
JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007 1

Making compatible two robotic middlewares: ROS
and JdeRobot

Satyaki Chakraborty and José M. Cañas

Abstract—The software in robotics makes real the possibilities
opened by the hardware. In contrast with other fields, robotic
software has its own requirements like real time and robustness.
In the last years several middlewares have appeared in the
robotics community that make easier the creation of robotic
applications and improve their reusability. Maybe ROS (Robot
Operating System) is the most widespread one, with a wide user
and developer community. This paper presents the work towards
making compatible two of them, JdeRobot and ROS, both com-
ponent oriented. A compatibility library has been developed that
allows JdeRobot components to directly interoperate with ROS
drivers, exchanging ROS messages with them. Two experiments
are presented that experimentally validate the approach.

Index Terms—robotics middleware, software, ROS

I. INTRODUCTION

MOST of the robot intelligence lies on its software. Once
the robot sensor and actuator devices are set, the robot

behavior is fully caused by its software. There are many
different ways to program in robotics and none is universally
accepted. Some choose to use directly languages at a very low
level (assembler) while others opt for high-level languages like
C, C++ or Java.

Good programming practices are an emerging field in the
software engineer area but also in robotics. Several special
issues of robotics journals, books on the topic have been
published and also specific workshops and tracks have been
created inside ICRA and IROS. The 1Journal of Software En-
gineering for Robotics promotes the synergy between Software
Engineering and Robotics meanwhile the IEEE Robotics and
Automation Society (TC-SOFT) has founded the Technical
Committee for Software Engineering for Robotics and Au-
tomation.

Compared with other computer science fields, the develop-
ment of robot applications exhibits some specific requirements.
First, liveliness and real-time operation: software has to take
decisions within a fast way, for instance in robot navigation
or image processing. Second, robot software has to deal with
multiple concurrent sources of activity, and so the architecture
tends to be multitasking. Third, computing power is usually
spread along several connected computers, and so the robotic
software tends to be distributed. Fourth, the robotic software
typically deals with heterogeneous hardware. New sensors
and actuator devices continuously appear in the market and

Satyaki is with Jadavpur University and José M. is with Universidad Rey
Juan Carlos

E-mail: satyaki.cs15@gmail.com, josemaria.plaza@urjc.es
1www.joser.org

this makes complex the maintenance and portability to new
robots or devices. Fifth, Graphical User Interface (GUI) and
simulators are mainly used for debugging purposes. Sixth, the
robotic software should be expansible for incremental addition
of new functionality and code reuse.

Mobile robot programming has evolved significantly in
recent years. In the classical approach, the application pro-
grams for simple robots obtain readings from sensors and
send commands to actuators by directly calling functions
from the drivers provided by the seller. In the last years,
several robotic frameworks (SDKs, also named middlewares)
have appeared that simplify and speed up the development
of robot applications, both from robotic companies and from
research centers, both with closed and open source. They favor
the portability of applications between different robots and
promote code reuse.

Middlewares offer a simple and more abstract access to
sensors and actuators than the operating systems of simple
robots. The SDK Hardware Abstraction Layer (HAL) deals
with low level details accessing to sensors and actuators,
releasing the application programmer from that complexity.

They also provide a particular software architecture for
robot applications, a particular way to organize code, to handle
code complexity when the robot functionality increases. There
are many options here: calling to library functions, reading
shared variables, invoking object methods, sending messages
via the network to servers, etc. Depending on the programming
model the robot application can be considered an object
collection, a set of modules talking through the network, an
iterative process calling to functions, etc.

In addition, robotic frameworks usually include simple
libraries, tools and common functionality blocks, such as
robust techniques for perception or control, localization, safe
local navigation, global navigation, social abilities, map con-
struction, etc. They also ease the code reuse and integration.
This way SDKs shorten the development time and reduce the
programming effort needed to code a robotic application as
long as the programmer can build it by reusing the common
functionality included in the SDK, keeping themselves focused
in the specific aspects of their application.

