
X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES 1

Follow ball behavior for an humanoid soccer player
Francisco Martı́n, Carlos E. Agüero and José Marı́a Cañas

{fmartin,caguero,jmplaza}@gsyc.es.

Abstract—This paper describes a simple behavior based ap-
proach that makes an humanoid robot search and go to a ball.
This behavior is composed by several execution units called
components, which are activated and modulated by another
ones in an activation tree. The main goals of this behavior
are: Reactive control which hides robot complexity, component
reutilisation, communications among pairs and component ac-
tivation/deactivation/modulation by a parent component. This
behavior has been tested in the RoboCup domain, in simulator
and in real robot, and it is the initial behavior for a complete
soccer player.

Index Terms—Autonomous robots, soccer, behavior architec-
tures

I. INTRODUCTION

The focus of robotic research continues to shift from indus-
trial environments, in which robots must perform a repetitive
task in a very controlled environment, to mobile service robots
operating in a wide variety of environments, often in human-
habited ones. There are robots in museums [4], domestic
robots that clean our houses, robots that present news, play
music or even are our pets. These new applications for robots
make arise a lot of problems which must be solved in order
to increase their autonomy. These problems are, but are not
limited to, navigation, localisation, behavior generation and
human-machine interaction. These problems are focuses on
the autonomous robots research.

In many cases, research is motivated by accomplish a
difficult task. In Artificial Intelligence research, for example,
a milestone was to win to the chess world champion. This
milestone was achieved when deep blue won to Kasparov
in 1997. In robotics there are several competitions which
present a problem and must be solved by robots. For example,
Grand Challenge propose a robotic vehicle to cross hundred of
kilometers autonomously. This competition has also a urban
version named Urban Challenge.

Our work is related to RoboCup. This is an international
initiative to promote research on the field of Robotics and
Artificial Intelligence. This initiative proposes a very complex
problem, a soccer match, in which several techniques related
to these field can be tested, evaluated and compared. The long
term goal of the RoboCup project is, by 2050, develop a team
of fully autonomous humanoid robots that can win against the
human world champion team in soccer.

This work is focused in the Standard Platform League. In
this league all the teams use the same robot. This is a key
factor because it makes to effort in the software aspect rather

Robotics Lab. Universidad Rey Juan Carlos.
This work has been partially founded by the Ministerio de Ciencia y
Tecnologı́a, in the COCOGROM project: DPI2007-66556-C03-01, by the
Comunidad de Madrid in the RoboCity 2030 project: S-0505/DPI/0176.

Fig. 1. Nao robot playing soccer

than in the hardware. This is why many people call this league
a software league. Up to 2007 the robot chosen to play in this
league was Aibo robot, but since 2008 there is a new platform
called Nao (figure 1). Nao is a biped humanoid robot, and this
is the main difference with respect Aibo, that is a quadruped
robot. This fact has a big impact in the way the robot moves
and its stability while moving. The size of both robots are not
the same. Aibo was 15 cm tall and Nao is about 55 cm tall.
This is a big difference in the way the perception is made.
In Aibo the perception is 2D because the camera was very
close to the floor. Robot Nao may perceive in 3D because the
camera is at a higher position.

Nao robot is a very attractive comercial platform, where
changes in hardware are not possible. Manufacturer provides
a complete API to move the robot and access the sensors.
Despite of this, many problems must to be solved before
having a fully featured soccer player. First of all, the robot
have to obtain information from the environment using mainly
the cameras. It has to detect the ball, goals, lines and the other
robots. With this information the robot has to self-localise and
decide the next action: move, kick, search another object, etc.
All these processes are controlled by a behavior architecture,
that organizes how and when the information is perceived, and
how to generate the actions to react to any situation.

During RoboCup matches the most basic behavior is to
perceive the ball and walk close to it. This behavior is
very basic, but all teams are trying to achieve this goal in
this new platform. Every team has experience in these type
of behaviors. They have solved this problem for quadruped
robots in the Four Legged League, but its constraints and
requisites are different for this robot. In this work we propose

2 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

a FollowBall behavior that tries to achieve this goal. This
preliminary work will let us to start designing a behavior based
architecture approach to generate a soccer player behavior
by solving this problem. The goal is to develop a complete
architecture where behavior can be easily generated by reusing
components. Furthermore, behaviors must be reactive in order
to be adequate to make a robot play soccer in the Standard
Platform League at RoboCup, where games are very dynamic.

