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Abstract. This paper addresses the design and implementation of a
path following controlling system for a drone which relies on 3D local-
ization by visual markers. It has been designed only for indoor flights.
Special attention is paid to accuracy of the position estimation algorithm,
robustness of the path following controller and real time operation. The
path following system is composed of two components, one responsible
of the image analysis and 3D pose estimation and another responsible
of the drone navigation. It has been experimentally validated both in
Gazebo simulator and in a real drone.

1 Introduction

In recent years, there has been an emerging interest in the use of Unmaned
Aerial Vehicles (UAVs) with applications such as 3D mapping, military tasks,
security, inspection [6] or agriculture. Maybe quadcopters are the most popular
aerial vehicles now. Currently there are several lines of research and projects
with UAVs, including prototypes from big companies like Project Wing from
Google or Prime Air from Amazon. This growing interest in aerial robotics
also is reflected in several international competitions like Int. Micro Air Vehicle
Indoor Flight Competition IMAV 1, DronesForGood 2, Mohamed Bin Zayed Int.
Robotics Challenge (MBZIRC) 3, which foster the research and development of
UAVs technology.

In order to accomplish some of the above mentioned taks, the aerial vehicles
must work autonomously without the constant supervision of human operators.
Many capabilities are desired in this context, like path following, self-localization,
precision landing, obstacle detection and avoidance among others. There are sev-
eral frameworks for UAVs that help in developing such capabilities and provides
support for different hardware platforms. For instance, AEROSTACK [15], PX4
Flight Stack 4, APM Flight Stack 5, Telekyb [20], Hector quadrotor framework
[21], beyond other general robotics middlewares like ROS.

One important capability to achieve the UAV autonomy is following of pre-
defined paths in 3D [9, 5, 19]. For this behavior the UAV should continuously

1 http://www.imavs.org
2 http://www.dronesforgood.ae
3 http://www.mbzirc.com
4 http://px4.io
5 http://ardupilot.com
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know its 3D position and control its movements to advance through the desired
3D path.

3D localization can be achieved in outdoor scenarios with the help of sensors
such as GPS, Inertial Measurement Unit (IMU) or altimeter. In indoor envi-
ronments higher accuracy is needed as there may be multiple obstacles within
a few meters. There, solutions may come from external motion capture sys-
tems [8, 7, 22] or from onboard computer vision [1, 18], optionally using IMUs
too. Typically motion capture systems monitor the position of the vehicles at a
high frequency, like 100 Hz. The procedures may vary depending on the camera
used (RGB, RGBD, ToF...) and whether the camera is on the scenario or on-
board the drone. When using on board cameras, three main techniques can be
distinguished. First, Visual Odometry in which the position is estimated by cal-
culating the incremental movement between separate pictures extracting feature
points of images. Even though this method can provide good short-term accu-
racy, the error rapidly increases with movement. Second, Visual SLAM family
of algorithms allows the mapping of the area observed and simultaneously the
localization of the camera. MonoSLAM, PTAM, DSO [4], LSD-SLAM and SVO
[3] algorithms belong to this family. And third, Localization based on Markers
(fiducial systems), which is based on the previous knowledge of the environ-
ment’s map [2]. The map is a colletion of visual markers whose absolute position
is known, so when the camera detects any of them the absolute camera position
can be obtained estimatind the relative position camera-marker.

The control of the movements can be achieved with several approaches like
PID controllers, fuzzy controllers, Internal Model Control [17], Model Predictive
Control (MPC) [16], direct vision-based control [19], etc.. Direct vision-based
control has been used in other capabilities like precision landing too.

The goal of this project is to develop the first prototype of a vision-based
path following system for quadcopters in indoor environments. The navigation
will be based on a path tracking method, ensuring a robust position control.
In order to accomplish that, the self location will depend on computer vision
algorithms relying on visual markers. Given the features of the environment, the
system should function with minimal spatial errors in order to avoid obstacles
in narrow scenarios.