As developers of JdeRobot framework since 2008 the au-
thors faced a strategic decision: competing with ROS is point-
less, instead of that, it is more practical to make compatible
JdeRobot applications with ROS framework. From the point
of view of the small JdeRobot team, one advantage is to
reduce the need of development of new drivers, using instead
the ROS ones and focusing the efforts in the applications
themselves. Another advantage is the direct use of ROS



2 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

datasets and benchmarks, which are increasingly common in
robotics scientific community. The aim of this paper is to
present the current approach to compatibility between ROS
and JdeRobot.

Section II gives an introduction to ROS and JdeRobot
frameworks. Section III presents two previous approches,
while section IV describes the current proposed approach. Two
experiments of the compatibility library working are presented
in section V. Some conclusions finish the paper.

II. TWO ROBOTIC MIDDLEWARES: ROS AND JDEROBOT

Cognitive robotic frameworks were popular in the 90s and
they were strongly influenced by the Artificial Intelligence
(AI), where planning was one of the main key issues. One of
the strengths of such frameworks was their planning modules
built around a sensed reality. A good example was Saphira
[12], based on a behavior-based cognitive model. Even though
the underlying cognitive model usually is a good practice
guide for programming robots, this hardwired coupling often
leads the user to problems difficult to solve when trying to do
something that the framework is not designed to support.

Modern robotic frameworks are more based on software
engineering criteria. Key achievements are (1) the hardware
abstraction, hiding the complexity of accessing heterogeneous
hardware (sensors and actuators) under standard interfaces, (2)
the distributed capabilities that allow to run complex systems
spread over a network of computers, (3) the multiplatform
and multi-language capabilities that enables the user to run
the software in multiple architectures, and (4) the existence of
big communities of software that share code and ideas.

One relevant middleware was Player/Stage [3], the de facto
standard ten years ago. Stage is a 2D robot simulation tool and
Player is network server for robot control. Player provides a
clean and simple interface to the robot’s sensors and actuators.
The client program talks to Player over a TCP socket, reading
data from sensors, writing commands to actuators, and con-
figuring devices on the fly. Client programs can be written in
any of the following languages: C++, Tcl, JAVA, and Python.
In addition, the client program can be run from any machine
that has a network connection to the robot or to the machine
on which the simulator is running.

Another important example is ORCA [8], [5], an open-
source framework for developing component-based robotic
systems. It provides the means for defining and developing
the building-blocks which can be pieced together to form
arbitrarily complex robotic systems, from single vehicles to
distributed sensor networks. It uses the ICE communication
middleware from ZeroC and its explicit interface definition to
exchange messages among the components. It was discontin-
ued in 2009, but was very influential.

Other relevant component-based framework is RoboComp
[10], [11] by Universidad de Extremadura. It is open source
and also uses ICE communication middleware as glue between
its components. It includes some tools based on Domain Spe-
cific Languages to simplify the whole development cycle of the
components. Most component code is automatically generated
from simple and abstract descriptions over a component tem-
plate. In addition, RoboComp includes a robot simulation tool

that provides perfect integration with RoboComp and better
control over experiments than current existing simulators.

Other open source frameworks that have had some impact
on current the state of the are CARMEN by Carnegie Mel-
lon and Miro by University of Ulm. They also use some
component-based approach to organize robotic software using
IPC and CORBA, respectively, to communicate their mod-
ules. There are also closed source frameworks as well, like
Microsoft Robotics Studio or ERSP by Evolution Robotics.

A. ROS

The 2Robot Operating System (ROS) [9] is one of the
biggest frameworks nowadays. It was founded by Willow
Garage as an open source initiative and it is now maintained
by Open Source Robotics Foundation. It has a growing user
and developer community and its site hosts a great collection
of hardware drivers, algorithms and other tools. ROS is a
set of software libraries and tools that help to build robot
applications. From drivers to state-of-the-art algorithms, and
with powerful developer tools simplifies the development of
robotics projects. It is multiplatform and multilanguage.

The main idea behind ROS is an easy to use middleware
that allows connecting several components, named nodes,
implementing the robotic behavior, in a distributed fashion
over a network of computers using hybrid architecture. ROS
is developed under hybrid architecture by message passing,
mainly in publish-subscribe fashion (topics in Figure 1).
Message passing of typed messages allows components to
share information in a decoupled way, where the developer
does not require to know which component sends a message,
and vice versa, the developer does not know which component
or components will receive the published messages.