This paper is organised as follows: First of all, in section
II we will present relevant previous works which are also
focused in robot behavior generation and following behaviors.
In section III we will present the Nao and the programming
framework provided to develop the robot applications. In the
IV we will describe the architecture where the components
are organized and their properties. An example of these
components and a simple functional hierarchy is shown in
section V. In section VII we will present the conclusion of
this work.

II. RELATED WORK

In this section we will describe previous works that tries
to solve robot behavior generation and following behaviors.
First of all, we will describe classic approaches to generate
robot behaviors. These approaches were successfully tested in
wheeled robots. Next, we will present more related approaches
to RoboCup domain. Finally, we will describe a following
behavior that uses a very related approach to the one used in
this work.

There are a lot of approaches which tries to solve the
behavior generation problem. One of the first successful works
on mobile robotics is Xavier [1]. The architecture used in
this work was made up of four layers: obstacle avoidance,
navigation, path planning and task planning. The behavior
arises from the combination of these separate layers, each one
with an specific task and priority. The main difference with
respect our work is this separation. In our work there are not
layers with a specific task, but the tasks are decomposed into
components in different layers.

Another approach is [2], where it was proposed an hybrid ar-
chitecture where behavior were divided into three components:
deliberative planning, reactive control and motivation drives.
Deliberative planning did navigation tasks. Reactive control
provided the necessary sensorimotor control integration for
response reactively to the events in its surroundings. The
deliberative planning component had a reactive behavior that
arises from a combination of schema-based motor control
agents that respond to the external stimuli. Motivation drives
were responsible for monitoring the robot behavior. This work
had in common with our in the idea of behavior decomposition
into smaller behavioral units.This behavior unit was explained
in detail in [3].

In the RoboCup domain, Saffiotti [5] presented the Think-
ingCap architecture. This architecture was based in a fuzzy ap-
proach, extended in [10]. The perceptual and global modelling
components manage information in a fuzzy way and were used
to generate the next actions. This architecture was tested in the
four legged league RoboCup domain. This work is important

for the work presented in this paper because this was the
previous architecture used in our RoboCup team. Using this
approach we developed a follow ball behavior. This behavior
was made using LUA programming language and reads ball
position from local perception data maintained by a perception
module and set velocity values to the locomotion module.

A hierarchical behavior-based architecture was presented in
[6]. This architecture was divided in levels. The upper levels
set goals that the bottom level had to achieve using information
generated by a set of virtual sensors, which were an abstraction
of the actual sensors.

Another successful approach [7] divides their architecture in
four levels: perception, object modelling, behavior control and
motion control. The execution starts in the upper level perceiv-
ing the environment and finishes at low level sending motion
commands to actuators. The behavior level was composed by
several basic behavior implemented as finite state machines.
Only one basic behavior could be activated at same time. These
finite state machine was written in XABSL language [11],
that was interpreted at runtime and let change and reload the
behavior during the robot operation.

Finally, in [8] a follow person behavior was developed by
using an architecture called JDE [9]. This reactive behavior
arises from the activation/deactivation of components called
schemes. This approach has several similitudes with the one
presented in this work.

III. NAO AND NAOQI FRAMEWORK

The behavior developed in this work has been tested using
the Nao robot. Nao is a fully programmable humanoid robot.
It is equipped with a x86 AMD Geode 500 Mhz CPU, 1 GB
flash memory, 256 MB SDRAM, two speakers, two cameras
(non stereo), Wi-fi connectivity and Ethernet port. It has 25
degrees of freedom. The operating system is Linux 2.6 with
some real time patches.

Behavior design must be implemented in software. In this
section we will describe the underlying software mapping the
robot hardware. FollowBall behavior has been programmed
on top of it. This underlying software is called NaoQi, and
provides a framework to develop applications in C++ and
Python.

NaoQi is a distributed object framework which allows
several distributed binaries, each containing several software
modules to communicate together. Robot functionality is en-
capsulated in software modules, so we can communicate to
specific modules in order to access sensors and actuators.

Each binary, also called broker, runs independently and is
attached to an address and port. Every broker is able to run in
the robot (cross compiled) or in the computer. In this way we
can develop a complete application that is composed by several
brokers running in a computer and others in the robot, that
communicate among them. This is useful because high cost
processing tasks can be done in a high performance computer
instead of the robot, that is computationally limited.