2 Infrastructure

Several hardware and software pieces have been used in this work. The hardware
platform used is ArDrone2.0 from Parrot (Figure 2). This quadcopter was devel-
oped in 2012 as an enhancement over ArDrone1.0 The onboard computer runs
a Linux OS, and communicates with the pilot through a self-generated Wi-Fi
spot. The onboard sensors include an ultrasonic altimeter enhanced with an air
pressure sensor, as well as 3-axis gyroscope, accelerometer and magnetometer,
which are used to provide stabilisation. It is also equipped with a 720p front
camera and a ventral QVGA sensor.
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2.1 AprilTags beacons

AprilTags is a visual fiducial system widely used for tasks including robotics,
augmented reality and camera calibration. This system was developed in 2011
by Ed Olson [11]. It is similar to QR Codes, both are two-dimensional bar codes
(Fig. 1), but AprilTags were designed to encode far smaller data payloads (be-
tween 4 and 12 bits) and introduces a new encoding system which addresses some
specific problems with 2D bar codes. It enhances robust detection in more rota-
tion angles and robustness against false positives, allowing them to be detected
from longer ranges.

AprilTags library detects any of its markers in a given image, providing the
unique ID of the tag as well as its location (height and width pixel) in the
image. It also provides the 3D relative transformation between tag and camera,
but this was not used here because we wanted to rely only in our existing 3D
self-localization component [10], which has been also employed in other projects
and includes several mechanisms to increase robustness and accuracy.

Fig. 1. Sample AprilTags markers

2.2 JdeRobot framework

The system has been developed using JdeRobot6, an open source robotics and
computer vision development framework. In this framework robot applications
are built from several distributed nodes which communicates themselves trough
ICE (Internet Comunication Engine from ZeroC) or ROS messages grouped on
explicit interfaces/topics. It is fully ROS compatible, provides support to many
sensors and actuators, several libraries and tools. Some of them are oriented
to aerial vehicles. It simplifies hardware access from applications providing an
abstraction layer over the manufacturer’s software such as Ar.Drone SDK in
ArDrone.

Progeo is a JdeRobot library for projective geometry which offers functions
that relate 2D and 3D points. Having the camera extrinsic and intrinsic param-
eters, obtained by calibration, there is a project function that computes the 2D
pixel on which a given 3D point in space projects in the image. There is also

6 http://jderobot.org
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a backproject function that computes the 3D ray containing all the 3D points
which projects into the same pixel.

CameraCalibrator is a JdeRobot opencv-based tool which obtains the intrin-
sic parameters of a camera using an intuitive GUI and a calibration pattern.
It provides a simple process and a configuration file where settings like calibra-
tion pattern, method, number of images taken or delay between images can be
changed. It delivers the parameters on a .yml output text file. This tool was
used to obtain the camera parameters for the real ArDrone camera (Figure 2,
right) and the simulated one.

Fig. 2. Real ArDrone2 and calibration of its onboard camera

Ardrone server is the JdeRobot driver that allows cammunication with the
ArDrone quadcopter. It encloses the ArDrone SDK libraries provided by the
manufacturer. Its most important interfaces for this work are: CMDVel, to send
velocity commands; Ardrone extra, that allows execution of complex maneuvers
methods like taking off or landing; and Camera, for onboard camera images.

Uav viewer is a JdeRobot tool that allows the user to manually control an
ArDrone through a Graphical User Interface (GUI).

JdeRobot includes one plugin for a quadcopter similar to ArDrone2.0 (Fig.
4) in Gazebo simulator. It has been extensively used in this project, in particular
on the initial stages. Gazebo is a multi-robot realistic simulator for both outdoor
and indoor environments. It is able to simulate several robots with their sensors
in a 3D world, and to emulate physical interactions between the objects in the
3D world thanks to its integration with physics libraries, such as Bullet or Ogre.
The simulator is under constant development, and is maintained by the Open
Source Robotics Foundation.

