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Abstract. In the robotics field, behavior-based architectures are soft-
ware systems that define how complex robot behaviors are decomposed
into single units, how they access sensors and motors, and the mecha-
nisms for communication, monitoring, and setup. This paper describes
the main ideas of a simple, efficient, and scalable software architecture
for robotic applications. Using a convenient design of the basic building
blocks and their interaction, developers can face complex applications
without any limitations. This architecture has proven to be convenient
for different applications like robot soccer and therapy for Alzheimer
patients.
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1 Introduction

In recent years, many developments have been made in mobile robotics. Robots
are equipped with more complex actuators (even for diving or flying), richer
sensors (as cameras RGB-D), batteries that increment robot autonomy, and more
powerful processors that let the robot process huge data onboard. Moreover,
many commercial robotic platforms are available now at a low cost. This enables
us to focus on the development of software without addressing the development
of a complete robot from scratch. Despite this advantage, the development of
software for robots is a complex task.

Software for robots defines robot operation. Roodney Brooks [1] presented
the basis of behavior-based robotics. This paradigm describes how the complex
behaviors are built up to decompose into simpler behavior modules, which can
be organized as modules. How these simple modules work, how they organize,
and how they interact among them are open questions that continue to receive
attention from the robotics community. The active ROS [11] community and its
impact on the industry denotes this importance during the last few years.
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We have developed a behavior-based architecture, which includes simple and
novel ideas for effective development of robotic applications. We have defined
a basic building block and an effective and simple mechanism for making them
cooperate. Each behavior is implemented as a basic building block that decom-
poses its complexity, explicitly executing another building block. We will describe
mechanisms to warranty that the information produced by perceptual building
blocks does not expire before being used, avoiding race conditions using a single
thread scheme, and recovering from high-load situation using a graceful degrada-
tion approach. These concepts are related to the scheduling of real-time systems,
which is a very convenient approach when developing software for a robot that
interacts with the real world.

An important part of this paper is the focus on a complete, deep technical
description. We think that this approach is valid for making this work really
useful, letting robotic software developers include some of these ideas in their
software architectures.

We develop complex mechanisms using the following building blocks: visual
attention, perception, or debugging mechanisms. These capabilities can be con-
sidered basic to the software for robots, but they are crucial during the de-
velopment of high-level behaviors. An effective, clean, and scalable design lets
developers face complex behaviors without any limitations. Monitoring and de-
bugging tools are essential when developing robotic software, in which the usual
techniques from computers (messages to stdout or debuggers) are not effective
on robots.

An important aspect of this work is that all these ideas have been imple-
mented in a real robot, and used to implement real applications. Because of
the experience and feedback along these years, some ideas have been incorpo-
rated, redefined, or discarded. Nowadays, we can affirm that this architecture
is mature and effective. Using this architecture, we have developed a complete
software system for a team of robots that participates in the Standard Platform
League of the RoboCup. This competition presents a dynamic scenario, a soccer
match, where we have implemented fast response behaviors [2], self-localization
[3], navigation, coordination, attention, and perception [4] algorithms using this
architecture. We also used this architecture to develop a complete therapy sys-
tem [5] for Alzheimer patients by using robots as a cognitive activator actor.

In section 2 we will present the existing works on software architectures.
Section 3 describes the core ideas of the architecture presented in this work. In
section 4 we extend these general principles with some optional communication
or debugging mechanism. Section 5 presents mechanisms, such as perception and
visual attention, particular to robotic humanoids equipped with cameras. A brief
description of two successful uses of this architecture is presented in section 6.

2 Related work

Robotic frameworks can be grouped into two main paradigms: those tightly
coupled with a cognitive model in their designs and those designed just from
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pure engineering criteria. The former forces the user to follow a set of rules to
program certain robotic behaviors, while the latter are just a collection of tools
that can flexibly be put together in several ways to accomplish the task.

Cognitive robotic frameworks were popular in the 1990s and strongly influ-
enced by the AI, where planning was one of the main keys. Indeed, one of the
strengths of such frameworks was their planning modules built around a sensed
reality. A good example of cognitive frameworks was Saphira [6], based on a
behavior-based cognitive model. Some of its low-level functionality was rewrit-
ten as a C++ library called ARIA [7] that it is still supplied with the popular
robotic platforms from MobileRobots/ActivMedia. Even though the underlying
cognitive model is usually a good practice guide for programming robots, this
hardwired coupling often leads the user to problems that are difficult to solve
while trying to do something the framework is not designed to do.

