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Abstract. The RGBD sensors have opened the door to low cost percep-
tion capabilities for robots and to new approaches on the classic problems
of self localization and environment mapping. The raw data coming from
these sensors are typically huge clouds of 3D colored points, which are
heavy to manage. This paper describes a premilinary work on an algo-
rithm that incrementally builds compact and dense 3D maps of planar
patches from the raw data of a mobile RGBD sensor. The algorithm
runs iteratively and classifies the 3D points in the current sensor reading
into three categories: close to an existing patch, already contained in one
patch, and far from any. The first points update the corresponding patch
definition, the last ones are clustered in new patches using RANSAC and
SVD. A fusion step also merges 3D patches when needed. The algorithm
has been experimentally validated in the Gazebo-5 simulator.
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1 Introduction

In late 2010 Microsoft introduced the Kinect sensor device with its Xbox 360
game console. Since them many Kinects have been sold, and other low cost
RGBD sensors have appeared like Asus Xtion and Kinect-2. Opening the SDK
to manage these devices has brought applications for them in other areas like
robotics [11] , health, security and industrial applications. Now they are about to
be included in mobile phones and tablets for general public applications (Apple
bought PrimeSense in 2013, Google is developing its Tango project ' and both
have interesting prototypes).

In robotics, maps are useful for robot navigation and even self localization.
Taking into account the information contained in maps a robot can plan its paths
and make better movement decisions. Many map building techniques have been
developed to create maps from robot sensors . They gather noisy sensor data
and merge them into a more abstract, reliable and compact description of the
2D or 3D environment. In the last years many SLAM techniques ([9][4]) have
been developed that simultaneously cope with the Localization and Mapping
problems for mobile robots, using different sensors as input. In particular many
recent SLAM works focus on the use of RGBD sensors ([10][3][5]).

! https://www.google.com/atap/project-tango/
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Many 3D spatial primitives have been proposed in the literature to represent
the 3D maps of scene or objects: 3D Points (dense point clouds), regular 3D
voxels, octree maps [6], Surfels [2], Signed Distance Fusion (SDF) [8], patch
volumes [7] and planar patches [1] among others.

This paper presents a preliminary work on an algorithm that builds incre-
mental 3D maps from 3D point clouds using planar patches as compact spatial
primitive. The continuous 3D pose estimation of the sensor is outside the scope
of this paper, and we assume that a localization algorithm is working in the
background. We focus on the incremental map construction and update.

2 Incremental 3D planar patches map building

We have designed and developed an algorithm for building a 3D map of the en-
vironment surrounding a mobile RGBD sensor using its readings. We define the
map as a collection of 3D planar patches. A planar patch is defined as an area
of a plane bounded by a contour (Fig. 1). Each planar patch (patch with hour-
glass shape, in green) is described by the general equation of the corresponding
plane (square plane, in red), its contour (yellow line of the hourglass shape) and
associated cell image (black and white binary image).

Fig. 1. Example of 3D points, a planar patch in 3D and its cell image.

A cell image gives us information on the distribution of points within the
planar patch. It representes an image of the occupied and empty zones after
dividing the area of each planar patch into fixed-size cells (pixels).

2.1 Design

The map building algorithm runs iteratively following the next steps:

1. Data acquisition. At the beginning of each iteration the current 3D position
of the RGBD sensor and the current depth image are collected. The depth
image is transformed into 3D point cloud applying a depth sampling and
translation to absolute coordinates.



Building compact 3D maps of planar patches from RGBD points 3

2. Point Classification. Each 3D point from the current cloud is classified into
one of the following three categories according their relationship with the
existing planar patches: (a) Belonging to one planar patch; (b) Close to one
planar patch, and (¢) Far from any existing patch, and so, not explained.

3. With the points belonging to one of existing planar patch we do nothing.

4. Patch redefinition. Each set of points close to an existing planar patch are
used to redefine its contour.

5. The mapping algorithm generates (several) new planar patches that group

unexplained points. This stage involves several steps:
(a) RANSAC algorithm is used to group the unexplained points in one or

more tentative planar patches.

(b) Each tentative patch is evaluated with a coherence test to ensure that
holds four criteria to be considered valid. If the patch meets all criteria
it will be considered valid and added to the map. If the patch fails any
of the first three criteria, then its points will be returned to RANSAC
algorithm to continue considering them. If the patch only fails in the
connexity criterion then it will be refined into several smaller refined
patches. This situation is typical of very large patches with holes inside

and in the case of several noncontiguous but coplanar areas.
The RANSAC algorithm is iterative itself and ends when the number of

unexplained points is less than a certain amount, or if it exceeds a certain
number of iterations without extracting any valid new planar patch.

6. Fusion step. Finally the algorithm explores all possible pairs of existing
patches to check whether some of them can be joined together. The gen-
erated map is a vector of planar patches and a vector of three-dimensional
unexplained points.