The broker’s functionality is performed by modules. Each
broker may have one or more modules. Actually, brokers only
provide some services to modules to accomplish their tasks.

MARTÍN, AGÜERO Y CAÑAS : FOLLOW BALL BEHAVIOR FOR AN HUMANOID SOCCER PLAYER 3

Fig. 2. MainBroker (orange) and others brokers(violet). Each one with their
modules (green)

Fig. 3. MainBroker and some modules it contains

Brokers deliver call messages among modules, subscription to
data and so on. They also provide a way to resolve module
names in order to avoid specifying module’s address and port.

A set of brokers are hierarchically structured as a tree, as
we can see in figure 2. The most important broker is the
MainBroker. This broker contains modules to access to robot
sensors and actuators, and other modules that provide some
interesting functionality (figure 3). We will describe some of
the modules intensively used in this work:

• NaoQi provides a thread-safe module for sharing infor-
mation among modules, called ALMemory. By its API,
modules write data in this module, which are read by
any module. NaoQi also provides a way to subscribe and
unsubscribe to any data in ALMemory when it changes
or periodically, selecting a class method as a callback
to manage the reception. Besides this, ALMemory also
contains all the information related to the sensors and
actuators in the system, and other information. In this
work we have used this module as a blackboard where
any data produced by any module is published, and any
module that needs a data reads from ALMemory to obtain
it.

• In order to move the robot, NaoQi provides the ALMotion
module. This module is responsible for the actuators of
the robot. This module’s API let us move a single joint,
a set of joints or the entire body. The movements can
be very simple (p.e. set a joint angle with a selected
speed) or very complex (walk a selected distance). We
use these high level movement calls to make the robot
walk, turn o walk sideways. As a simple example, the
walkStraight function is:

void w a l k S t r a i g h t (f l o a t d i s t a n c e ,
i n t pNumSamplesPerStep)

This function makes the robot walk straight a
distance. If a module, in any broker, wants to make
the robot walk, it has to create a proxy to the ALMotion
module. Then, it can use this proxy to call any function
of the ALMotion module.

• The main information source for this work is the camera.
In NaoQi the images are fetched by NaoCam module.
This module uses the Video4Linux driver and makes the
images available for any module. If a module wants to
obtain images, it has to create and configure a video
proxy with an image size, a color space (HSV, RGB,
YUV, YUV422) and a frame rate. When it is con-
figured, the module that want an image, only has to
call to getImageRemote() (when running off board)
or getImageLocal() (running on board) to get the
image. These functions return a structure with the image
properties (timestamp, width, height, etc.) and the image
data itself.

As we said before, each module has an API with the func-
tionality it provides. Brokers also provide useful information
about its modules and their APIs via web services. If you use
a browser to connect to any broker, it shows all the module it
contains, and the API of each one.

When a programmer develops an application composed by
several modules, he decides to implement it as a dynamic
library or as a binary (broker). In the dynamic library (plugin)
way, the modules it contains can be loaded by the MainBroker
as its own module. This is faster from point of the view of
communication among modules . On the other hand, if any of
the modules crashes, then MainBroker crashes, and the robot
falls to the floor. To develop an application as a separate broker
makes the execution safer. If the module crashes, only this
module is affected.

The use of NaoQi framework is not mandatory, but it is
recommended. NaoQi offers high and medium level APIs
which provide all the methods needed to use all the robot’s
functionality. The movement methods provided by NaoQi send
low level commands to a microcontroller allocated in the
robot’s chest. This microcontroller is called DCM and is in
charge of controlling the robot’s actuators. Some developers
prefer (and the development framework allows it) do not use
NaoQi methods and use directly low level DCM functionality.
This is much laborious, but it takes absolute control of robot
and allows to develop an own walking engine, for example.

The work exposed in this paper uses extensively NaoQi
Framework. In fact, the functionality developed is made by a
set of components, which are actually NaoQi modules with a
defined common interface. In the next section we will describe
in detail these elements.

IV. BEHAVIORAL ARCHITECTURE

Our approach is based on dividing the behavior in sev-
eral components. These components can be activated and
performs an iterative task at a controlled frequency. They
may send commands to actuators, process data from sensors,

4 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

or activate/deactivate and modulate other components. The
components are organised in a hierarchy in order to make
a complete behavior. High level component activate low level
components, which run concurrently. The components use a
common shared memory space to read its inputs and write its
outputs. The upper level component connects the output with
the inputs of the modules it activate. This way a low level
component could be reused by another high level components
which could decide to connect the low level components in a
different way.

