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Effective visual attention for behavior-based robotic
applications

Francisco Martı́n, Luis Rubio, Carlos E. Aguero and José Marı́a Cañas

Abstract—Behavior-based architectures is one of the most
popular alternatives to make an autonomous robot to carry
out a task. This article presents a way to organize attention
capabilities in architectures based on behaviors when the source
of information is a camera with a limited field of view. In
these architectures, the visual requirements are set by the active
behaviors, and the attention system has to cover all the robot
surroundings to perceive all the objects of interest. The system
described in this paper controls the gaze using a control algorithm
based on salience which continuously selects where the camera
should look at. Several experiments have been performed with
a humanoid robot in order to validate them and to have an
objective comparison in the context of the RoboCup, where the
robots have several perceptive needs and object tracking that
must be satisfied and may not be fully compatible.

Index Terms—behavioral robotics, Active robot vision, Sensor
attention, Humanoid robot.

I. INTRODUCTION

AAUTONOMOUS mobile robotics is a very extensive
research field, since the robots have to move around their

environment to perform a task, mainly using the information
provided by their sensors. In recent years, the use of cameras
as a primary sensor has grown enormously. They are cheap
sensors that provide a lot of information: not only the informa-
tion stored in the image, but the camera position relative to the
robot and its environment. Although there are omnidirectional
cameras, most cameras equipped on robots have a limited
field of view, and has to move continuously to detect relevant
objects at all times.

One of the most successful alternatives to generate actuation
in autonomous robots is behavior-based architectures. In these
architectures, a complex behavior usually arises from the
combination of simple behaviors. Simple set of behaviors can
vary depending on the situations that the robot is facing. Each
of the simple active behaviors may require to perceive one
or more objects and to define the importance of each object
for a correct operation. For example, a humanoid robot has
to navigate in an office environment to find an object. This
general behavior can be decomposed into a simple behavior
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to look for the object, and a global navigation behavior, which
requires the perception of landmarks for self-localizing. In this
architecture, there must be a mechanism to decide where to
move the robot camera to meet the needs of self-localization
and object search.

An attention mechanism of human vision system has been
source of inspiration for machine visual systems, in order
to sample data non uniformly and to utilize computational
resources efficiently [1]. The performance of the artificial
systems has been always compared to the performance of
several animals, including humans, in simple visual search
tasks. In last years, biological models are moving to the
real-time arena and offer an impressive flexibility to deal
simultaneously with generic stimulus and with task specific
constraints [2][3].

Machine attention systems have been typically divided
into overt and covert ones. The covert attention mechanisms
[4][5][6] search inside the image flow for relevant areas for
the task at hand, leaving out the rest. Search of autonomous
vehicles in outdoor scenarios for military applications [4], and
search for traffic signals inside the images from the on-board
car cameras are just two sample applications. One interesting
concept is salience.

The overt attention systems [7][8][9] use mobile cameras
and cope with the problem of how to move them: looking for
salient objects for the task at hand, tracking them, sampling
the space around the robot, etc.. The saccadic eye movements
observed in primates and humans are their animal counterpart.
They have been used, for instance, to generate a natural
interaction with humans in social robots like Kismet [10].
This active perception system can guide the camera to better
perceive the relevant objects in the surroundings. The use of
camera motion to facilitate object recognition was pointed out
by [1] and has been used, for instance, to discriminate between
two shapes in the images [6].

Most successful systems define low level salient features
like color, luminance gradient or movement [8]. Those features
drive the robot attention following an autonomous dynamics in
a close loop with the images. This way, the system is mainly
bottom-up guided by the low level visual clues. One active
research area is the top-down modulation of these systems, that
is, how the current task of the robot or even the high levels
of perception, like object recognition [11][12], can tune the
attention system and maybe generate new focus of attention.

In our scenario, visual representation of interesting objects
in robot’s surroundings improve the quality of humanoid
behavior as its control decisions may take more information
into account. This poses a problem when there are several
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objects and do not lie completely into the camera same field of
view. Some works use omni directional vision, and they have
been successfully applied in problems like visual localization
or soccer behaviors in RoboCup middle size league. Other
approaches use a regular camera and an overt attention mech-
anism [3][13], which allows for rapid sampling of a several
areas of interest. This is the only available approach in the
RoboCup SPL humanoid league.

In this paper we describe an attention system for a humanoid
robot endowed with a camera on its head, which can be
oriented at will independently from the robot base. This
algorithm combine several perceptive needs from behaviors
and controls the camera movements in order to keep all of
them satisfied, providing them with enough images along time
to achieve its perceptive goal.