3 3D path following system

The design of the developed application is composed of two components as shown
in Figure 3. One of them is tasked with image analysis and 3D position estimation
and the other one manages drone’s movement and controls its position given the
estimated location. Communication between both components, and them and
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Ardrone server driver is done through ICE interfaces. All the implementation
code is open source and is publicly available 7.

First, VisualLoc component receives the images taken by the quadcopter’s
camera. It performs an analysis of the image looking for the presence of AprilTag
markers. Once the (several) markers are located, if any, it applies projective
geometry to estimate the relative 3D position of the camera to each of the
detected markers, and so, each 3D absolute camera position observation. In
order to get an unique absolute 3D camera position it applies spatial fusion by a
weighted average that filters observations. These weights take into account the
3D distance between the markers and the camera, giving higher weight to those
marker detections closer to the camera. Finally, a temporal fusion is carried out
by a Kalman Filter to provide more robustness and the final estimation is sent
to client components.

Second, Navigator component recieves the position estimations and generates
a combination of velocities that control the movement of the quadcopter. It is
a reactive controller. The position control is based on a predefined 3D path
that the drone must follow. Given the prevalent horizontal feature of the indoor
environments, the algorithm rests heavily on the rotation angle along the Z axis.
The algorithm predicts the future position of the vehicle and adjusts the steering
angle so the future position error in relation to the path is minimized.

Fig. 3. Global system design

3.1 Beacon based visual 3D localization

The software architecture of the VisualLoc component consists of several mod-
ules. The MainWindow module implements a GUI where the World class renders

7 https://github.com/RoboticsURJC-students/2016-pfc-Manuel Zafra
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a 3D world showing position estimation results. CameraManager module is in
charge for the computer vision algorithms. The Sensors module manages ICE
interfaces and shared memory with the other modules. Following JdeRobot’s
standards, each module runs on a different thread that periodically calls its
update() method. Calling this method causes the modules to carry out their
main tasks in an iterative way.

A GeometryUtils library has been developed in order to define a series of
geometric calculus methods. Those methods include calculation of the intersec-
tion between planes and lines, generation of rotation matrices, or conversions
between quaternions and euler angles. Pin-hole camera model has been used due
to its simplicity and accuracy. The software structure that defines the camera
is TPinHoleCamera class, defined in progeo library. It contains the camera pa-
rameters which must be obtained by previous calibration. Information regarding
markers absolute position (map) and parameters of the onboard drone camera
are loaded from two text files, markers.txt and (camera.yml).

The ProcessImage method, in CameraManager module, processes the 2D
image captured by the camera looking for markers, as well as estimates the
3D position of the camera. The markers found are instanced by MarkerInfo
class, which contains the id, size and position of each marker. Position is stored
in two matrices, one with the position of the marker regarding the world and
another one with the position of the world regarding the marker. The AprilTags
detection method is applied to a greyscale converted image, it generates an array
containing all detected markers. They are highlighted on the original image and
shown on the GUI.

A series of geometric operations are applied on each marker, starting with
the OpenCV ’s function SolvePnP, which returns the translation and rotation
vectors that determine the position of the marker in relation to the camera. In
order to acquire the full RT matrix, OpenCV ’s function Rodrigues is used. The
matrix containing the estimated position of the camera referred to the world is
obtained by multiplying the calculated matrix and the matrix of the position of
the marker in relation to the world.

