
Visual Autonomous Driving with Reinforcement

Learning control

Francisco C. Vazquez Donaire1*, José M. Cañas Plaza1† and
Roberto Calvo-Palomino1†

1*RoboticsLabURJC, Universidad Rey Juan Carlos, Madrid, Spain.

*Corresponding author(s). E-mail(s): franciscoc.vazquez@urjc.es;
Contributing authors: josemaria.plaza@urjc.es; roberto.calvo@urjc.es;

†These authors contributed equally to this work.

Abstract

Autonomous vehicle driving has gained attention in the recent years due to the
progress of artificial intelligence technologies, and also to the great interest of
the society in automating driving. However autonomous driving presents a com-
plex, unfriendly and dynamic scenario from the driver point of view. Different
techniques can be used to create a smart driving behaviour to autonomously con-
trol the vehicle. In this paper, we focus on autonomous driving systems which
integrate computer vision and reinforcement learning techniques to provide the
follow-line and the follow-lane behaviours. We propose to use AI-based computer
vision techniques for the perception module of the behaviour, which is in charge
of the robust detection the lane of the road, and to use the Q-learning reinforce-
ment learning for the control module. Our solutions have been experimentally
validated under different conditions in the CARLA simulator, a widely used tool
in the community. This work contributes to the field of autonomous driving by
leveraging AI-based computer vision and reinforcement learning techniques to
improve the capabilities of self-driving. The results obtained pave the way for
safer and more efficient autonomous vehicles, bringing us closer to widespread
adoption of autonomous driving systems.

Keywords: Autonomous Driving, Reinforcement Learning, Deep Learning

1

1 Introduction

According to the latest publications of the National Highway Traffic Safety Adminis-
tration (NHTSA), 94% of car accidents are caused by humans. First step to solve the
latter is to incorporate and advanced driver-assistance system (ADAS) which includes
technologies that assist and help drivers for driving safely. This technology still needs
the human supervision all the time, but it is the core to built systems that allow the
car navigate autonomously. Fully autonomous systems have gained attention in the
research/industry community thanks to the great advances of computer vision and
deep learning technologies. These systems are created with the purpose of reducing
the number of accidents, as well as CO2 emissions and the stress involved in driving
through crowded places on a daily basis [1].
These systems require a very precise perception in order to identify the elements of
the environment and act accordingly. Moreover, the problem is very complex because
the environment can sometimes be uncertain, as it depends on the decisions made by
other road users. An example of such a situation is the crossing between two vehicles
on a narrow road. For this reason, ADSs must be able to interpret the signals of other
drivers and be interpreted by them [2].
At present, the companies that leads the development of these ADSs are primarily
Tesla, with its Autopilot, Mercedes, Cruise (General Motors) and Waymo, a com-
pany that is part of Alphabet (Google). Even if these companies have successfully
developed full autonomous systems and their cars are driving autonomously in real
scenarios (Waymo and Cruise offers robotaxi service in San Franscisco), there is
still work to do. Tesla is under investigation by National Highway Traffic Safety
Administration (NHTSA) due to Tesla autopilot was involved in nearly 750 crashes
since 2019, including 17 fatalities1. Waymo and Cruise robotaxis have been the main
responsible of light accidents and traffic jumps in San Francisco due to software
malfunction2. Nevertheless the development and self full-driving solutions of these
companies shed light on the future of autonomous driving.

This paper aims to investigate and analyze the use of AI-based techniques for devel-
oping two different self full-driving behaviours: line and lane following without traffic.
Specifically, we focus on computer vision techniques for the perception and Rein-
forcement Learning for the control. The latter will command the correct decisions to
keep the vehicle safely in the lane of the road. We rely on CARLA3, the open-source
autonomous driving simulator widely-accepted in the research community, for experi-
mental validation. Results confirm that these techniques are good candidates to build
safe autonomous driving systems. Fig. 1 shows the workflow diagram we have followed
in order to implement these agents, note that the most important part is the training
of the agent.

1https://www.caranddriver.com/news/a44185487/report-tesla-autopilot-crashes-since-2019/
2https://www.sfchronicle.com/bayarea/article/sffd-says-two-robotaxis-blocked-ambulance-18343808.php
3https://carla.org/

2

Start

Place the agent at the
initial location of the

environment

Select an action
(explore or exploit)

Calculate the reward
and update the Q

Table.

Y

N
Is the agent in a bad

state?

Y

N

Reached max steps per
episode?

Y NRemaining training episodes? Save agent

Test agent in an
unseen part of the

circuit

End

Fig. 1 Workflow diagram that illustrates the complete pipeline of the proposed approach.

2 Related Work

In Machine Learning, the aim for a model is to ‘learn’ from experience in order to
improve its performance in a specific task. In the case of Reinforcement Learning
(RL), the agent learns to perform its task through interactions with the environ-
ment. These agents are not explicitly programmed but are evaluated using a reward
function, which provides greater rewards when they take the correct actions for each
possible state.

The objective of this agent is to accumulate as many rewards as possible, achieved
by exploiting its previously acquired knowledge and selecting actions that yield the
highest rewards. However, in order to discover the actions that maximize rewards, the
agent must take risks and explore other actions that could potentially result in even
greater rewards. The RL agent must balance the exploitation of known strategies to
obtain rewards with the exploration of unknown possibilities to uncover potentially
better rewards in the future. A trade-off between exploitation and exploration must
be achieved [2].

Within reinforcement learning there are several families of methods. On the one hand,
we have the value-based methods; among others, Q-learning. And on the other hand,
the policy-based methods, among which Proximal Policy Optimization (PPO) or Trust
Region Policy Optimization stand out TRPO.