Following this introduction, the second section describes
some related works. Our attention mechanism and the robot
control architecture where it has been developed is presented.
In the fifth section we describe the experiments carried out
on a real humanoid robot to validate this work. Finally some
brief conclusions end the paper.

A. Related work

One of the concepts widely accepted in visual attention
is the salience map. It is found in [5], as a covert visual
attention mechanism, independent of the particular task to be
performed. This bottom-up attention builds in each iteration
the conspicuity map for each one of the visual features that
attract attention (as color, movement or edge orientations).
There are competition dynamics inside each map and they are
merged into a single representative salience map that drives the
focus of attention to the area with highest value. Regarding
overt visual attention mechanisms, Hulse [14] presented an
active robotic vision system based on the biological phe-
nomenon of inhibition of return, used to modulate the action
selection process for saccadic camera movements. Arbel and
Ferrie presented in [15] a gaze-planning strategy that moves
the camera to another viewpoint around an object in order to
recognize it. Recognition itself is based on the optical flow
signatures that result from the camera motion.

Researchers within the RoboCup community typically
maintain an object representation known as the world model
containing the position of relevant stimuli: ball, goals, robots,
etc. The world model is updated using the instantaneous output
of the detection algorithms or by running an extra layer that
implements some filtering. In this RoboCup scenario, policies
to decide when and how to direct the gaze to a particular point
can be divided into three groups. First, those that delegate to
each behavior the decision on the positioning of the head.
Second, those which continuously moved the robot’s camera
in a fixed pattern to cover the entire search space of the robot.
Its main drawback is that it does not allow tracking a detected
stimulus. In addition, much time is wasted on exploring areas
where we know that there are no stimuli. A third group include
those using a specific component responsible for making this
decision based on the requirements of active behaviors. Here
we can find attention mechanisms guided by utility functions

Fig. 1. Activation components tree in BICA architecture

based on the task the robot is currently doing [16], salience-
based schemes which increase with time [17] or time-sharing
mechanisms, among others.

In one SPL team [17] the behaviors define the importance of
each stimulus. Depending on the importance defined for each
stimulus and the value of its current associated uncertainty, the
active vision system decides which stimulus to focus on at any
time. The behaviors themselves establish which stimuli should
be observed. This approach does not tolerate observations with
occlusions and partial observations. Also, in this work the
search for new objects uses the same pattern fixed for head
positions, independently of the type of the object to search.

In [18] and [19], the state of the robot is modeled using
Monte Carlo Localization (MCL). The state includes both the
robot’s position and the ball. The aim of the active vision
system here is to minimize the entropy of the state of the robot.
To accomplish this task, it divides the field into a grid and it
calculates the utility of pointing the camera towards each cell,
taking into account the cost of performing this action. In this
way, they calculate the position where the camera focus at all
times. This approach makes emphasis in the idea that the active
vision should be associated with a utility (self-localization and
detection of the ball), and that the utility of turning our gaze
towards one place or another is quantifiable depending on how
it makes to decrease the entropy of system. In these approach
behaviors do not define the importance of the stimuli and they
do not modulate the active vision system in any way.

II. VISUAL ATTENTION ARCHITECTURE

The software of our humanoid robot is organized with a
behavior-based architecture. It is implemented in a component
oriented software architecture, named Behavior-based Itera-
tive Component Architecture (BICA) [21]. Components are
independent computation units which periodically execute at
a pre-configured frequency. Every component has an interface
to modulate its execution and retrieve the result of the com-
putation. Behaviors in BICA are defined by the activation of
perception components and actuation components. Actuation
components take movement decisions, send commands to the
robot motors, or locomotion system, or activate other actuation
components. They run iteratively to periodically update their
outputs. Perception components take data from robot sensors
or other perception components and extract information. They
basically provide information to the actuation components.
The output of a perception component is refreshed periodically
and can be read from many other components in the system.
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Fig. 2. Component functionality coded by a finite state machine (states are
colored in orange). Each state activates different component sets (component
activation in blue)

Not all the perception capabilities of the robot must be
active at the same time, consuming computing resources. Even
more, the whole set of behaviors that the robot is able to
eventually perform is not suitable to deal with the current
situation. Only a subset of behaviors and perception units are
relevant to the current situation. In BICA each component is
activable and deactivable at will, so it remains inactive until
the situation demands it, when another component activates
it. Typically an actuation component activates the perception
components it requires and the child actuation components (if
any) that implement its control decisions. This activation chain
creates a dynamic component tree to cope with the robot’s
current situation. Figure 1 shows an component activation tree
with both perception and actuation components. Some of these
components can be encoded as finite state machines. In each
state, the set of active components may be different (Figure
2).

