robot motors. The VFF schema
takes movement decisions every 100 ms, com-
plying the iterative nature of schemas in JDE.

The movement decisions are based on vir-

Figure 4: VFF’s security area

tual forces. The obstacles detected with the
laser sensor cause a repulsive force, and the
gradient of distance field generates an attrac-
tive force. The robot will move following the
direction of the vectorial sum of both forces,
reaching a compromise solution between the
trend of collision avoidance and that of ad-
vancing towards the goal. More details can be
found at [6]. Once the global sum has been
computed a fuzzy controller is used to trans-
late that into translation and rotation speeds,
in a similar way to Follow-Field schema.

Unexpected obstacles are not taken into ac-
count by Follow-Field schema, as long as they
do not appear in the static map. In VFF
schema, both known and unexpected obstacles
are considered for movement decisions as long
as both are detected with the laser sensor.

VFF schema is activated when any obsta-
cle enters into its security area. This security
zone has been defined as a rectangle around
the robot, as shown in figure 4. It is longer
at the front because collisions in the advance
direction are more likely and difficult to avoid
than those due to side obstacles.

3.4 Combination inside JDE

The concurrent execution of Build-Gradient,
Follow-Gradient and VFF schemas provides
the safe navigation of the robot. They are
grouped together as children of the Naviga-
tion schema, which encapsulates the naviga-
tion functionality in a schema interface. The
input of the Navigation schema is the map of
the environment, its outputs are the preacti-
vation of its children schema and it accepts
the destination point as modulation parame-
ter. Its preconditions hold whenever the cur-



rent robot position is further than a certain
proximity threshold from the destination.

If someone wants the robot to reach certain
destination, it has to awake the Navigation
schema and modulate it through its destina-
tion parameter. In our experiments such ac-
tivation and parameter come from the human
operator through the graphical interface of the
application.

The Navigation schema perfoms an itera-
tion every 200 ms. When active, it initially
captures the map of the enviroment in which
the robot will operate and stores internally as
an occupancy grid. Then it activates Build-
Gradient schema and waits until it finishes
the distance field. After that, it deactivates
the Build-Gradient schema and awakes both
Follow-Gradient and VFF actuation schemas,
putting them in checking state.

It continually checks its own preconditions
and performs the arbitration among its actua-
tion children. The arbitration code lies inside
the Navigation schema, but it is called when-
ever one of its children, Follow-Gradient or
VFF, detects the control collision. As we have
seen, the Follow-Gradient preconditions are al-
ways true, so it will really reach the active
state whenever VFF keeps itself in checking
state. When the security zone is invaded, VFF
will pass to ready state and will detect a con-
trol collision with Follow-Gradient. Arbitra-
tion in Navigation schema has been coded to
give priority to VFF over Follow-Gradient, so
the first one will upgrade to active and the
second one downgrade to ready while there is
an obstacle in the security area.

This is an example of hierarchy reconfigu-
ration depending on situation. The behav-
ior generation system of the robot usually has
Navigation and Follow-Gradient schemas ac-
tive, but when a close obstacle appears in the
robot neighborhood, it reconfigures itself to
Navigation and VFF, changing the way the
robot behaves.

In addition, Build-Gradient and Follow-
Gradient schemas are an example of how delib-
eration can be inserted inside JDE. Despite its
processing may take some time, its use must be
reactive, and must provide motor commands

like reactive schemas, not abstract data.

4 Experiments

The presented hierarchy of schemas for navi-
gation has been programmed and tested un-
der different conditions. We have ordered the
robot towards close, medium and remote des-
tinations inside an indoor scenario, making
it to traverse corridors, rooms, open doors,
etc., with static and unexpected dynamic ob-
stacles around. The experiments have been
done using the SRIsim and the Stage simula-
tors. Both are fully supported in current JDE
software implementation. Some of the experi-
ments have been recorded in videos, and they
are available at the web4.

4.1 Typical execution

In figure 5, we can see a typical execution of
the application. The grey surface is the dis-
tance field, the darker the higher value of the
field. The destination is located in the top
right room of the figure. The yellow line is
the reference route, generated by following the
gradient of the distance field. The green pixels
are the points where the robot was directed by
the Follow Gradient schema, and the orange
points are the points where the robot was di-
rected by the VFF schema.

As we can see in figure 5, the robot finally
reach its destination and most of the time is
guided by Follow-Gradient. Only in narrow
passages the VFF schema gains control. The
real position of the robot was provided all the
time by the simulator, as it is required to com-
pute the right gradient. The average speed
along the typical run was 1’3 m/sec, reach-
ing 1’8m/s peaks in obstacle straight free areas
like corridors.