The position estimations for each marker are stored in an array, then, a spa-
tial fusion is performed with a weighted filter. This filter uses a different weight
for each estimation based on the relative distance to the marker. Closer markers
get a higher weight. Particular weight values were set by experimental testing,
analysing the distances where the system lost accuracy. The filter computes all
the weights and then obtains a ratio for each estimation following equation (1).
The final estimation is computed applying the weighted average of 3D coor-
dinates of estimations, following the equation (2). The rotation angles of the
estimations are weighted following the special mechanism of equation (3), as
they cannot be directly summed.

ratioi =
weighti

weighttotal
(1)
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[x, y, z]fusion =

n∑
i=1

([xi, yi, zi] · ratioi) (2)

αfusion = arctan

(∑
(sinαi · ratioi)∑
(cosαi · ratioi)

)
(3)

Due to occlusions or missing detections some markers may be not detected.
After the spatial fusion, a temporal fusion is applied using a Kalman filter to pro-
vide more robust 3D position estimations on such conditions. With it smoother
results are obtained and spike errors are also eliminated. The variation on a
single pixel may result in sudden changes in the raw 3D position estimation, the
Kalman Filter mitigates those sudden variations that may occur. The values
of the noise covariance matrices must be adjusted with experimental testing to
achieve good results. The final 3D position estimation is sent to Pilot component
and shown in the world window of the GUI, in conjuntion with the particular
estimation from each marker.

3.2 3D position control

The Navigator component consists of three modules: Interfaces, Gui and Pilot.
System inputs are ArDrone’s camera images (Camera Img) and position esti-
mations given by VisualLoc (Pose 3D). The outputs are a combination of linear
and angular velocities (CMDVel) and ArDrone extra (for additional commands
such as taking off or toggling cameras). Additionally, only in simulation, the ab-
solute true position given by the simulator is available as input so the position
estimation error can be calculated.

The Interfaces module creates and manages the ICE communication inter-
faces. The needed parameters, such as IP address and port, are included in a
text file that is loaded by ICE. It also manages shared memory between the
rest of the modules, managing critical sections with a mutex. The Gui module
implements the graphical user interface using PyQt library. The GUI shows (a)
the images captured by the quadcopter’s camera, (b) a real-time graph with the
error between the vehicle’s position and the desired path, and (c) a 3D world
window rendered with OpenGL. This world shows the quadcopter’s position in
relation to a coordinate axis and the path to follow, as well as the vehicle’s trail.
Additionally, several buttons allow the user to manipulate the quadcopter with
actions such as pausing or resuming movement, taking off, landing and toggling
cameras. In the Pilot module all the position information is processed and the
velocity commands are iterativelly generated. After some experimental testing,
we came to the conclusions that steering angle along vertical axis (yaw) is a key
factor for an accurate navigation, and keeping constant lineal velocity does not
limitate too much the navigation. Thus, developing a control system around the
steering angle was a suitable option.

Our algorithm is based on position prediction, so that steering angle adapts to
the predicted error minimizing it. Only horizontal components are considered in
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the error prediction given that the vertical components are minimal and don’t
affect steering control. It starts calculating the direction vector between the
current position and the desired postion, that is, the corresponding path point
following Eq.(4). Then unit vector is computed, Eq.(5) and decomposed. Vertical
velocity is computed directly from the Z component of the unit vector and the
predefined constant linear velocity vk, Eq.(7). Horizontal velocity is obtained by
calculating the modulus of the X and Y component of the unit vector, Eq.(6).

V = Path −Pose (4)

uv =
V

|V|
(5)

vx = |uvxy| · vk (6)

vz = |uvz| · vk (7)

The horizontal predicted distance that the vehicle will travel until the next
controller iteration is calculated from the horizontal velocity previously obtained
and the lapse of time between iterations, Eq.(8). The current steering angle must
be calculated in order to compute the future position. Considering that the
received position rotation angles are expressed in quaternions, a transformation
to euler angles must be done, Eq.(9). Once those values are calculated, future
position point is obtained following equations (10) and (11).

dτ = vx ·∆t (8)

θz = arctan2

(
2 · (q0 · q3 + q1 · q2)

1− 2 · (q22 + q23)

)
(9)

Xf = dτ · cos θz + xpose (10)

Yf = dτ · sin θz + ypose (11)