The visual attention system controls the position and orien-
tation of the camera to perceive the objects in the environment.
This system connects the perception system and actuation to
meet the perceptual needs which set the behaviors.

Our system has been architecturally designed with the inten-
tion to develop different algorithms of attention and establish
which one is active. The design must be clean, flexible and
scalable. At the robot startup, we can select an attention
algorithm. The main elements involved in the process of visual
attention, as shown in Figure 3, are behaviors, detectors and
the attention controller. The generic attention system operation
is described as follow:

• Behaviors establish which objects need to be perceived
at any time and its importance, in a range [0,1] where 1
is the highest importance and 0 (or no specification) lack
of interest. Behavior are software components which runs
iteratively activating another components (auto-location,
navigation, etc.) in cascade. These additional components
may define other attentive requirements. Activation and
deactivation of the software components in our archi-
tecture is silent, so each component must refresh their
perceptual requirements each time they are executed, and
the visual attention controller must be aware of when
no longer must be perceived an object. The interface

between the controller behavior and attention is through
the call setPercentage(object, importance). For example,
to perceive the object A with a 90% importance, a
behavior make the call setPercentage (”A”, 0.9).

• Detectors are software components specialized on detect-
ing perceptive objects using the information from the
camera (Figure 4). They are part of the execution in
cascade initiated by high-level behaviors. Once detected
an object in the image, the position in the image is
transformed into a 3D position relative to the robot,
whose axis of reference has its origin on the floor,
between the two legs of the robot. Calculating the object
3D position with a single camera is possible by using
extra information like the Z coordinate position, which is
0 for the object in the floor. 3D position of the object is
incorporated into a visual memory (represented in Figure
5) distributed among the detectors. Visual memory uses
a set of extended kalman filter, one for each object, to
keep the estimation and the uncertainty on the position of
each object. From the attentive system point of view, each
detector defines how to track an object and where to look
for it if this object has not been recently perceived. Each
detector has a particular way to seek and track objects
because: there are static and dynamic objects, with unique
or multiple instances, those which are best detected on
the horizon or that can be anywhere. When behaviors
set the attention controller to perceive the object A, it
requests (using get) method) to the detector of object
A a 3D attention point where to orientate the camera. If
the object has been perceived recently, it returns the 3D
position of A stored in the visual memory, or null value if
it is not necessary to perceive it again (this is common for
static and unique objects when the robot has not moved).
If the detector does not know the position of an object, it
defines a list of 3D search points to visit. Each time the
attention controller request a point to look at, it returns
the same point in the list. If the controller informs (using

Fig. 3. Attention system architecture. The attention controller receives the
importance values for each detector. It also asks to the detectors for 3D
attention points and informs when a attention point is reached. Robot’s neck
angles are calculated from each 3D attention point.
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atAP() method) that the point has been already reached.
It replies the next point in the list, and so on.

• The controller of the attention is responsible for com-
bining the perceptual requirements from behaviors and
information of the detectors by sending joint action
commands to the neck. This controller acts as a referee
which determines the information of which object must
be refreshed at any time. As we introduced above, the in-
terface with the detectors consists of two calls: getAP()
and atAP(). The first requests from a detector a point
3D where to direct the camera, and the second informs
that the attention point has been reached.

This description defines in general terms how is the attention
system, but it keep open many questions: how the controller set
the turns using on the importance of each object? How a detec-
tor defines which point in the search list is better return? Can
detectors collaborate on finding objects? Our system allows us
to implement different mechanisms of attention which define
these topics. Each mechanism has its own different attention
controller and defines the attentive operation of each detector.

The salience-based algorithm selects the active detector
depending on the difference between the detection quality and
the importance established for it by behaviors. The quality
of the information of a detector is the average of the quality
of the detector objects that it has to detect (the inverse of
the object estimation uncertainty). If the item is unique, the
detector quality depends on the uncertainty of the object only.
The quality of an item is set to 1 when the object is seen
in the image. This quality decreases over time depending on
their characteristics (the quality value reduces quickly in case
of dynamic objects and slowly if they are static) and robot
motion.

Figure 6 illustrates the mechanism of arbitration. Behaviors
define the importance of perceiving the object A and B. These
values are used as reference (qref(A) and qref(B)). At any time,
the difference between the reference value and the quality
of each item defines the priority. The larger the difference
below the reference value, the higher priority for the controller
attention. In Figure 3, we can observe how the quality of the
detector B decreases faster than the one of the detector A. This
may be because the object that detects B is dynamic, and the
object that detects A is static.

