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Abstract. This research presents a robust embedded system for
following a person, making use of a pipeline of convolutional neural
networks. Besides, it features an optical tracking system for supporting
the inferences of the neural networks, allowing to determine the position
of a person using an RGBD camera. The system is deployed using
ROS, and runs in a NVIDIA Jetson TX2, an embedded SoM (System-
on-Module), capable of performing computationally demanding tasks
onboard, and coping with the complexity required to run a robust
tracking and following algorithm. The board is attached to a robotic
mobile base, which receives velocity commands to move the system
towards the target person.
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1 Introduction

Last decades, the production prices of digital cameras and high-resolution sensors
have been greatly reduced, bringing these devices into the consumer market
segment. This, beside an increase in the hardware performance, has resulted in
a strong drive for the computer vision research.

In particular, deep learning has been massively employed for addressing
high complexity tasks, such as language understanding, speech recognition and
computer vision problems.

Moreover, robotics applications can be really useful at daily tasks, specially
when a robot behavior tends to emulate the human one. This requires a polished
(and somehow complex) behavior, triggered by a certain input. Depending on the
source of the behavior, two main branches emerge in robotics: teleoperated robots,
useful for hazardousness or high-precision environments, and autonomous robots,
which aim to act by themselves. The decision-making and actuation capabilities
rely on the robot, due to a compromise in the design, or for purpose-specific
systems, such as social robots [1], [2].

The important advances on computer vision and robotics allow to explore
outstanding synergies, as this work aims to take advantage of: obtaining a robot
capable of following a certain person, navigating towards them on a robust
reactive behavior, and using deep-learning-based visual perception. As it will
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be explained later, this behavior is composed of two main components: the
perception block, in charge of processing the images from an embedded RGBD
camera, and the actuation block, which moves the robotic base accordingly to the
relative position of the person to be followed. This application can be specially
interesting on social robots, which are designed to follow a person at home or in
a hospital [3].

This research improves the system proposed on [4], where a neural-network-
based following system was run in a standard laptop, with a camera and a robot
plugged.

2 Related works

The person following behavior is a old problem in Human-Robot-Interaction
field with many existing solutions in the literature [5], [6]. Another approach [7]
uses laser sensors to detect the legs and a particle filter to provide robustness
and continuity to the person estimation.

The topic has been extensively explored using a single camera [6] or stereo
vision. [8] combines clothes color and position information to detect and track
multiple people around, using Kalman filters and fusing the plain-view map
information with a face detector. [9] uses depth templates of person shape
applied to a dense depth image and an SVM-based verifier for eliminating false
positives, employing an Extended Kalman Filter to continuously estimate the
person positions. In addition, Histograms of Oriented Gradients are a classical
and effective method for human detection [10], which is a relevant ingredient of
the person following behavior.

In the last years, other approaches make use low cost RGBD sensors [11], [12],
taking advantage of their depth information. It simplifies not only the robustness
of the detection itself but also the control of the robot movements, which can be
the developed as position-based controllers. In [13] deep learning techniques on
color and motion cues have been used to successfully detect people on RGBD
videos for surveillance applications.

The identification of a particular person is a complementary problem to
general people detection. There are image-based methods [14] and video-based
methods [15]. Recent papers also use deep learning to identify the detected
persons [16]. Other methods use features and skeleton keypoints [17]. [18] use
image and range data combining color, height and gait features (step length
and speed) for a robust identification, even in severe illumination environments.
[19] is an interesting work that uses neural networks to both multiple person
detection and a particular person re-identification, working in real-time on
moderate hardware using a single camera.

Deep learning techniques yield interesting results as well. [20] uses deep neural
networks in order to extract features from an image in order to identify the person
in the image. Other approaches such as [21] make use of recurrent networks and
siamese architectures to reidentify a person.
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3 Design

The proposed system features a Perception module and an Actuation module,
as shown in Figure 1. The Perception module is responsible for extracting
pertinent information from the image: the position and identity of the person to
be followed. This information serves as input to the Actuation module, which
takes a decision about the action to be performed in order to move the robot
towards the person. These movements have to be reactive, happening as soon as
possible whenever the person position changes.