Fig. 1. ROS messages: topics, services

Nodes send and receive messages on topics. A topic is a data
transport system based on a subscribe/publish system. One or
more nodes are able to publish data to a topic, and one or more
nodes can read data on that topic. A topic is typed, the type of
data published (the message) is always structured in the same
way. A message is a compound data structure. It comprises a
combination of primitive types (character strings, Booleans,
integers, floating point, etc.) and messages (a message is

2http://www.ros.org/



CAZORLA AND MATELLAN : JOPHA PAPER DEMO 3

a recursive structure). RPC mechanisms (like services) are
available as well.

Resources can be reached through a well defined naming
policy and a ROS master. Current release is Jade Turtle, the
9th official ROS release. It is supported on Ubuntu Trusty,
Utopic, and Vivid.

B. JdeRobot

The JdeRobot platform3 is a component based framework
that uses the powerful object oriented middleware ICE from
ZeroC as glue between its components. ICE allows JdeRobot
to run in multiple platforms and to have components written in
any of the most common programming languages interacting
among them. Components can also be distributed over a
network of computational nodes and by extension use all
the mechanisms provided by ICE as secure communications,
redundancy mechanisms or naming services.

The main unit for applications is the component. A compo-
nent is an independent process which has its own functionality,
although it is most common to combine several of these in or-
der to obtain a more complex behavior. There are several types
of components, according to the functionality. Drivers offer a
HAL (Hardware Abstraction Layer) to communicate with the
different devices inside the robot (sensors and actuators). The
entire configuration needed by the components is provided by
its configuration file.

The communication between JdeRobot components occurs
through the ICE (Internet Communications Engine) middle-
ware. The ICE communication is based on interfaces and has
its own language named slice, which allows the developer to
define their custom interfaces. Those interfaces are compiled
using ICE built-in commands, generating a translation of the
slice interface to various languages (Java, C++, Python...). This
allows communication between components implemented in
any of the languages supported by ICE.

JdeRobot widely uses third party software and libraries (all
of them open source) which greatly extends its functionality:
OpenCV for image processing; PCL for point cloud process-
ing; OpenNi for the RGB-D support, Gazebo as the main
3D robot simulator and GTK+ for the GUI implementations.
Besides, JdeRobot provides its own libraries which give to
robotics commonly used functionality for the developing of
applications under this framework. It also provides several
tools. For instance, it includes CameraView tool to show
images from any source and includes kobukiViewer tool
for teleoperating a Kobuki robot and show the data from all
its sensors (cameras, laser, encoders).

It has evolved significantly since its inception and it is
currently at its 5.3 version, which can be installed from
packages both in Ubuntu and Debian Linux distributions.

III. PREVIOUS WORKS

A. Translator component

In the first approach towards JdeRobot-ROS compatibil-
ity we developed a standalone process that translates ROS

3http://jderobot.org

messages to JdeRobot ICE interfaces and viceversa [1]. This
adaptor process is named jderobot ros and allows JdeRobot
components to talk to ROS nodes, and allows ROS nodes to
communicate with JdeRobot components. It links with both
the ICE middleware and the ROS libraries. The translation for
every message has to be explicitely coded. The compatibility
is intended just for the common sensors and actuators.

In Figure 2 the images from a JdeRobot camera in Gazebo
simulator reach the camera dumper ROS node.

Fig. 2. JdeRobot camera in Gazebo reaches the camera-dumper ROS node

In Figure 3 a ROS Pioneer robot in Gazebo is handled from
the JdeRobot teleoperatorPC component, that shows images
from the robot stereo pair, data from the laser sensor and sends
motor commands.

Fig. 3. ROS robot in Gazebo reaches the teleoperatorPC JdeRobot component

B. ROS-ICE Bridge with Template class

In the second approach we tried to avoid the additional
translator process [2]. Then we developed a template class
to be used in the JdeRobot component that wants to connect
to ROS nodes, and to be used in the ROS node that wants to
connect to any JdeRobot component. Again, the translation for
every message has to be explicitely coded. The compatibility
is intended just for the common sensors and actuators.