Fig. 4. Each detector detects a particular object.

Fig. 5. A visual memory system stores the position and uncertainty of the
detected elements.
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Fig. 6. Evolution of the quality for two different detectors.

Once presented how the system selects which object attends
to, we define what to do to perceive a particular object. Each
detector sets a list of 3D search points, and the latest known
positions for the objects that it has to seek and track. For each
3D point, a value of salience, in the range [0,1] is associated.
In visual attention literature, salience is defined as the desire
to perceive an object. The longer this value, the greater the
need to direct the camera at that point.

As a detector does not perceive the object that it is looking
for, the salience of all the points increases with time. Salience
of the attention points covered by the field of vision of the
camera are set to 0 if the object is not present. When a detector
finds an object, the salience of the searching points are set to 0,
and tracking point is set with a small (greater than 0) value.
The salience of the attention points of all the detectors are
updated following these rules, even those which are not active
This makes the search more efficient, because the attention
points covered during the execution of other detectors are not
revisited.

Figure 7 shows an example where three detectors are active
(A, B and C). The attention points for each detector are
represented with a different color and a shape, and each point
has an identifier that indicates which detector belongs to, and
in brackets the value of salience. The detector A is responsible
for searching an object that is unique, while the detector C is
responsible for detecting multiple objects in the same class.
In the Figure, the field of view is covering several attention
points belonging to different detectors. We can assume that,
for example, detector B is the active one (the difference of its
quality and the reference value is largest), and so it controls
the position of the camera. The detector B has detected the
desired object (represented by colored circles) in the image,
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Fig. 7. Cenital view of the robot space. Attention points from different detec-
tors are represented with different colors and shapes. The blue parallelogram
represents the camera field of view. Circles represents the detection of the
objects. Each attention point is labeled with an id and the salience value.

so it sets the salience to 0 for the other points of attention,
and a value greater than 0 for the point where the object has
been detected. Detector C finds one of the object that it is
looking for, so it sets the saliency to a value greater than 0. It
also maintains the salience of the other attention points where
objects have been detected previously (C AP2). This allows
the detector to visit alternatively the position of these object,
when the detector C takes the control of the camera. Detector
A has not found any object yet, and sets to 0 the salience of
the covered attention points in the field of view of the camera.
The salience of its attention points establishes the search path
for detector A.

III. EXPERIMENTS

The whole system described above is general purpose, and is
not limited to any particular application. We have applied this
system on two very different applications: Tracking multiple
human faces in human-robot interaction, and in the RoboCup
environment. The environment of the RoboCup (Figure 8) is
a standard testbed where most of mobile robotics technolo-
gies can be evaluated and contrasted. It is a very dynamic
challenging environment where teams of autonomous robots
coordinate to play soccer in a 6x8 meters field where relevant
items are identified by their shape and color. Robots must
solve the classical problems (navigation, self-localization, per-
ception, locomotion, ...) efficiently and robust to collisions,
kidnappings, ...

We have carried out several experiments to validate the
system described in this article. We have used the real NAO
robot in the RoboCup environment. During the experiments,
the robot is equipped with a visual pattern easily detected
by the cameras, as we can see in Figure 9. The error of the
ground-truth system is less than 3 cm. in position and less
than 5 degrees in orientation. Post-processing of robot log
data and the ground truth data led us to accurately calculate

the error and uncertainty in the robot’s perception module for
each attention algorithm.

We have compared the salience last algorithm with two
other algorithms: Round Robin and Fixed Pattern:

• The Round Robin algorithm plans the attention giving
each detector a time slot. The duration of this time slot is
proportional to the importance defined by the behaviors.
If the attention controller receives different importance
values for the same detector, it chooses the maximum of
the values received. In the slot assigned to a specified
detector, it is asked for an attention point. The detector
may return the 3D point corresponding to the known
position of the object, or iterate between the known
position of the objects in the case of more than one object
of a type. If the object position is not known, the detector
returns a 3D search point from the list of positions which
may be the object, changing this attention point as soon
as the attention controller notifies that the point has been
reached and the detector has not detected the object in the
image yet. In case of static objects, if the robot has not
moved and the objects have been detected in a slot, the
detector can transfer the remainder of the slot to another
one.
Figure 10 shows an example of this algorithm. Behaviors
define the importance of each type of objects. In this
Figure the behavior A1, A2, A3 and A4 define different
importances for the objects A, B and C. In the case of
the object C, three values (0.75, 0.5 and 1.0) are defined,
but only takes into account the largest (1.0). From the
maximum values, A (0.5), B (1.0) and C (1.0), the length
of the slot for each sets is set. The total length of the
slot, T cycle, is set within the range [5-10] seconds. A
detector is set to 20% of T cycle, B and C detectors are
set to 40%, respectively.