Fig. 1: Architecture of the proposed solution.

3.1 Perception Module

This module processes the camera images for determining the location of the
person to be followed. It is composed of the components shown in Figure 1,
which are described below.

Camera: The robot uses an RGBD device (ASUS Xtion Pro Live) as visual
sensor. The system makes use of ROS topics to retrieve the latest (RGB, depth)
pair on an asynchronous way.

It supports both an online source (camera) or an offline source (recorded
ROSBag), with a transparent adaptation to the rest of the system.

Neural pipeline: Images are passed through a pipeline of three neural
networks, which detect the persons in the scene and identify which one must be
followed. The main objective of this work is to take advantage of the robustness
offered by deep-learning-based techniques.

1. Person detection: For addressing this task, several deep models have been
tested, varying the base network architecture and its depth. Since one of the
objectives of the system is to work on a portable (low-power) system, only
those architectures which yield a good performance with a sufficiently low
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inference time are considered. The two tested models for this purpose are
the SSD-MobileNet [22], [23] using a MobileNet [23] for feature extraction,
and the tiny version3 of YOLOv3 [24]. These models are already trained
and publicly available on the TensorFlow Model Zoo [25] and on repositories
hosted on GitHub4. In-depth tests have been conducted to compare the
performance of these two models, as it will be described in Section 4.

2. Face detection: This problem can also be addressed using a detection
neural network. Since the models previously described are not suitable for
detecting faces, the adopted solution is a single-class detection system. The
network trained in [26] implements a two-stage neural network capable of
detecting faces. This detector is based on YOLOv2 [27], which ensures a
high-speed and efficient detection based on a class-specific neural network.
[26] contains a video sequence comparing the accuracy of this system against
a classical Haar cascade approach [28].

3. Face identification: Once the face of a person has been detected, it can
be used as a discriminant feature for determining their identity. For this
purpose, FaceNet [29] has been used to perform the identification, using a
publicly available implementation in TensorFlow5. This deep identification
system transforms the image of a face is transformed into a 128-dimensional
vector, known as projection or embedding. This transformation is learned
after a triplet-loss training process, which separates different faces as much
as possible, while projecting similar faces as close as possible. Ideally, it
produces similar projections when two images of the same face are evaluated,
despite different lighting conditions (as a channel-wise normalization step is
performed before passing the image through the network).

The described neural pipeline provides person locations, face detections and
face projections from a single image, taking advantage of the flexibility and
robustness that deep learning methods offer, in order to address three different
problems in an efficient way. Its functionality has been depicted in Figure 2.

Furthermore, these neural networks have been optimized using the library
TensorRT6. This engine modifies segments from the architecture of a given
network, tuning certain parameters:

MSS (Minimum Segment Size): the threshold above which a segment is
selected to be replaced by the TensorRT optimization. Increasing this value
makes the optimizer more selective, optimizing only the heaviest segments of
the network. A low value may cause an excessively high overhead, resulting
in a worse performance than using the original graph.

3The tiny version of YOLOv3 is used to the limited memory on the Jetson TX2
board. The full YOLOv3 model requires more memory than the available size.

4https://github.com/mystic123/tensorflow-yolo-v3
5https://github.com/davidsandberg/facenet
6https://developer.nvidia.com/tensorrt
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Fig. 2: Neural pipeline, showing the cascade of the three neural networks used
to output persons, faces and similarities with the reference face.

MCE (Maximum Cached Engines): TensorRT keeps a cache of engines on
runtime, with the purpose of reducing the time spent for loading them into
the GPU. This parameter modulates the amount of engines cached.

Precision mode: typically, the weights and parameters of the trained neural
networks are handled as 64-bit floating point numbers. A reduction in the
precision to 32-bit or 16-bit achieves very similar results (as shown on Section
4), making the operations much lighter. An additional reduction to 8-bit
numbers can be performed as well, mapping the weights values to 256 steps.
This greatly reduces greatly the inference time.