In order to compute the desired steering angle the future lateral error is ob-
tained from the difference between the predicted future position and the desired
path point, Eq.(12). Finally, the steering angle is composed of the steering angle
needed, δe, plus a steering angle gain that depends on the predicted future er-
ror, Eq.(13). The needed steering angle is obtained by calculating the yaw angle
needed by the vehicle to face the navigation point. The factor Kg is the gain
rate of the steering adjustment and must be obtained experimentally. This ad-
justment ensures a minimization of the error by correcting vehicle’s trajectory
and smoothing its movement. The velocity commands sent to the quadcopter
through the method CMDVel() are vx, vz and δθ.

Lfe = − sin θz · (Xpath −Xf ) + sin θz · (Ypath − Yf ) (12)



Fine 3D path following of a quadcopter 9

δθ = sin δe +Kg · (Lfe/vx) (13)

4 Experiments

Experimental tests have been performed on simulated and real drones. Simu-
lations were run in Gazebo simulator, creating a custom 3D world representing
a typical flat where several AprilTags markers were placed (Figure 4). The two
system components were fine tunned separately on simulation. Then, once vali-
dated, the whole system was succesfully tested both on simulated and on a real
scenarios.

Fig. 4. Position based control of a simulated drone

Self-localization experiments in simulation showed high errors at the begin-
ning. Through analysis, we detected that the algorithm was working properly
but some used parameters were not correct. For instance, Kalman Filter noise
covariance matrices needed to be adjusted to properly model the real noise. In
addition, used intrinsic parameters of the camera were not accurate and this
caused localization errors. This was solved by a more accurate camera calibra-
tion. One of the most important conclusions of these experiments was that the
markers needed to be bigger due to an erratic operation of the marker detection
process caused by the high mobility of the aerial vehicle. The final marker size
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chosen was 25cm. Furthermore, it was noted that the accuracy of the position
estimation algorithms decays rapidly when the distance of the camera to the
marker is larger than 4 meters, confirming the results on [10].

Control experiments in simulation showed good results from the beginning.
We had to run several tests in order to find the proper parameters of the control
algorithm. Vehicle’s optimal speed is 0.1-0.4 m/s, and steering angle gain rate,
Kg showed stable results within the range [0.1, 0.3]. The gain rate must be
proportional to vehicle’s speed in order to have a stable postion control. Lower
gain rates are not enough to minimize the position error, while higher rates cause
an erratic movement.

The first real scenario experiments showed an unstable system behavior. Sev-
eral tests were needed to find the correct parameters. Noise matrixes in the self-
localization algorithm had to be re-adjusted so they could reflect the new noise
model. Several marker sizes were also tested (17cm., 23cm. and 33cm.), obtain-
ing the best results with 33cm. markers. Also, quadcopter camera needed to be
calibrated. The position control component also showed erratic behaviour due
to the natural drift of the real vehicle and the magnitude of the velocity com-
mands. Even though the drift caused by the slow movement of the vehicle could
not be completeley corrected, speed parameters were adjusted so its impact was
minimal. Furthermore, the movement of the vehicle caused a blurry effect on
cameras, being angular speed a critical factor for this issue.

Fig. 5. Position based control of the real drone
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5 Conclusions

We have designed and developed an autonomous quadcopter 3D path following
system which is based on a visual markers self-localization technique on indoor
scenarios. We have integrated several known technologies, adapting them to
our purposes. The system has been succesfully validated on simulated and real
quadcopters.

Experimental results show that the system is limited in velocity due to the
blurriness in the images when taken at high speed. Another key factor is the
size of the markers. Taking into account such limitations and even though noisy
data can affect the performance, it has proven to be stable and robust enough
to follow simple 3D routes.

Future lines involve the integration of other visual auto-localization algo-
rithms without any markers at all. Furthermore, more exhaustive position con-
trol methods could be explored in order to cope with the quadcopter’s drift.
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