The algorithm has several thresholds, which were finally selected after testing
in the experiments. It has been programmed as a C++ component in the open-
source JdeRobot framework? .

2.2 Data acquisition

In each iteration of the algorithm, the position and orientation of the device is
captured first, and then the depth image from the RGBD sensor. A sampling
is performed when translating the Depth image into a 3D point cloud. Without
sampling the density of 3D points near the sensor is greater than the density of
distant points. With our sampling all the Depth pixels are separated into layers
according its distance to the sensor, and a different sampling rate is used on
each layer to preserve an homogeneous 3D density of points between close and
far areas. Fig. 2 shows a raw point cloud (left) and the sampled one (right).

So far the points are computed in coordinates relative to the sensor, but
now the algorithm computes their absolute position incorporating the current
3D position and orientation of the RGBD sensor. Due to this, the algorithm
can segment the planes from various RGBD sensors (or a mobile one) as all the
points lie in the same absolute frame of reference.

2 http://jderobot.org
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Fig. 2. Raw point cloud from the RGBD sensor and the sampled one.

2.3 Point classification

Second step of each iteration classifies the 3D points into three categories accord-
ing to their relation with the existing planar patches until the previous iteration
(Fig. 3):

1. Belonging to a planar patch. These points do not give us any new informa-
tion, only confirm some existing patch.

2. Close to a planar patch. These points will be useful to extend and redefine
the planar patches which they are associated to.

3. Unexplained by any existing planar patch. The algorithm will try to group
them in new planar patches.

Fig. 3. Existing planar patches, point cloud (left) and their classification (right): close
(yellow), nearby (blue) and unexplained (red).

For each point of the cloud we will calculate its normal distance to all pla-
nar patches. For those points whose normal distance is less than a configurable
threshold, we also calculated the minimum lateral distance to the contour of
the corresponding planar patches. If this lateral distance is less than another
threshold, we consider that point belonging to the plane. If not, if the lateral
distance is less than a second threshold, we will consider close to the planar
patch. One point may fall into different categories with respect to several planar
patches and then, it is classified according to the planar patch whose distance
is smallest. The points that do not fit into any of the previous categories are
classified as unexplained by any planar patch.
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2.4 Redefinition of patches

With the set of points that are close to an existing planar patch, we extend
this patch by redefining its cell image and its contour, but without affecting the
equation of its plane (Fig. 4).

For the redefinition of the cell image, first we add the new points to the
corresponding cells, adding new rows and/or columns of cells at the edges of the
image where necessary. Then we employ dilate and erode functions of OpenCV
to apply dilation a predefined number of iterations, erosion the same number
of iterations plus one, and another iteration of expansion (more information
about this in the subsection 2.5). This preprocessing is necessary to join slightly
separated areas, and to eliminate the isolated areas.

Once the cell image is preprocessed, we obtain the new contour of the image
using the findContours function of OpenCV. The row and column coordinates
of the cells that form the contour of the image are translated into absolute
3D coordinates, and a Principal Component Analysis of the new cell image is
performed. Initially, we did use PCL to obtain the contour by calculating the
Concave Hull of the points that support a patch, but for some concave patches
the contours were inadequate.

= | =

Fig. 4. (Left) Wall patch and close points. (Right) Redefined, wider, patch.

2.5 Generation of new patches

With the point cloud of unezxplained by any existing patch we seek for new patches
that may explain these points using the RANSAC (RANdom SAmple Consensus)
iterative algorithm. At each iteration it randomly selects three points of the cloud
as candidates to form a plane. It classifies the remaining points into inliers (low
distance to that candidate plane) or outliers (big distance), according to normal
distance of each point relative to the candidate plane. Also, it gets the average
distance associated with the inlier points. It stores the plane with the highest
number of inliers, and in case of a tie, the plane that has the lower average
distance. When a plane remains as the best for a number of iterations (which is
customizable), RANSAC presents it as tentative patch.

Some of the tentative patches obtained by RANSAC are unsatisfactory. For
instace, it extracts only one tentative patch several patches that are coplanar but
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not connected. Therefore we implemented a coherence test to study the validity
of these tentative patches before incorporating them into the map. If they include
separate coplanar clusters, the algorithm refines the tentative patch into smaller
patches which must also pass the coherence test themselves.The coherence test
consists of four criteria:

1. Have a sufficient number of points that support it.

2. Exceeds a nonlinearity threshold, to ensure that the distribution of the points
does not correspond to a line.

. The size of its surface is large enough.