• Fixed Pattern algorithm moves the camera using a list of
attention points (Figure 11) shared by all the detectors.
Attention system moves the camera slowly ( pi / 3
per second) visiting the attention points, regardless of
whether the objects of the active detectors are perceived
or not. If there is a detector critical for the robot opera-
tion, the last known position of the object is pushed back

Fig. 8. Complex behaviors in dynamic environments where the main sensor
is a small field of view camera.
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Fig. 9. Ground truth system based on cenital cameras and visual patterns.
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Fig. 10. Attention algorithm based on a Round Robin approach.

in the shared list of attention points.

During experimentation, active behaviors set equal impor-
tance to detect the ball and the two goalposts. To compare the
efficacy of different algorithms, we measure the uncertainty
of each object. When an object is not in the viewing area of
the camera, its uncertainty increases depending on the time
that has passed since that is not perceived and the robot
movement (this movement has a high uncertainty). When an
object is perceived in the image, its position is corrected and
its uncertainty decreases.

In the first experiment the robot is stationary while the ball
is moved manually between various points (Figure 12). This
experiment tested how to manage loosing a moving object, and
how to recover from this. In the second experiment, the robot
moves toward the ball (Figure 13). This experiment verifies
how the movement affects to attention objects uncertainty
increases rapidly, and how the interaction with an object is
managed.

Figures 14, 15 and 16 shows the result of one trial of the ex-
periment 1 using the Round Robin, Fixed Pattern and Salience

Fig. 11. Attention algorithm based on a Fixed Pattern approach.

Fig. 12. Experiment 1: Robot stopped and the ball is moving around three
positions.

Fig. 13. Experiment 2: Robot is moving to the ball.

Fig. 14. Estimation quality evolution of three objects using the Round Robin
attention algorithm while the robot is stopped and the ball is moving.
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Fig. 15. Estimation quality evolution of three objects using the Fixed Pattern
attention algorithm while the robot is stopped and the ball is moving.

Fig. 16. Estimation quality evolution of three objects using the Salience
attention algorithm while the robot is stopped and the ball is moving.

algorithms, respectively. The estimation quality (inverse of
uncertainty) is always high using the salience algorithm, which
means that the objects are efficiently tracked. Other algorithms
shows worst results, and even the ball is lost (and recovered)
using Round Robin approach.

Figures 17, 18 and 19 shows the result of one trial of
the experiment 2 using the Round Robin, Fixed Pattern and
Salience algorithms, respectively. The estimation quality The
estimation quality of goalposts decreases rapidly, but global
results are again better in the Salience approach. The results
of several trials are summarized in table 20.

IV. CONCLUSIONS AND FURTHER WORK

In this work we have presented an efficient attention
mechanism for behavior-based architectures, valid for robots

Fig. 17. Estimation quality evolution of three objects using the Round Robin
attention algorithm while the robot is moving to the stopped ball.

Fig. 18. Estimation quality evolution of three objects using the Fixed Pattern
attention algorithm while the robot is moving to the stopped ball.

Fig. 19. Estimation quality evolution of three objects using the Salience
attention algorithm while the robot is moving to the stopped ball.

equipped with cameras and limited field of view but with
capabilities for controlling the gaze. The attention systems
control the head movement and continually shifts the focus
of attention so the camera covers the perceptive requirements
of the robot, by looking at different areas of the scene. The
advantages of the attention system include the convenient
combination of perception requirements, usually contradictory,
and the delegation of gaze commands to each specialized
object tracker. For instance, the combination mechanism solves
the problem of moving the robot head to focus the ball, which
is not always compatible with the importance of looking at the
goals. This organization allows the independent development
of different behaviors, because their perceptive requirements
can be met regardless of other behaviors.

The RoboCup SPL environment has been selected as a
validation scenario. The variety of objects to track and its
different nature (stationary objects as the goal posts and
moving objects as the ball or the robots) represents a good
benchmark for the proposed approach. We have presented
indications that the system works efficiently, and improves
commonly used options to address this problem.

Fig. 20. Summary of the experiments.
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We are extending this work in several directions. First, it is
interesting to investigate a best combination of the different
needs of active behaviors. Second, this algorithm is suitable to
carry out a distributed attention system among multiple robots,
which improves the search time of objects.
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