Current robotic frameworks focus their design on the requirements that
robotics applications need and let the user (the programmer) choose the or-
ganization that better fits with the specific application. The main requirements
driving the designs are: multitasking, distribution, ease of use, and code reusabil-
ity. Another requirement, that we believe is the main key, is the open source code,
which creates a synergy between the user and the developer.

The key achievements of modern frameworks are the hardware abstraction,
hiding the complexity of accessing heterogeneous hardware (sensors and actua-
tors) under standard interfaces, the distributed capabilities that allow running
complex systems spread over a network of computers, the multiplatform and
multilanguage capabilities that enable the user to run the software in multiple
architectures, and the existence of big communities of software that share codes
and ideas.

As mentioned before, we believe that open source plays a major role in the
development of modern robotic frameworks. Proof of this is the two most popular
robotic frameworks: Player/Stage [8–10], which has been the standard de facto
in the last decade and ROS [11], which is taking its place currently. As seen in
other major software projects as GNU/Linux kernel or the Apache web server, to
name but a few, the creation of communities that interact and share codes and
ideas could be greatly beneficial to the robotic community. The main examples
of open source modern frameworks are the aforementioned Player/Stage and
ROS. Another important example is ORCA [12, 13]. In this work, we describe
them briefly.

There are other open source frameworks that have had some impact on the
current state of the art, such as RoboComp [14] by Universidad de Extremadura,
CARMEN [15] by Carnegie Mellon, and Miro [16] by University of Ulm. All
these use some component-based approach to organize robotic software using
ICE, IPC, and CORBA, respectively, to communicate their modules.

We can find non-open-source solutions as well, such as Microsoft Robotics
Studio or ERSP by Evolution Robotics.
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Fig. 1. BICA component.

3 Basic principles

The basic building block in BICA is the component (Figure 1), which is the
basic unit of functionality. The main idea is to build a component that does only
one thing, but efficiently. A component is composed of three main parts:

– Modulations: The modulation methods set operation modes or set up the
next component iterations.

– Execution: All the components inherit from the virtual class component,
which defines the mandatory methods to be implemented. The most impor-
tant method is step(). This method performs an iteration of this compo-
nent. This is the entry point for a component-explicit execution.

– Output: The results method is used to get the information produced in the
last iteration.

It is noteworthy to highlight that modulations and results methods only write
or read internal variables; so the execution time of these methods is in the range
of a few microseconds. The computation time of a component can be assumed
to be the step() method execution time.

Class component also determines that each component is a Singleton. This
makes it easy to have only one instance of each component, and obtain a reference
to it from any other component. The next code describes the initialization and
step() method of the component A, that uses the component B to get some
information. This information is used to modulate the execution of component
C. Note the order of the calls. If the component needs information, it executes
the step() method first. If the component modulates another component, it
calls the modulation method before calling the step() method.

//Two components used by A

B A::b;

C A::c;

A::A()

{

b = B::GetInstance();

c = C::GetInstance();

}

A::step()

{

b->step();

int info = b->getInfo();
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//Do component A work

c->setInfo(info);

c->step();

}

The scheduler implemented in this architecture calls the step() method of
a list of components. Usually, this list only contains a reference to the top-
level component, which defines a behavior that can be specified in a setup file.
Additionally, we can add more references to components from the monitoring
tools in order to execute more components. The implementation is simple:

while(true)

for(i=CompList.begin();i!=CompList.end();++i)

i->step();

Each component is set up to a different frequency, depending on the particu-
lar function it does. As a simple orientation, the frequency set to any perceptive
component depends on the time for which this information can be considered
valid for the current actuation. As an example, image processing is usually made
at the camera frame rate (30 Hz) and the locomotion controller sends to the
walking engine speed commands at 2 Hz. To carry out this property, the class
component implements methods setFreq() (called during component initializa-
tion) and isTime2Run(), that returns true if the elapsed time since the last time
it returned true is longer than the one specified by the frequency (500 ms if 2
Hz, for example). Using this method, a usual step() implementation is

A::step()

{

b->step();

if(isTime2Run())

{

int info = b->getInfo();

c->setInfo(info);

}

c->step();

}

The ideas presented above add two important characteristics to this archi-
tecture:

– The behavior architecture is thread safe. The scheduler does not create
multiple threads to execute components. Only one thread calls sequentially
to the scheduler list of components. This thread executes in cascade the com-
ponents, in the order defined depending on the relation of the components
(modulation or results).