4. The occupied cells in the corresponding cell image are connected.

w

After verifying that meets the first criterion, the algorithm builds the cell
1mage associated to the tentative patch to evaluate the remaining criteria. For
generating the cell image, a Principal Component Analysis (PCA) is performed
on the cloud of points of this patch , using a Singular Value Decomposition
(SVD). The PCA extracts the three perpendicular directions of greater variabil-
ity in the distribution of points . With this analysis we obtain the three principal
singular vectors with their associated eigenvalues, although we are only inter-
ested the first two. We also get the centroid of the distribution.

Using the centroid as the origin and the two principal singular vectors (which
are unitary) as basis vectors, we pass the points to this new two-dimensional
base. Looking for the minimum and maximum values in both directions, we
save the minimum value and the geometric distance in each direction. Using the
geometric distance, along with the size chosen for the side of the cells we get the
number of cells in each direction, and we round it upwards.

With the points in two-dimensional format we generate a raw cell image with
the occupied cells (Fig. 5(a)). Then we perform a preprocessing using the dilate
and erode functions of OpenC'V, consisting in a number of iterations of dilation
(Fig. 5(b)), the same number plus one of erosion (Fig. 5(c)), and other of dilation
(Fig. 5(d)), to join groups of cells near each other but eliminate isolated cells.

To prevent that dilation damaged the real perimeter estimation, during pre-
processing we added an edge of pixels that simulate empty cells. At the end we
will cut the edges leaving only one pixel around (Fig. 5(e)), necessary when the
calculating of the contour with findContours function of OpenCV is performed.

To check the linearity criterion, we compare if the geometric distance cor-
responding to the second singular vector exceeds a certain threshold. For the
minimum size criterion, we compare the product of the two geometric distances
with a threshold which represents the minimum area to be considered.

And for the criterion of connectivity, we perform a growing region algorithm
on the cell image using findContours and floodFill functions of OpenCV (Fig. 6).
We use as seed of region growth the first vertex of each contour. If only one
region is obtained, the patch meets the criterion. If there are more regions then
the tentative patch will be refined in a number of patches equal to the number
of obtained regions, which are formed by the points in the cells of each region.

If a tentative patch holds the four criteria then is considered valid, and its
contour is calculated using the findContours function of OpenCV on its cell im-
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Fig. 5. Preprocessing of cell image: (a) Initial image. (b) First dilation. (c¢) Erosion.
(d) Second dilation. (e) Cut of the edge.

(b) (c) (d)

Fig. 6. Connectivity criterion: (a) findContours and (b) floodFill, for a connected patch.
(c) and (d) for a non-connected patch.

age (Fig. 7). The two-dimensional coordinates of the cells that form the vertices
are converted to absolute three-dimensional coordinates. Then we store the pla-
nar patch on the map, defined by its equation of the plane, its contour and its
cell image.

7/;7 D
(a) (b)

Fig. 7. (a) Points of a tentative patch (b) Cell image (c¢) Contour.

If a tentative patch fails during any of the first three criteria, it is discarded
directly and their points are returned to the RANSAC algorithm to continue
taking them into account in the search for new tentative patches. If it only fails
the ultimate criterion, because it is formed by non-connected groups (Fig. 8), it
will be refined into several smaller tentative patches. The failed coherence test
delivers the sets of points corresponding to the tentative refined smaller patches.
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These refined patches are passed to a new coherence test for themselves. This
time, those which meet the four criteria will be incorporated into the map, those
failing any of the criteria will be discarded and their points returned to the
RANSAC algorithm.

Fig. 8. (a) Points of non-connected patch. (b) Cell image of non-connected patch. (c)
Points of first refined patch. (d) Points of the second refined patch.

Since RANSAC is an iterative algorithm we need a stop condition. We used
any of these two: first, if at the beginning of an iteration the number of remaining
unexplained points is less than a threshold; second, if the number of iterations
exceedes a certain maximum without extracting any valid patch. Fig. 9 shows
the result of applying this algorithm.

Fig. 9. Generation of new planar patches: (left) Initial points, (right) Obtained patches.

2.6 Fusion of patches

The final step of the iterative mapping algorithm is the patch fusion. We explore
the planar patches inside the map to check whether some of them correspond
to different areas of a single real larger patch and can be joined together. We
compare each planar patch with all others. For each pair of patches we first check
their parallelism calculating the cross product of their normals to plane equa-
tions. If they can be considered parallel, we studied their coplanarity through its
normal distance. To calculate the normal distance between two planar patches
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we get the minimum distance of the contour points of each planar patch to the
plane equation of the other patch. If one of the two minimum distances is less
than a threshold we consider the two patches coplanar.

For a pair of coplanar patches, we also calculate the minimum lateral distance
between them. If any vertices of the contour of a planar patch is contained within
the contour of the other, the lateral distance is zero. If the lateral distance is
not zero, we calculate the minimum distance between all of the vertices of the
contour of each patch to all the sides the contour of the other patch. If this lateral
distance is less than a threshold we consider this pair of patches amenable of
fusion.