The components developed in this work are functional ele-
ments which perform a task. In our particular goal, approach to
ball, there are several components that run together to achive
this goal: a component that detects the ball, a component that
makes the robot turn, another that moves the head in order to
center the perceived ball in the camera image, etc.

These components are developed as separated NaoQi mod-
ules. Their interfaces are available to other modules and they
are able to use all the functionality that NaoQi provides.

Components can be activated or deactivated when its func-
tionality is needed. Two or more components can be acti-
vated if they do not use the same actuator. A component
can obtain information from sensors, call to motion methods
or activate/deactivate other components. When a component
activates/deactivates other components, it also modulates their
execution.

NaoQi has not a main() function where we may imple-
ment our control cycle. To control the components execution
we have used a synchronisation mechanism provided by
NaoQi. In section III we described the module ALMemory
which stores information about the robot and the modules.
As we said before, we can subscribe and unsubscribe to
changes in the data stored in ALMemory, and specify the
maximum frequency we want to read a data when it changes.
There is a variable called Motion/Synchro that contains
the time (in milliseconds) since the robot started up. Each
component in our architecture subscribes to this data when
it is activated, specifying the frequency freq it wants to
read Motion/Synchro. We have associated the callback
method step() to attend this events. The method step()
will be the module control cycle. In this way, step() will
be executed each 1

freq milliseconds. When component is
deactivated, it simply unsubscribe to Motion/Synchro to
finish executing.

Communications among modules use extensively the mod-
ule ALMemory. Each module subscribes to some variables
and writes in another variables. When a component activates
two or more components, it is in charge of modulating them,
often connecting directly one component’s output with other
component’s inputs.

Figure 4 shows an example of module activation and
modulation. In any moment any module activates Module_A
and modulates its execution frequency by writing in
the variable Module_A/freq, stored in ALMemory, a
value, in this case 500. This means that Module_A
will excute step method one time each 500 millisec-
onds. When Module_A is activated, it reads the vari-
able Module_A/freq to adjust itself its frequency. In

Fig. 4. Example of module activation and modulation

any time, Module_A activates Module_C and Module_B
and modulates their frequency by setting Module_C/freq
and Module_B/freq respectively. Module_A is a module
that reads data from a sensor, processes this information
and writes the result in Module_C/outvar. Module_B
reads Module_B/invar value and depending on this
value, sends commands to an actuator. Module_A estab-
lishes a direct communication from Module_C/outvar
to Module_B/invar in order to make these modules to
cooperate.

V. FOLLOWBALL BEHAVIOR DESIGN

Using the component philosophy presented in the previous
section, we have developed a behavior that makes the robot
look for an orange ball. This is a basic behavior for playing
robot soccer and involves perception and actuation.

To achieve this goal we have developed a set of
components. First of all, a perception component called
BallPerception that obtains an image from camera and
processes it to detect the ball and go for it. The actuation
is divided in three components: Head component moves the
head, Turn component makes the robot turn left or right
and GoStraight makes the robot walk straight. These two
last components can not be active at same time because they
manage the same actuators (all the body excepts the head).

A. BallPerception component

This component is in charge of perceiving the ball and
obtain its position in an image. As the other components,
it has to read the BallPerception/freq variable from
ALMemory and sets its execution frequency. This value in
this method is critical because the frequency of the overall
system depends on the time spent in processing an image,
and it is inversely proportional to the behavior reactiveness.

The image is obtained in HSV colour space and processed
by a simple threshold filter to detect the orange pixels. The
gravity center of the orange pixels determines the ball position.
The ball position (x, y) in the image is normalised in the
([−1, 1], [−1, 1]) range (as shown in figure 5). It is written
in the BallPerception/x and BallPerception/y
variables. Also the amount of orange pixels is stored in

MARTÍN, AGÜERO Y CAÑAS : FOLLOW BALL BEHAVIOR FOR AN HUMANOID SOCCER PLAYER 5

Fig. 5. BallPerception module processing

BallPerception/n to take into account when the orange
ball is not present in the image and its size.

B. Head component

This component moves the yaw and pitch motors in
the robot’s neck. It reads two variables form ALMemory:
BallPerception/pan and BallPerception/tilt,
both in the [−1, 1] range. This value is used as a error value by
two PID components that calculate the speed of the actuator.
A value near 0 means the motors must stop, and a value near
1 means full speed.