The ROS-ICE Bridge is implemented by using an abstract,
template class, which contains an Ice Proxy, and also, pointers
to ROS core components like: ROS-Node, ROS-Publishers and
ROS-Subscribers.

1) Sending data from ROS Publisher to JdeRobot compo-
nent: The workflow for sending data from a ROS interface
to a JdeRobot application is described in figure 4. Basically,
a derived object from the ROS-Ice class initializes a ROS-
Subscriber for the corresponding topic and it also implements



4 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

a ROS-callback method. In this function, the derived object
must translate the received input into a slice format and then
send it over to the JdeRobot component, over the Ice-Proxy.

It is worth mentioning that this workflow could be useful
if a developer would like to use a graphical user interface
from the Rviz package. The Rviz package in ROS not only
provides features to send data to a backend application, but it
also offers a window to visualize real time 3D models of the
robot in question.

Fig. 4. Workflow of ROS Publisher to ICE component

Another interesting use is getting data on ROS log files
from JdeRobot applications. In ROS it is possible to record
data in so called rosbag files. The framework also provides a
way to play-back the recorded data in a synchronized manner
and to publish the information on the same topics that were
registered. This is possible because at recording time, the
timestamp and the channel of the transmitted information, are
stored in the bag file as well. In this situation, the workflow
of the program is as in Figure 4. The only difference is that
the ROS Publisher is not developed by the user, instead it is
the player in ROS framework which reads the data in the log
file.

2) Sending data from JdeRobot component to ROS applica-
tions: The workflow of the program to receive in a ROS node
data from JdeRobot components is as described in Figure 5.
The idea is to create a derived object from both the ROS-ICE
bridge and the “ICE Server” of a random sensor. Once an Ice
proxy calls one of its methods, the bridge is supposed to take
the input, in slice format, transform it into a ROS message
and then publish it on a ROS topic.

This flow of the applications is useful, because many
commercial and even industry robots are configured to be
controlled and to send information over the ROS framework.
Therefore the ROS application could use a JdeRobot driver, if
needed, in order to interact with a device.

IV. COMPATIBILITY LIBRARY

In the current approach we focused only on using ROS
nodes (drivers) from JdeRobot applications, as this is the
most common and useful scenario. We chose to create a
library to be used in JdeRobot components. Using this library
the components may talk with ROS drivers too. Regardless
the data source, a JdeRobot sensor driver or a ROS sensor
driver, the sensor data are mapped to the same local API. The
processing side of the application code locally reads the sensor

Fig. 5. Workflow of JdeRobot component to ROS application

there. Regardless the data sink, a JdeRobot actuator driver or
a ROS actuator driver, the motor commands are mapped from
the same local API. The processing side of the application
code locally writes the actuator commands there.

The ROS nodes can be used just as the come, without
touching at all their code. The library adds the capability
of the JdeRobot component to directly talk to ROS nodes if
configured to do so.

Current stable version of the JdeRobot middleware follows
the ICE server-client architecture. While ICE interfaces help
build a stable framework for server-client architectures, using
ROS nodes as drivers are advantageous in terms of scalability
and reusability. Keeping this idea in mind, we developed a
compatibility library that translates ROS messages into local
data structures in the client components. The library has been
developed to allow the JdeRobot client components (currently
supports the CameraView component and the KobukiViewer
component) to communicate both with the ROS drivers as
well as their ICE server counterparts. The communication
between a typical JdeRobot client component and its ROS
driver (via the compatibility library) or ICE server(directly
through existing ICE interfaces) is shown in the Figure 6.
All the right side of the Figure 6 lies inside the JdeRobot
component.

Fig. 6. Block diagram showing the communication between a JdeRobot
client component with its ROS driver as well as ICE server.

The ROS compatibility library is divided into several seg-
ments. Each segment provides methods to translate ROS
messages of a particular type of sensor or actuator. For



CAZORLA AND MATELLAN : JOPHA PAPER DEMO 5

instance, the current implementation contains the following
segments for: (1) Image translation (via cvBridge) (2) Laser
data translation (3) Encoder data translation (4) Motor data
translation. The first segment is used by the CameraView
component while all the four segments are simultaneously
used by the kobukiViewer component.