– If any of the components sporadically spends more time than that desired,
the systems suffers from what in real-time literature is called graceful
degradation. The execution of the other components is delayed, but no
executions are cancelled or overlapped. In the development phase of the com-
ponents, offender components are detected because istime2Run() methods
of each component periodically test if the frequency is achieved, generating
a warning if not.
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– The set of of components that a component can activate varies dynamically.
As there is no explicit deactivation method, its step function is simply not
called anymore; we have to design the component having in mind that a
component does not know when it is going to be called again. This is called
quiet shutdown.

Components can be very simple or very complex. Simple components com-
municate with the underlaying system methods to communicate with sensors
or motors, or use a fixed number of components. Complex components can be
implemented as finite state machine, changing the set of components it activates
dynamically depending on the state. We have developed a useful tool for design-
ing these complex components. This tool generates the code of the graphically
represented behavior.

4 Extensions

The previous section described the basic principles of our software architec-
ture. These principles are the core of the implementation of an architecture that
follows the principles described in this paper. This section describes optional
extension to this architecture that we have developed to have more functionality
when developing any of the possible applications.

4.1 Communications

By the communication mechanism, components can be acceded from remote
applications or even components running in other robots. This mechanism is
implemented using the ZroC ICE communications framework. This framework
hides all the complexity of programming over sockets and provides a convenient
RPC paradigm for our communications. Each robot runs an ICE broker with a
predefined set of interfaces that connects directly to the component’s methods.
This is allowed only to the modulation or retrieving information method of
components. This is a convenient way to implement teleoperation applications
or cooperating behaviors in groups of robots.

Communication mechanism uses a separate thread for managing the remote
calls. The components that can be remotely called must implement a mutual
exclusion mechanism to have one thread active executing in a component (in
the step() method or in any modulation/retrieving information method).

The next section presents a debugging mechanism using the communication
approach described in this section. The data exchanged, a list of structures that
defines graphical elements (circles, boxes, etc.), are defined as an ICE data type.
When running, each part of the communication (computer GUI and BICA) runs
a broker, and the call to the ICE interfacegetDebugData() is directly mapped
to the Debug::getDebugData() method.
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4.2 Debug

Debug mechanisms are critical while developing new components. The low-level
mechanisms (stout, stderr, and gdb) are assumed to be available all the time.
Actually, class component already contains two functions (startDebugInfofo()
and endDebugInfo()) used to periodically (each 10 s) print to stdout info about
the real frequency and CPU time.

This mechanism is a convenient way of detecting if a component is consuming
too much time, or if the set frequency is not reached because the system has
a high load, probably produced by a high consumption component. Despite
this, the development of robotic software also needs higher level of debugging
mechanisms. We need to know if the sensor information (image, ultrasound, etc.)
is correct, or if a self-localization algorithm is working correctly, for example.

We have developed a mechanism, which lets us graphically debug the internal
information of the components. An external application can connect to this ar-
chitecture to retrieve a list of graphical primitives (points, lines, ellipses, boxes,
text, and images) produced by the components. A component can be debugged
in the image space, in robot relative coordinates and global coordinates. To
illustrate the importance of this concept, we can think of a self-localization com-
ponent based on Extended Kaman Filter that could be implemented to return
a list of ellipses in global coordinates, representing the state and uncertainty
representing the robot position, while a self-localization component based on
Particle Filters could return a list of point with an arrow, representing the posi-
tion and orientation of each particle. Only the component developer knows which
information is crucial for debugging, and this model affords us this functionality.