This module frequency depends on the reactivity wanted for
this module, which is directly related with the frequency that
its input variables are updated. For example, if the information
source for this module is the BallPerception module
output, both modules should have similar frequency.

C. Turn component

This component makes the robot turn in a direction hiding
the complexity of sending motion command regularly to
ALMotion module (which is the component provided by
NaoQi to manage the robot movements).

This component reads one variable Turn/rotation, that
is in [−1, 1] range. This value is, in the same way of Head
component, used as a error value by one PID component. An
error value near −1 makes the robot turn on the left, 1 makes
it turn on the right and 0 stops the robot. Intermediate values
modulates the turn speed.

D. GoStraight component

This component makes the robot walk straight in the phi-
losophy of the previous component. It hides the ALMotion
module complexity and let us use it in the way we set the
displacement as a velocity.

This component reads variable
GoStraight/translation in [−1, 1] range. Once
again, this value is used as a error value by one PID
component to calculate the speed. An error value near −1
makes the robot go back, 1 makes it go ahead and 0 stops
the robot. Intermediate values modulates the speed.

Fig. 6. Finite state machine that implements FollowBall component

Fig. 7. Activation and connection scheme in STOP state

E. FollowBall component

The FollowBall behavior is developed as a component is
the same way of the previous ones. It is implemented as a
finite state machine, whose state is evaluated each execution
step. This finite state machine is shown in figure 6. There are
three states: STOP, TURN and WALK. In each state we have
some components activated. When a transition from an state to
other occurs, we active or deactivate components. In all states
Head and BallPerception components are active. This
makes the robot center the ball in the image every time. The
conditions for state change may depend on the head position.
If the neck pan is near 0, the ball is in front of the robot and
it is in WALK state. If the ball is in the image and the neck
pan is high (left or right), we must face the ball. This is made
by switching to TURN state. Robot stops, in the STOP state,
when the ball in front on him and it is near.

• In STOP state we have activated only the Head and
BallPerception components . Any other compo-
nents previously activated whenentering into STOP state
is first deactivated. In this and the other states, the connec-
tion scheme among these two components are similar. In
figure 7 the activation and connection scheme are shown.
In this representation we do not show the variables re-
lated to frequency for clarity. The BallPerception/x
variable is directly connected to Head/pan variable and
the BallPerception/y variable is directly connected
to Head/tilt variable. Note that the frequency (rep-
resented in the oriented circles in each component) is
different depending on the reactiveness needed in each
component.

• In TURN state, represented in figure 8, we have added
Turn component to our set of activated components. In

6 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

Fig. 8. Activation and connection scheme in TURN state

Fig. 9. Activation and connection scheme in WALK state

this case we modulate the Turn component by writing
pan/MAX PANANGLE in Turn/rotation vari-
able.

• In WALK state, represented in figure 9 we
activate GoStraight component and modulated
by writing tilt/MAX TILTANGLE in
GoStraight/translation variable.

So, the conditions for state change depend on the head
position. If the neck pan is near 0, the ball is in front of
the robot and it is in WALK state. In this state we activate
GoStraight component and it is modulated by writing the
neck tilt value on GoStraight/translation variable.
When the ball is very near, we decide to stop.

If the ball is in the image and the neck pan is high, we
must turn in order to align the Nao body to the head bearing.
This is made by going to TURN state. In this state we activate
the TURN component and modulate it with the neck pan value
writing in Turn/rotation. When neck tilt value is high,
the robot ball is supposed to be very near from robot, and it
stops.

VI. EXPERIMENTS

To validate the approach presented in this paper we have
tested the FollowBall behavior both in the simulator and in
the real Nao robot. Experiments in simulator were useful

Module Frequeny
BallPerception 10 Hz

Head 10 Hz
Turn 5 Hz

GoStraight 5 Hz
FollowBall 2 Hz

TABLE I
MODULE ITERATION FREQUECES USED IN EXPERIMENTS.

to validate the behavior components and its interaction. We
believe this test is useful to detect errors in components
interaction, but the definitive test must be carried out in the
real robot.

NaoQi works on top of real Nao hardware , on top of
Webots1 or on top of Microsoft Robotics Studio2(MSR). We
use Webots because it is more complete than the other option.
MSR is a simulator that displays a simulated robot which only
reads the joint positions from ALMemory. It does not provides
images from the robot cameras neither sensor information.
On the other hand, Webots provides the synthetic images
taken from the simulated robot cameras and other sensory
information.