The JdeRobot client components are thus modified to sup-
port message retrieval from both the ICE servers as well
as ROS driver. The user has the option to choose between
the ROS driver and the ICE server by setting or resetting
a boolean flag in the configuration file of the corresponding
client component.

Using ROS drivers with the compatibility library for JdeR-
obot applications has one significant advantage. As discussed
in the previous section, the ROS-Ice Bridge architecture uses
an intermediate translation of ROS messages into a slice for-
mat and then follows the usual ICE server-client architecture
to communicate with a JdeRobot component and vice versa.
This method (from sending message from ROS publisher to
ICE server) involves three steps: (1) sending the message from
ROS publisher to ROS subscriber (2) Translating the message
into a slice format (3) communicating the information between
an ICE client and an ICE server via the ICE interfaces. The
same remains true for sending the message from ICE client
to ROS subscriber. In order to cut down the overhead, its
beneficial to modify the client components by providing them
with the ability to receive information directly from either its
ICE server or its ROS driver.

V. EXPERIMENTS

This section contains information about how the ROS com-
patibility library has been used for the CameraView component
and the KobukiViewer component.

A. CameraView with a ROS camera node

Fig. 7. CameraView component may communicate both with a ROS driver
as well as an ICE server.

Fig. 8. The ROS camera driver is publishing images taken from a USB
webcam while the CameraView component is receiving images from the ROS
driver and displaying them.

In the current implementation, the CameraServer compo-
nent (the ICE server component) was replaced by a ROS
driver. The ROS driver is in fact a ROS node publishing
images as ROS messages via cvBridge. On the other hand, the
CameraView component has been modified to act as a ROS
subscriber that receives the encoded image messages from the
driver. The compatibility library takes care of translating this
message into an OpenCV Mat object, which is then displayed
in the CameraView component. Also, along with the images,
the frame number or id is also published to keep track of
whether the frames are arriving in sequence or not. Figure 8
shows the CameraView component being driven by a ROS
publisher.

The CameraView component is a relatively simple com-
ponent as in this case only a single node is publishing ROS
messages in the driver and in the client component, only a
single node is listening to those messages. Hence there is no
need of concurrency control or multithreaded spinners. In the
next subsection we cover a more challenging problem where
the client component receives messages from multiple ROS
publishers.

B. KobukiViewer with a ROS Kobuki robot

JdeRobot has support for running and testing the
koukiRobot or the Turtlebot in a simulated gazebo world.
The simulated Kobuki robot (Figure 9) has two cameras, one
2D laser scanner and encoders as sensors, and motors as the
only actuators. The ICE servers are implemented as gazebo
plugins and the ICE client component (the KobukiViewer
component) communicates with the servers through different
ICE interfaces. The ICE interfaces currently supported by the
KobukiRobot simulation in JdeRobot are: 1) Camera Images
2) Laser data 3) Pose3d (Encoder data) 4) Motors.

We thus modified the Gazebo plugins to run ROS nodes in
stead of ICE servers. These nodes can act as ROS publisher
or ROS subscriber (or both) depending on whether messages
are being sent to or received from the client component. The
camera driver, laser driver and the pose3d driver only send
sensor data as messages to the kobukiViewer. Hence in these
cases we only need a ROS node to publish these messages
in different ROS topics. On the other hand, the motor driver



6 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

Fig. 9. Kobuki robot simulation in Gazebo.

needs to publish its values as well as receive values from the
client component to update its parameters. Hence in this case,
the ROS driver needs a bidirectional communication using a
ROS publisher node that publishes the actuator data as well
as a ROS subscriber node that listens to the client component
for updating the values of the actuator.

Fig. 10. Figure shows KobukiViewer component being run with ROS drivers.

In the kobukiViewer component, we have four ROS sub-
scribers subscribing to each of the four ROS topics to receive
sensor data and one ROS publisher to publish messages for
updating the values of the motors. For each subscriber we
implement a callback function where the ROS compatibility li-
brary is used to translate the ROS messages into data structures
local to the kobukiViewer component. The ROS compatibility
library is also used in the callback function in the motor driver
which listens to the kobukiViewer component for messages in
order to update the values of the actuator.