When two patches are amenable of fusion we redefine the first one using the
second . To redefine a planar patch by fusion with another patch, we first obtain
a point cloud formed by the vertices of the contours of both patches and two sets
of synthetic points within their cell images. Generating synthetic points from the
cell image consists in generating one point in three-dimensional coordinates per
each occupied cell With that point cloud we obtain the equation of the plane
that best fits it using SVD (Singular Value Decomposition). We also define a new
cell image using that point cloud, and with such cell image we get the contour
of the planar patch resulting from the fusion. This new patch is compared with
successive patches of the map for the remaining of the fusion step. This allows
to join several patches that correspond to the same one in a single pass of the
fusion algorithm. The Fig. 10 shows a fusion between planar patches.

\

—

Fig. 10. Fusion of patches: (left) Scene before, (right) scene after.

3 Experiments

This section describes some experiments made with the software implementa-
tion of the developed algorithm in a simulated environment. To perform these
experiments we used a scenario consisting of an apartment in Gazebo simulator.
In particular, the world GrannyAnnie of the Rockin@Home® project, shown in
Fig. 11. The experiments test the algorithm output positioning the simulated

3 http://rockinrobotchallenge.eu/home.php
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sensor at different locations of the apartment. For this experiments, before run
the algorithm in each location, we wait until the 3D sensor location reading is
stabilized.

Fig.11. Apartment GrannyAnnie in Gazebo. Patches and point cloud for the hall and
for the kitchen.

The used hardware is a desktop PC with a processor Intel Core 2 Quad CPU
Q6600 @ 2.40GHz(x4) and 2x2GB(4GB) DDR2 @ 800MHz of RAM memory.
The Gazebo simulator and our component simultaneosly run in this computer.
The minimum, average and maximum times for each iteration of our algorithm
are 27 ms, 77 ms and 304 ms, respectively. These numbers are obtained after
multiple runs of the algorithm working with a cloud of 1500 ~ 3500 points and
up to 25 patches. We expect similar costs for the real scenario but we have not
tried yet because not have solved the reliable 3D location.

3.1 Typical execution from static position

In the first experiment the sensor is located oriented to the hall with a shelf
(red circle, at the left in Fig. 11). The center of the same figure shows the point
cloud. The variable depth sampling rate allows a good distribution of points in
all patches, resulting in 3361 points. It also shows the 6 patches resulting from
the algorithm. The right side of the Fig. 11 shows the point cloud (in this case of
3046 points) and the obtained planar patches (10) from the mapping algorithm
when the sensor is located at the kitchen. In both situations the obtained patches
are very satisfactory and correspond pretty well to the scenario.

3.2 Incremental map from several positions

In this experiment the ability of the algorithm to incrementally modify its planar
patch collection has been tested. The resulting map coming from incorporating
two readings from two different sensor locations was compared to real scenario.
We placed the sensor in two positions inside of the bedroom, keeping overlapping
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areas between the two observations (Fig 12). This scenario has furniture that
includes patches of different sizes.

Fig. 12. Bedroom of the apartment in Gazebo and planar patches and point cloud for
the bedroom in positions 1 and 2.

First, we placed the sensor in front of the bed and left (sensor, with the red
circle, in the left of Fig. 12), facing slightly clockwise and towards the ground.
The center of the same figure shows the cloud with 3453 points and the 6 patches
obtained by the mapping algorithm.

Second, we placed the sensor in front of the bed, but this time right (sensor,
with the green circle, in the left of Fig. 12), facing slightly counterclockwise
and towards the ground. In this position, several iterations of the algorithm
were executed, allowing the redefinition of existing patches from the previous
position . In the right image of the same figure we have the cloud with 3117
points, and the 9 patches resulting of this process. We can see how the patches
of the background wall (red), the top of the bed (yellow), and the part of the
foot of the bed (magenta) have extended their surfaces absorbing points .

4 Conclusions

In this paper a preliminary work with an incremental 3D map building algorithm
from RGBD sensor data has been presented. It uses planar 3D patches as spatial
primitive, and faces typical problems when working with noisy low cost RGBD
devices like gap filling, extension with close points and segment fusion. The
algorithm computes point-plane associations and so classifies new coming points
as belonging to an existing patch, close to one of them or far from any. Close
points redefine patch spatial equation and its contour. Far points are clustered
together using RANSAC an a coherence planar test.

The generated 3D maps are compact, dense and simple, with tens of patches
instead of millions of points. They can be used in 3D path planning and robot
navigation. The algorithm is incremental. It has been experimentally validated
in a cutting edge simulator, Gazebo-5, showing promising results.
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We have assumed that the 3D localization was already solved by a different
algorithm, so all the 3D raw data are located in absolute coordinates. We want
to test the algorithm with noise and false readings in both the real depth data
and the received 3D position from a real 3D localization algorithm.
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