In this case, a Webots project is provided to use Nao robot
by manufacturer. When Webots starts up, a MainBroker starts
in the local computer. This MainBroker takes the images
and sensor information from the simulator, and the motion
commands are translated to the simulated robot. The only
aspects not supported in webots are the bumpers and the leds.
The same code developed for the robot works in simulator
with no changes.

The frequency set up for the components is shown in table
I. We have not a geometric 2D (or 3D) local space perception
of ball that updates relative ball coordinates with each robot
movement in order to walk to it. Instead of a local perception
space, we directly use head pan and tilt to decide the turn and
walk activation. This is why the ball tracking with the head
must be as fast as possible. The time spent in calculating the
ball position in the image is 80-95 milliseconds in real robot.
This is why the BallPerception and Head module has
the same frequency, and it is the fastest possible. Decisions
about walking does not need such frequency, and it is set to
5 Hz.

The figure 10 shows a typical sequence in the simulator in
which the FollowBall behavior is performed. In all the images
the robot tracks the ball with its head. When the head pan
angle is high the robot is in TURN state, turning in order to
face the ball, as we can see in the snapshot labeled as 1. The
snapshot 2 of the same figure, the head pan angle is almost
0 and the active state is WALK. This makes the robot walk
straight towards the ball.

In the figure 11 the real robot performs the FollowBall
behavior. As in the previous test in simulator, in every moment
the robot tracks the ball with its head. It starts in STOP state
and transits to the TURN state to face the ball. When head
pan angle is low, the robots walks in order to reach the ball.

1http://www.cyberbotics.com/
2http://msdn.microsoft.com/en-us/robotics/default.aspx

MARTÍN, AGÜERO Y CAÑAS : FOLLOW BALL BEHAVIOR FOR AN HUMANOID SOCCER PLAYER 7

Fig. 10. FollowBall beharior in Webots simulator

Fig. 11. FollowBall behavior in the real robot

One of the main differences between real and simulated
robot is the limited computational time available to do all
the processing. Much of this time is spent in fetching the
camera image. For this reason, our module is compiled as a
MainBroker plugin in the real robot: This let us to speed up the
access to camera images because memory access mechanism
is used instead of SOAP mechanism. Using this mechanism
our module consumes about 94% of the available CPU time
and 97% of the total amount of memory. NaoQi consumes
about 30% of the available CPU time and 64% of the total

amount of memory when idle.
In these tests we have used the same code both for simulator

and robot. In every moment we can test in the simulator
the code developed for the real robot, but usually the code
developed in the simulator does not work so well in the real
robot, and further development is needed. Besides that, testing
the code in the simulator saves a lot of time and avoids to
make some mistakes easy to detect in the simulator, but hard
to detect in the real robot.

As we have shown in these tests, the approach presented
in this paper is effective to achieve the goal proposed on it.
This work has been also tested in a real competition, in the
German Open Competition that took place in Hannover, April
2009.

VII. CONCLUSIONS

This work let us got familiar with the new framework for
Nao programming named NaoQi, in order to learn how to use
the robot locomotion and perception. Nao is a new hardware
platform with promising capabilities. Its functionality, char-
acteristics and low price (for this type of robots) make it a
promising humanoid platform for the next years.

In this paper a FollowBall behavior composed by several
components has been presented developed inside a behavior
based software architecture. In this behavior we have im-
plemented a perceptive component (FollowBall) to de-
tect the ball, 3 actuation components (Head, Turn and
GoStraight) and a component that using a finite state
machine selects the component to be active in each moment
and modulates it (FollowBall).

These components can be activated by another components,
in a component activation hierarchy. When a component is
activated, it performs an iterative simple task at a configured
frequency. Components that activate another components also
modulate its behavior and connect the results produced by
a component with another component input. We have shown
how the component performs its task. It can be very simple or
it can implements finite state machine. Its task can be reading
from a sensor, sending command to an actuator or activating
and modulating another components.

We have extensively used the NaoQi framework to read
information from sensors and use the robot actuators. We also
have used the ALMemory module as a blackboard where the
components can communicate among them, receive modula-
tion from another components or set modulation to another
ones.