Tuning these parameters led to optimized versions of the networks included
in the neural pipeline, as Section 4 shows.

Motion Tracker: The previously depicted Neural component outputs reliable
inferences with a certain refresh rate, namely k frames. If k is too high, the
system may be affected by an important delay when the movement is performed.
This may lead to unsteady movements, increasing the probability of losing the
reference person. To avoid this, a Motion Tracker component is added to the
system. Its functionality is to estimate the person movement along k frames,
while the neural pipeline is performing the next detection.

The method chosen for this purpose is a Lucas-Kanade visual tracker [30].
This technique estimates the motion field between the images taken in two time
instants, addressing the problem using a differential approach [31].

However, in this use case, the objective is not to compute the entire optical
flow, but limited to the pixels inside and surrounding the persons in the scene.
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For this purpose, the tracking is performed on the corners inside the detected
persons. These corners are found using a Shi-Tomasi corner detector [32].

3.2 Actuation Module

PID Controllers: The last block of the system is responsible of translating
the location information of the reference person into velocity commands. The
implemented approach is a reactive controller, which moves the robot aiming to
keep the person inside safe zones. These safe zones (Figure 3) can be described
as follows:

Angular zone: the reference person has to be placed at the horizontal center
of the image, with a margin of ±50 pixels on the sides.

Linear zone: the reference person has to be placed at a distance of 1 m with
respect to the robot front, with a distance margin of ±30 cm.

Fig. 3: Safe zones for each controller.

To place the person inside these safe zones, the robot has to move on certain
directions. For determining a movement, an error vector (ex, ew) is computed
(Figure 4), using the tracked person coordinates:

ex: the linear error is computed using the depth image, estimating the distance
from the robot to the person. Since the Xtion sensor registers the depth
image into the RGB one, the person coordinates can be used in the depth
image in order to find the distance of each pixel inside the bounding box of
the reference person: the person depth map. For avoiding accidental samples
of the background of the person, the edges of the depth map are trimmed.
Later, a 10x10 grid is computed to have 100 uniformly distributed samples
of the depth of the person. The linear error can be computed as the median
value of the samples.
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ew: the angular error is computed computing the difference on the horizontal
coordinate between the image center and the center of the bounding box of
the reference person.

Fig. 4: Error computation on each controller.

These errors yield a reactive response, dependent on the relative distance
between the person and the safe zones. In order to compute the suitable velocity
commands (linear and angular responses), a PID controller is implemented
for each dimension, alleviating overshooting and inertial behaviors. The PID
parameters (kp, ki, kd) were tuned to deliver a soft response on the robot
movements. Table 1 shows the chosen PID values for following a wandering
person on typical indoor conditions.

Linear Angular

kp 0.4 0.005

kd 0.04 0.0003

ki 0.05 0.006

Table 1: Optimal found values for the parameters in each PID controller.

4 Experiments

Several experiments have been conducted in order to tune the parameters
for improving the system performance, accuracy and robustness, evaluating
the same video sequence under different configurations. A recurrent metric on
these test is the IoU score, which assesses the overlapping quality between the
predicted and the true bounding boxes. As this metric requires ground-truth
labels on the videos, the annotation tool LabelMe 7 has been used to indicate
the ground-truth position of the persons on each sequence.

7https://github.com/wkentaro/labelme
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4.1 Person detection experiments

This experiment compares the performance of the two object detection
architectures tested on our system: YOLO [24] and SSD[22]. In the case of
YOLO, the implemented version is YOLOv3, in its tiny version. For an SSD-
based detector, on a real-time application the most convenient variants are those
which use a MobileNet [23] as a feature extraction network. The TensorFlow
Model Zoo8 offers several pre-trained models implementing this network, along
which a selection has been carried out. The chosen model integrates a MobileNet
v1 whose weights have been quantized [33] in order to reduce the computational
cost without reducing the accuracy.