We have implemented an external graphic application that communicates
with the scheduler to add components to the execution list and with a Debug
component, also in the execution list, for which the set of components are marked
for debugging. Any component able to be debugged, has to inherit from the
abstract class debuggeable and implement a getDebugInfo() method:

This debugging mechanism works as follows:

– The GUI activates a set of components and marks them for debugging.
– Once selected, the debugging space (image, relatives, or absolutes), it peri-

odically asks to the debug component for a list of primitives in that space.
– The debug component calls the getDebugInfo() of every component marked

for debugging and returns to the GUI a list with the information retrieved.
– The GUI draws the graphical primitives retrieved.

5 Basic capabilities applied to humanoid robot

The BICA Architecture, in which we have shown the key ideas in the last section,
has been implemented in the humanoid robot Nao using NaoiQi, a programming
framework provided by the manufacturer. It is important to note that these ideas
do not depend on the robot, and they are suitable to be implemented in any other
platform. Actually, it would be very easy to be implemented inside a ROS node
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for using all the services it provides, and to be available for a great variety of
robots. The design of the contributions described in the next sections are focused
on robots with legs, whose main sensor is a camera with a limited field of view,
that can be oriented to cover all the surroundings.

Nao is a fully programmable humanoid robot. It is equipped with a x86 AMD
Geode 500 Mhz CPU, 1 GB flash memory, 256 MB SDRAM, two speakers, two
cameras (nonstereo), wi-fi connectivity and ethernet port. It has 25 degrees of
freedom. The operating system is Linux 2.6 with some real-time patches. The
robot is equipped with a microcontroller ARM 7 allocated in its chest to con-
trol the robot motors and sensors, called DCM. NaoQi is a distributed object
framework which allows several distributed binaries (called brokers), each con-
taining several software modules to communicate together. Robot functionality
is encapsulated in software modules, so we can communicate to specific modules
in order to access sensors and actuators.

BICA is implemented inside one of these modules. Only a limited set of
BICA components, those that provide access to motors and sensors, are NaoQi-
dependent, making nonblocking calls to the services that the robot provides. The
rest of the components are independent of this platform.

5.1 Perception and Visual Memory

The main source of information about the robot environment is mainly provided
by cameras. There are components that provide information from ultrasound
sensors or buttons to the behaviors, but the camera provides the richest infor-
mation, and is also a more complex sensor to manage.

The processing of the image has a set of visual stimuli relevant to the robot
behaviors as output: obstacles, human faces, other robots, landmarks, balls, for
example. This detection is based on the color, shape, size, and position. This
processing starts labeling the color of each pixel in the image. This step is com-
mon to the detection of every visual stimuli. Next steps are particular for each
stimuli.

We have taken advantage of the component-based architecture that BICA
provides to avoid unnecessary processing, when some of these visual stimuli are
not needed by the active behaviors during the robot operation. First of all, we
have developed a component called Camera which labels each pixel with its color
using a fast lookup table, and makes this information available for other compo-
nents. Particular stimuli detection is made by particular components, using the
labeled image as input, and performing the rest of the processing.

Detectors are also responsible for updating a local estimation of the local
stimuli with the detection made in every cycle. Detectors use a list of extended
kalman filters to maintain the detected stimuli. Behaviors retrieve this filtered
information to make decisions.
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5.2 Attention

The robot’s camera has a limited field of view. Because of this, the robot has
to move the neck to cover all the surroundings and perceive with the camera,
fitted in its head, all the relevant visual stimuli. This is carried out by a visual
attention system. This system is in charge of searching, tracking, and revisiting
the visual stimuli.

The visual attention system developed inside the BICA architecture has the
Attention component as the central element. This component has three func-
tions:

1. It sends to the Head component the 3D points where the cameras have to be
orientated.

2. It receives the perceptive requirements from the behavior components with
perceptive needs. Using this information, it decides which visual stimulus
governs attention in every moment.

3. It asks to the detector in charge of the visual stimulus that governs attention
for a 3D point. This point is sent to the Head component.

The most relevant benefit of this system is that the searching and tracking is
specialized for each visual stimulus. Some stimulus can be searched on the floor
whereas others in the skyline; it can only have one instance of each stimulus,
or more. This is decided by each detector?s developer. In [4], we have presented
three different implementations of attention mechanism using the flexibility and
modularity that this design allows.