Using this approach we have developed a FollowBall be-
havior that uses some component in different ways, showing
how a module can be reused for various different tasks. This
behavior is reactive to the changes in the ball position.

There are several videos3 that show this behavior in the
simulator and in the real robot, proving the robustness of
this approach when facing to real world conditions. The
participation in German Open Competition 2009 (Hannover)
demonstrates the viability of this approach, in which the follow

3http://www.teamchaos.es/index.php/URJC#FollowBall

8 X WORKSHOP DE AGENTES FÍSICOS, SEPTIEMBRE 2009, CÁCERES

ball behavior was completed by other states to search and kick
the ball.

As future lines, we are planning to develop new compo-
nents and reuse the ones presented in this work to obtain a
search ball behavior and a kick behavior. Perception will be
redesigned to perceive more elements in the field and more
efficiently. Perception will also be redesigned to perceive the
relevant landmarks to develop a self-localization method in
order to implement more complex position dependent compo-
nent.

REFERENCES

[1] Reid Simmons, R. Goodwin, K. Haigh, S. Koenig, Joseph O’Sullivan,
and Maria Manuela Veloso, Xavier: Experience with a Layered Robot
Architecture, Agents ’97, 1997.

[2] Alexander Stoytchev and Ronald C. Arkin, Combining Deliberation,
Reactivity, and Motivation in the Context of a Behavior-Based Robot
Architecture. In Proceedings 2001 IEEE International Symposium on
Computational Intelligence in Robotics and Automation. 290-295. Banff,
Alberta, Canada. 2000.

[3] Ronald C. Arkin. Motor Schema Based Mobile Robot Navigation. The
International Journal of Robotics Research, Vol. 8, No. 4, 92-112 (1989).

[4] Thrun, Sebastian and Bennewitz, Maren and Burgard, Wolfram and
Cremers, Armin B. and Dellaert, Frank and Fox, Dieter and Hahnel,
Dirk and Rosenberg, Charles R. and Roy, Nicholas and Schulte, Jamieson
and Schulz, Dirk, MINERVA: A Tour-Guide Robot that Learns. KI -
Kunstliche Intelligenz, pp. 14-26. Germany, 1999.

[5] Saffiotti, Alessandro and Wasik, Zbigniew, Using hierarchical fuzzy
behaviors in the RoboCup domain. Autonomous robotic systems: soft
computing and hard computing methodologies and applications. pp. 235-
262. Physica-Verlag GmbH. Heidelberg, Germany, 2003.

[6] Scott Lenser and James Bruce and Manuela Veloso, A Modular Hierar-
chical Behavior-Based Architecture, Lecture Notes in Computer Science.
RoboCup 2001: Robot Soccer World Cup V. pp. 79-99. Springer Berlin
/ Heidelberg, 2002.

[7] T. Rofer and H. Burkhard and O. von Stryk and U. Schwiegelshohn and T.
Laue and M. Weber and M. Juengel and D. Gohring and J. Hoffmann, B.
Altmeyer and T. Krause and M. Spranger and R. Brunn and M. Dassler
and M. Kunz and T. Oberlies and M. Risler and M. Hebbela and W.
Nistico and S. Czarnetzkia and T. Kerkhof and M. Meyer and C. Rohde
and B. Schmitz and M. Wachter and T. Wegner and C. Zarges. German
team: Robocup 2005. Technical report, Germany, 2005.

[8] R.Calvo, J.M.Cañas, L.Garcı́a-Pérez. Person following behavior gener-
ated with JDE schema hierarchy. ICINCO 2nd Int. Conf. on Informatics
in Control, Automation and Robotics. Barcelona (Spain), sep 14-17, 2005.
INSTICC Press, pp 463-466, 2005. ISBN: 972-8865-30-9.

[9] Cañas, J. M. and Matellán, V. From bio-inspired vs. psycho-inspired to
etho-inspired robots Robotics and Autonomous Systems, Volume 55, pp
841-850, 2007. ISSN 0921-8890.

[10] Antonio Gómez Skarmeta, y Humberto Martı́nez Barberá, Fuzzy Logic
Based Intelligent Agents for Reactive Navigation in Autonomous Systems,
Fitth International Conference on Fuzzy Theory and Technology, Raleigh
(USA), 1997

[11] M. Loetzsch, M. Risler, and M. Jungel. XABSL - A pragmatic approach
to behavior engineering. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2006), pages 5124-
5129, Beijing, October 2006.