In Figure 10, we see the kobukiViewer component being
run with ROS drivers. The component provides a Qt GUI
to manually set the motor values or control which sensor
readings to display. In this case, we see the 2D laser scan
in the bottom right window and the left and right camera
images at that instant in the window just next to it. In
order to run the GUI and the ROS functions in parallel,
we use a ros::AsyncSpinner object to run the ROS callback
functions in the background thread. ros::AsyncSpinner unlike
the single threaded ros::spin() function does not conform to
abstract Spinner interface. Instead, it spins asynchronously

when one calls start(), and stops when either one calls stop(),
ros::shutdown() is called, or its destructor is called.

Fig. 11. Figure shows how the KobukiViewer component communicates with
different ROS drivers.

Next, we illustrate a small code snippet to show the im-
plementation of how the JdeRobot client component(s) is(are)
modified to support ROS compatibility. The snippet includes
two files. First is roscompat.h, an header file from the ROS
compatibility library which contains methods responsible for
message translation.

roscompat.h

class ros compat {
...

/∗ public member functions ∗/
public:

void translate image messages(const sensor msg::ImagePtr&
msg, cv::Mat& image);

void translate laser messages(const ros compat::Num::ConstPtr
& msg, std::vector<int>& laserdata);

void translate pose3d messages(const ros compat::Pose3d::
ConstPtr& msg, std::vector<int>& pose);

void translate motor messages(const ros compat::Motors::
ConstPtr& msg, std::vector<int>& motors);

...
}

In order to illustrate how these functions are used inside the
KobukiViewer client component, we provide a snippet from the
Sensors.cpp file from the component.

sensors.cpp

#include ‘‘roscompat.h”
...

/∗ global variables ∗/
ros compat∗ rc;
std::vector<int> pose, laserdata, motors;
cv::Mat left frame, right frame;
...

/∗ callback functions ∗/



CAZORLA AND MATELLAN : JOPHA PAPER DEMO 7

/∗ Inside the callback functions ∗/
/∗ the translation of ROS messages into ∗/
/∗ local data structures takes place ∗/
/∗ and the global variables are updated. ∗/
void camera left callback(const sensor msgs::ImageConstPtr&

image msg) {
rc−>translate image messages(image msg, left frame);
}
void camera right callback(const sensor msgs::ImageConstPtr&

image msg) {
...
}
void pose3d callback(const ros compat::Num::ConstPtr& msg) {

...
}
/∗ so on ∗/

Sensors::sensors(...) {
...

/∗ ROS intialisation ∗/
ros::init(argc, argv, ”kobukiclient”);

/∗ Create NodeHandles ∗/
ros::NodeHandle n cam left, n cam right, n laser, n pose,

n motors;

/∗ Create ROS subscribers for each ROS topic ∗/
image transport::ImageTransport it left(n cam left);
image transport::ImageTransport it right(n cam right);
image transport::Subscriber left camera sub = it.subscribe(”

leftcameratopic”, 1000, camera left callback);
image transport::Subscriber right camera sub = it.subscribe(”

rightcameratopic”, 1000, camera right callback);
ros::Subscriber laser sub = n laser.subscribe(”lasertopic”, 1001,

laserCallback);
/∗ so on ∗/

/∗ Start the AsyncSpinner ∗/
ros::AsyncSpinner spinner(4);
spinner.start();
ros::waitForShutdown();

...

}

void Sensors::update() {
/∗ update the private datamembers from the global variables ∗/
/∗ in stead of using the ICE proxies ∗/
/∗ an example is shown for the laser data∗/
/∗ Sensors::LaserData is a private data member ∗/
/∗ whereas laserdata is a global variable updated ∗/
/∗ when the callback function is called ∗/

mutex.lock();
laserData.resize(laserdata.size());
for (int i=0; i<laserdata.size(); i++) {

laserData[i] = laserdata[i];
}
mutex.unlock();

/∗ same for camera images, pose3d etc. ∗/
...

}

/∗ other public member functions ∗/
...