4.2 Avoidance of unexpected obstacles

We have also tested the schema hierarchy
when unexpected obstacles like people, chairs,
bins, etc. disturb the robot navigation. A

4http://gsyc.escet.urjc.es/jmplaza/research-
navigation.html



Figure 5: Typical Execution

second robot in the Stage simulator was man-
ually teleoperated to interfere the autonomous
robot running JDE.

Figure 6: Avoidance of unexpected obstacles

In figure 6 we can see how the autonomous
robot deviated from reference route to avoid
collision with the unexpected obstacle. Cor-
rect alternance between schemas is also vis-
ible in the orange trajectory pixels. The
VFF schema enters into scene the three times
(marked in the figure) when the teleoperated
robot interfered the autonomous one. For in-

stance, before leaving the room of the start-
ing point, teleoperated obstacle was placed in
front of the autonomous robot, making VFF
schema to take control. Once the robot passed
over the obstacle, security zone was no longer
invaded, and Follow Gradient gets the control
back (green pixels), returning to the reference
route.

4.3 Navigation refinements

The experiments performed moved us to im-
prove the original algorithm, not its archi-
tectural design but the algorithms inside the
schemas.

Figure 7: Movement using 3x3 (left) and 5x5

(right) vicinities

First, when computing the gradient of the
distance field we tried with the 3x3 and the
5x5 vicinity around the current position of the
robot. The 5x5 vicinity provides smoother
movements than 3x3, as it lets the robot to
react sooner to changes in the field and then
to start braking or turning before. This can be
seen in figure 7, where 5x5 vicinity (right) gen-
erates smoother trajectories than 3x3 vicinity
(left). The robot adjusts better to the refer-
ence route as it has more time to react.

Figure 8: Movement without (left) and with
(right) drive control

Second, we implemented a limitation in the
speed increment from one schema iteration to
the next, avoiding too sharp accelerations. As



can be seen in figure 8, without this drive con-
trol (left) the robot tried to get the top speed
in very short time and the inertia deviated the
robot from the reference route. With drive
control (right) the robot closely followed the
reference route.

Figure 9: Movement without (left) and with

(right) speed control

Third, a speed control slow down the robot
when it gets close to final destination. The
value of the field is a good approximation of
the distance to goal. This speed control was
inserted in the fuzzy controller of Follow Gra-
dient schema. As can be seen in fig 9, with
the speed control (right) the robot approaches
properly to destination, avoiding the effects of
the inertia like missing a door or zigzag at the
end of the route (left).

5 Conclusions

An architecture for behavior generation
named JDE has been presented. It proposes a
collection of perceptive and actuation schemas
to generate robot behavior. Such collection
is organized as a hierarchy that can change
its shape according to the situation. The ac-
tion selection is decomposed into several small
competitions, bounding its complexity.

The navigation behavior of an indoor robot
has been designed inside JDE. It combines two
well known techniques: the deliberative ap-
proach Gradient Path Planning and the re-
active Virtual Field Force algorithm. Both
have been implemented with JDE-schemas,
and combined in a small hierarchy. The hi-
erarchy reconfigures itself in the presence of
close obstacles.

The robot exhibits good performance in the
experiments: it reaches the remote target and
properly avoids expected and unexpected ob-
stacles, even dynamic ones.

We are currently working to probe the de-
scribed navigation behavior in the real robot.
We are also introducing new behaviors into
the pool, to test JDE habilities to integrate
a larger number of them.

References

[1] Arkin R.C., Motor schema-based mobile
robot navigation, Int. Journal of Robotics
Research 8(4):92-112, August 1989.

[2] Arkin R.C., Fujita M., Takagi T. and
Hasegawa R., An ethological and emotional
basis human-robot interaction, Robotics
and Autonomous Systems 42:191-201,
2003.

[3] Brooks R., A robust layered control sys-
tem for a mobile robot, IEEE Journal of
Robotics and Automation, 2(1): 14-23,
March 1986.

[4] Simmons R., Goodwin R., Zita K., Koen-
ing S. and O’Sullivan J., A layered archi-
tecture for office delivery robots, Proc. of
the ACM Int. Conf. Autonomous Agents,
pp 245-252, Feb 1997.

[5] Konolige K., A gradient method for real
time robot control, Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Sys-
tems (IROS-2000), pp 639-646, Nov 2000.

[6] Borenstein J. and Koren Y., The vector
field histogram fast obstacle avoidance for
mobile robots, IEEE Journal of Robotics
and Automation, 7(3):278-288, June 1991

[7] Cañas J.M. and Matellán V., Dynamic
schema hierarchies for an autonomous
robot, Lecture Notes in Artificial Intelli-
gence vol 2527, pp 903-912, 2002.

[8] Konolige K. and Myers K.L., The Saphira
architecture for autonomous mobile robots,
Artificial Intelligence and Mobile Robots:
case studies of successful robot systems, pp
211-142, MIT Press, 1998.