6 Robotic applications

In the previous sections we have described the key ideas of the BICA architecture.
In this section, we will present two different scenarios where we have applied this
architecture.

6.1 Robot soccer

Using the BICA architecture we have developed a complete set of behaviors for
a team of robotic players [2] of the Standard Platform League of the RoboCup.
This competition presents a challenging and dynamic scenario where teams of
robots have to play in a soccer match. In this league, in particular, all the robots
are similar so all the efforts are focused on developing software capable of dealing
with this problem.

This application needs reactive behaviors, where collisions, error in percep-
tion, and kidnappings are common. We have successfully developed a set of
behaviors to deal with this problem, including cooperation among robots, navi-
gation and self-localization algorithms, perception, and reactive visual attention.
The details of this implementation can be found in[5].
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6.2 Therapy for Alzheimer patients

This architecture has also shown to be adequate for a completely different ap-
plication, such as using this robot for therapies in patients having Alzheimer’s
disease. For this scenario, we have developed a component that plays therapy
scripts using new components capable of playing music and speech and manag-
ing the robot?s leads. In addition, the reproduction of the script is controlled by
applications running in a tablet, or receiving commands from a wiimote.

7 Conclusion

This paper has presented novel ideas in the designing of behavior-based architec-
ture. This architecture decomposes complex behaviors into building blocks that
cooperate among them, called components. These concepts provide an effec-
tive, clean, and scalable way of designing complex behaviors in limited resources
robots, with real-time requirements. Our architecture has no separation into
layers, but the organization is made explicit by the relation between component
activation. This contrasts with the classical approaches, such as Xavier [19] or
the one proposed by Arkin [20]. In Xavier, the work is made out of four layers:
obstacle avoidance, navigation, path planning, and task planning. The behav-
ior arises from the combination of these separate layers, each with a specific
task and priority. Arkin designed a hybrid architecture, in which the behavior is
divided into three components: deliberative planning, reactive control, and moti-
vation drives. Deliberative planning made the navigation tasks. Reactive control
provided with the necessary sensorimotor control integration for response reac-
tively to the events in its surroundings. Motivation drives were responsible for
monitoring the robot behavior.

ROS [11] is nowadays the reference in software architectures. It decomposed
applications into nodes that can communicate among them using direct mes-
sages or notifications to published data. It is thread safe and provides many
graphical and test-based tools for debugging, monitoring, and developing. ROS
community is very active, developing many software libraries and drivers that
can be easily reused. Our approach is a more compact design. Instead of making
each component a separate process, all the BICA components share the same
memory space and the calls are local, making our approach more efficient for
embedded applications, but limited in distributed applications. The design of
each component as a singleton makes it another very easy to use component
without any risk.

We have described the details of the execution of these components. These
details give this architecture some important characteristics when developing
real-time robotic applications: thread safe approach, graceful degradation to
high-load events, and efficient perceptive pipeline. We have also described how we
have used these concepts to develop visual attention or debugging mechanisms.
One of the most important characteristic of this paper is that these concepts are
described from a technical point of view, being useful to incorporate these ideas
to any robotic software.
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This architecture has been successfully used to deal with two complex ap-
plications such as the robot soccer or the therapy for Alzheimer patients. The
robot soccer presents a challenging environment where the robot perceives the
relevant visual stimulus, processes this information, and generates a fast response
in terms of actuation and active perception commands. We have demonstrated
how our approach is efficient enough to deal with perception, navigation, self-
localization, team coordination, action generation, and active vision when all the
processing is performed onboard. The perception requirements and component
activations dynamically change during the robot operation, and our approach
adapts to these changes, saving computing resources. The other application, fo-
cused on using new interfaces to communicate with the robot during therapies,
shows how the approach is also valid in such a different environment.

We have also shown that this architecture is convenient for developing robotic
applications. Our approach is scalable and provides a simple way to decompose
the functionality in components that can be run isolated during development
phase and being debugged with the efficient debugging mechanism described
in this paper. At this time, this architecture is mature enough to be used in
any application. It has been developed for the humanoid robot Nao, but we
are currently working on an implementation inside an ROS node, obtaining the
benefits of ROS, and the properties of our approach.
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