In order to quantify the different accuracy vs. inference time tradeoffs that
these architectures offer, a specific test has been designed. A specific video
sequence of 721 frames long has been recorded, containing a person wandering
across the field of view of the camera. For every frame of the sequence, the
persons are detected using YOLO and SSD respectively, and the IoU with the
ground-truth labels, as well as the inference time have been measured, as it can
be seen on Figure 5. Some gaps can be noticed on the detections, corresponding
to frames where the person was out of the sight of the camera.
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Fig. 5: Results of the person detection test: IoU score with ground truth (left) and
inference time per frame (right). A discontinuity represents absence of detections.

The YOLO-based detector offers a slightly minor average IoU than the SSD-
based one (0.858 and 0.926 respectively), while taking 5 times less average time
to make inferences (35 ms vs. 172 ms). On these terms, the YOLO-based detector
seems much more efficient. However, the YOLO detector is able to find the person
only in 17% of the frames, whereas the SSD one finds the person in 74%. However,

8https://github.com/tensorflow/models/blob/master/research/object detection/
g3doc/tf2 detection zoo.md
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these percentages are a relative measurement for comparing both models, since
not all the frames in the sequence contained a person.
This shows that the YOLO detector is too dependent on pose and lighting
conditions for the detections to be successful. On the other hand, the SSD
detector yields steady predictions, only cutting on the periods where the person
was truly out of the field of view. Hence, this system is much more robust for
our application scenario, so YOLO is discarded in favor of SSD.

4.2 Face detection experiments

This experiment is devoted to compare the performance of Haar cascade classifier
and the neural face detection, using the same video sequence than the previous
experiment. For each frame in the sequence, the faces are extracted using each
one of the described methods, and the IoU score is computed with the ground
truth face bounding box. The result can be visualized in Figure 6.
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Fig. 6: IoU score with the ground truth for each one of the face detection systems.

It can be seen that both methods yield similar IoU scores and drop at the
same time when the person turns their back to the camera. However, the faced

implementation (which uses deep learning to predict the face positions) is capable
of keeping a non-zero IoU at several instants where the Haar performance drops
to zero. This is due to pose variances of the person, as the main drawback of
the Haar cascade classifier is that it is only capable of detecting frontal faces,
dropping the performance whenever the person turns the face towards a side.
Both methods yield similar IoU on average, but the deep-learning approach,
faced, detects a face in 36.89% of the frames, whereas the Haar cascade slightly
drops the detection rate to 34.40%. Hence, this test validates the improvement
of the face detection performance when using a specific neural network trained
for that purpose.
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4.3 Face recognition experiments

The last component of the neural pipeline is a face recognition neural network,
devoted to confirm the identity of the reference person. This subsystem is based
on a FaceNet [29] network, which projects a face into a 128-dimensional space.
These projections are used by the proposed system, as their Euclidean distance
to the projection of a reference face is used to determine if the input face belongs
to the reference person.

This experiment is designed to assess the quality of the projection system,
which should yield far points for a different face and near points for a matching
face. For this proposal, a video sequence was recorded containing two persons
wandering in front of the robot. The faces of each frame are labeled, separating
the faces of the two persons in two different classes. For computing the distance,
a reference face was set using an image, and the distance to the reference face
of each one of the faces in the video was stored. The result can be observed on
Figure 7.
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Fig. 7: Resulting distance for the two faces in the video.

The results obtained on Figure 7 allow to extract two conclusions about
the quality of the projections of the faces. First, the encodings of the reference
person have an overall remarkable stability. On average, the obtained projections
for every frame are located at an approximate distance of 1.16 (threshold chosen
for accepting a person as the reference one). Exceptional rises in the distance are
due to changes in the pose of the face and occlusions, that reduce the quality of
the projection. Second, the encodings of a person different than the reference one
have an overall higher distance (1.34) from the reference face. This is convenient
for avoiding false positives while determining that a face is the reference one.
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These results validate FaceNet as a robust approach to perform person
recognition tasks, since the distance of a projection to the reference face has
to be below the threshold for being labeled as the reference face.