VI. CONCLUSIONS

The preliminary work on the third approach to allow com-
patibility between ROS nodes and JdeRobot components has
been presented in this paper. It consists of a compatibility li-
brary that extends the capability of the components to connect
to ROS nodes exchanging ROS messages. The components
may connect with other JdeRobot units using ICE or with
ROS units using that library. The ROS message processing
is put on a library so any component dealing with the same
messages may share it.

The communication is bidirectional, as sensors (’get’ op-
erations) and actuators (’set’ operations) are supported. The
processing for every ROS message has to be explicitely coded.
The compatibility is intended just for the common sensors and
actuators messages, so the JdeRobot application may use the
ROS Hardware Abstraction Layer. The ROS communication
side matches the same local API for sensors and actuators
that the ICE communication side does, and so, the logic of
the JdeRobot component is not changed at all.

The compatibility library has been validated with two ex-
periments connecting two standard JdeRobot applications to
ROS nodes. First, the cameraViewer to a ROS node that serves
camera images. Second, the kobukiViewer has been connected
with a Kobuki robot with motors, cameras, encoders and laser
served through ROS.

The main development is focused now is to extend the
compatibility library to support a drone robot like 3DR Solo
drone and RGBD sensors like Kinect-2. In addition, the
compatibility has been tested so far on C++ components,
further work is needed to support the same extension on
Python JdeRobot components.

ACKNOWLEDGMENT

This research has been partially sponsored by the Com-
munity of Madrid through the RoboCity2030-III project
(S2013/MIT-2748), by the Spanish Ministerio de Economı́a
y Competitividad through the SIRMAVED project (DPI2013-
40534-R) and by the URJC-BancoSantander. Authors also
would like to thank Google for accepting JdeRobot on its
program GSoC-2015.

REFERENCES

[1] http://jderobot.org/Mmoya-tfm
[2] http://jderobot.org/Militaru92-colab
[3] Brian P. Gerkey, Richard T. Vaughan, Andrew Howard. The Player/Stage

Project: Tools for Multi-Robot and Distributed Sensor Systems. In Pro-
ceedings of the International Conference on Advanced Robotics (ICAR
2003), pp 317-323, Coimbra, Portugal, June 30 - July 3, 2003.

[4] J. M. Cañas and M. González and A. Hernández and F. Rivas, Recent
advances in the JdeRobot framework for robot programming. Proceedings
of RoboCity2030 12th Workshop, Robótica Cognitiva, pp 1-21, UNED,
Madrid, July 4, 2013. ISBN:978-84-695-8175-9

[5] A.Makarenko, A.Brooks, T.Kaupp. On the Benefits of Making Robotic
Software Frameworks Thin. IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2007). Workshop on Evaluation of
Middleware and Architectures.

[6] A.Makarenko, A.Brooks, B.Upcroft. An Autonomous Vehicle Using Ice
and Orca. ZeroC’s Connections newsletter, issue 22, April, 2007.

[7] A. Makarenko, A. Brooks, T. Kaupp. Orca: Components for Robotics.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2006). Workshop on Robotic Standardization.



8 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2007

[8] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback.
Orca: a component model and repository. In D. Brugali, editor, Software
Engineering for Experimental Robotics. Springer Tracts in Advanced
Robotics, 30, p. 231-251, 2007.

[9] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: An Open-Source
Robot Operating System. ICRA workshop on open source software. Vol.
3. No. 3.2. 2009.

[10] L. Manso, P. Bachiller, P.Bustos, P. Nuñez, R.Cintas, L.Calderita. Robo-
Comp: A tool-based robotics framework. In Proceedings of Simulation,

Modeling, and Programming for Autonomous Robots: Second Interna-
tional Conference, SIMPAR 2010, Darmstadt, Germany, November 15-
18, Springer Berlin Heidelberg, pp 251–262, 2010.

[11] Marco A. Gutiérrez, A. Romero-Garcés, P. Bustos, J. Martı́nez. Progress
in RoboComp, Journal of Physical Agents 7(1), pp 39–48, 2013.

[12] Kurt Konolige, Karen Myers. The saphira architecture for autonomous
mobile robots. In book “Artificial intelligence and mobile robots”, pp
211–242. MIT Press Cambridge, MA, 1998.