4.4 Deep Learning optimization with TensorRT

Among the parameters that allow to configure the TensorRT optimization,
there is a reduction in the floating-point precision level of the nodes. This
experiment aims to compare the loss of precision this entails with the reduction
in the inference time, result of an optimization process on the SSD-based object
detector used in subsection 4.1.
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Fig. 8: IoU between the standard graph and the TensorRT graph inferences (left)
and inference times for both networks (right).

Figure 8 illustrates the differences between a standard graph and an
optimized one. On the one hand, this loss of precision is small, with some
observable exceptions with a loss above 5% of the original performance. On
the other hand, the inference time gap can be observed as well. The difference
is more notorious, as the TensorRT optimized model performs the inferences 3
times faster than the original graph (56.769 ms vs. 184.477 ms). aside of more
stability on the inference time. Given these results, the TensorRT optimizations
are a convenient tool to greatly increase the performance of the system, allowing
the slower component (the neural pipeline) to experiment an important reduction
on the inference time. This greatly improves the overall performance, as reliable
neural updates are performed more often.‘

4.5 Typical execution

As a result, The whole system running may seen on YouTube9. This video
presents a sequence where the reference person enters into the field of view of

9https://www.youtube.com/watch?v=WZ0riKMwJWA
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the robot, shows his face to the camera. After some consecutive frames detecting
the person, it is identified using the detected face. When the face projection is
close enough to the reference one, the robot starts following that person. For
each frame, the linear and angular errors are computed, even if the face of the
person is not seen anymore, as the system has checked previously that that is
the right person. If the errors are outside the safe zones, a velocity command is
computed and sent to the robot. This routine is executed until the person gets
lost, causing the robot to stop waiting for the person to be seen again.

Figure 9 shows the behavior of the robot, expected to follow the person
properly. The top region of the images shows several screen captures of the
program output, with the RGBD images (left), and the movement commands
and tracked persons (right). The bottom region of the plots show the scene
recorded from a mobile phone, allowing to observe the performance externally.

(a) Person detection. (b) Person recognition and
following.

(c) Following without face
feedback.

Fig. 9: Typical execution.

5 Conclusions

The proposed approach presents an embedded system that follows a reference
person, relying on the robustness of deep learning for being capable of working in
real environments. As it has been shown, the detection and recognition pipeline
has been exclusively designed using deep neural networks, ensuring a robust
performance in non-controlled environments. This robustness is crucial, given
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that the camera is located at a very low position and has a vertical inclination
in order to see the full body of the person. However, this also causes the camera
to perceive an excessive brightness from ceiling lamps, dimming the persons on
the image. Classical systems tend to fail due to this issue.

This neural pipeline is by a tracking component, improving the performance
under certain issues, such as partial occlusions or a higher inference time if the
power available makes the inferences less efficcient.

The main contributions of this research may be summarized as follows:

– The system is mounted on a battery-powered mobile base, which features
a high-performance GPU embedded on a SoM. This assembly can operate
autonomously, without requiring an external computer to perform the deep
learning inferences or running algorithms in parallel. Remote monitoring is
available, but not required for the system to work.

– Specific optimization engines allow the system to run efficiently 3
neural networks on a low-consumption hardware. These networks perform
inferences over the images captured by the RGBD sensor attached to the
system. The inferences are devoted to detect the different persons in the
scene, as well as to distinguish them by means of a discriminant feature: their
face. Using neural networks for detection and identification tasks allows the
system to be robust and reliable.

– The neural system is supported also an optical person tracker. It aims to
guess the trajectories followed by each person while the neural network yields
a new update, as this tracker predicts the person displacement considerably
faster that the neural network. Since neural inferences are also sensitive
to flickering caused by occlusions, trusting just on these inferences could
easily result on an unsteady behavior. Thus, the introduction of the tracker
improves the system robustness and softens the robot movements.
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