3

2.1 Value-based methods

One of the most well-known algorithms in the field of RL is the Q-learning algorithm.
This algorithm utilizes the information gained from taking a step, which involves
selecting an action, and uses this information to update the current Q-value. In Q-
learning, the estimation of the Q-value is obtained through the following iterative
process [3].

Qt+1(x, a) = Qt(xt, at) + α · [rt + γ · V (y)−Qt(xt, at)] (1)

where rt is the reward obtained, γ is the discount factor, V (y) will be calculated as the
maximum reward obtained when switching to the new state and α is the learning rate.

Other methods have emerged in the literature as extensions to the aforementioned
approach. In [4], a novel algorithm called Double Q-learning is proposed, which
demonstrates improved performance in highly stochastic environments where Q-
learning shows limitations. These limitations arise from the fact that Q-learning
approximates the action with the highest rewards as the action that will yield the
maximum reward. The authors address this approximation issue by introducing a
double estimator, applied to Q-learning to yield Double Q-learning. This enhanced
algorithm demonstrates the ability to converge to the optimal policy in situations
where Q-learning previously exhibited poor performance. Experimental evaluations
were conducted on roulette and maze games, yielding promising and faster results.

Furthermore, other methods have been developed that combine neural networks with
classic RL algorithms. Many significant advancements in Deep Reinforcement Learn-
ing have been achieved by scaling previous work to higher-dimensional problems. A
prominent example of such an algorithm is the Deep Q Network (DQN), introduced
by researchers at the DeepMind lab [5]. The DQN algorithm is capable of learning
optimal policies from input signals with very high dimensions. The research demon-
strated that agents of this kind, which only receive pixel data and game outcomes
as input, surpassed all previously tested algorithms, reaching the skill level of profes-
sional Atari video game players. Moreover, this algorithm has been recently improved
in [6], combining DQN with Double Q-learning. Again, this algorithm has been tested
on Atari 2600 games, surpassing the results obtained in the previous work [5].

One of the prevailing challenges in the field of robotics revolves around the issue of
navigating through unfamiliar environments. As evidenced by Ruan et al. [7], RL
appears to offer a robust and end-to-end solution to this problem. In this study, the
researchers employ an RGB-D image captured by a Kinect camera and introduce a
novel algorithm named Dueling Double DQN (D3QN). The findings presented in the
paper strongly support the notion that autonomous learning from the environment,
devoid of external supervision, is highly effective. The robot can autonomously navi-
gate the environment while concurrently avoiding collisions with obstacles.

4

2.2 Policy-Based Methods

Policy-based methods focus on learning a policy directly, rather than estimating value
functions. A policy defines the mapping from states to actions, indicating the best
action to take in each state. These methods aim to optimize the policy by adjusting
its parameters, often using gradient ascent techniques.

PPO, or Proximal Policy Optimization, stands as one of the most popular algo-
rithms in this field. It has found practical applications in diverse areas, including the
stabilization control of quadcopters. In a study conducted by Cano et al. [8], PPO
was employed to enable the agent to acquire an effective control policy for precise
stabilization of a drone with these specifications within a simulated environment. The
results demonstrated a substantial improvement compared to prior research efforts
([9]), notably reducing convergence time while maintaining high performance.

Another algorithm that utilizes policy-based reinforcement learning along with neu-
ral networks is DDPG (Deep Deterministic Policy Gradient). While DDPG has found
applications in various problem domains, noteworthy is the work done by DeepMind
researchers in [10], who employed this algorithm for trajectory planning in mobile
robots. The researchers identified weaknesses in DDPG, such as slow training effi-
ciency and convergence. To address these limitations, they introduced enhancements
to the algorithm, incorporating a small amount of prior knowledge to reduce trial
and error. Additionally, they adopted an adaptive exploration policy based on the
epsilon-greedy algorithm. In their study, the performance of this modified algorithm
was compared to Q-learning and SARSA, with results showing superior path planning,
reduced computational time, and faster convergence.

2.3 Reinforcement Learning in Autonomous Driving

Inside Autonomous Driving, some tasks where RL algorithms have been success-
fully applied are: Controller optimization, Path planning, Path optimization, Motion
planning and Dynamic motion planning.
In [11], the Q-learning algorithm is utilized to develop a controller for enabling a robot
to solve the line-following application. More specifically, they employ a technique called
SA-based Q-learning to address the exploitation-exploration trade-off. The results of
their study demonstrate that this technique outperforms both the e-greedy algorithm
and the P-controlled algorithm when trained for a sufficient number of episodes. The
results obtained in this research are illustrated in Fig. 2.

Fig. 2 Experimental results in the complex circuit [11]

5

When applying RL algorithms to the autonomous driving problem, one of the major
concerns arises when the agent encounters scenarios that did not appear during its
training. In such cases, the behavior of the agent can become unpredictable. To
address this issue, a solution is proposed in [12], where the authors suggest combining
deep reinforcement learning with safety-based control techniques. These techniques
have demonstrated effective performance in avoiding collisions with nearby vehicles.

One framework very useful in recent years to solve problems related to autonomous
driving with RL is AWS DeepRacer, which has its own competitive league in which
developers can test their ML systems, both on their physical device and in their
3D simulator. One illustrative work using this environment is Jacob et al. [13], in
which they manage to improve the default models of the platform when finding the
optimal route while avoiding obstacles, mixing algorithms such as A* and LoS with
reinforcement learning.

Another work that takes advantage of this platform is Zhu et al. [14] where the
authors applied path planning into DeepRacer based on RL. They proposed a novel
system framework called VNARM (Vehicle Network Autonomous Racing Model),
which allows multiple DeepRacer cars to cooperate with each other to achieve a
common goal. VNARM was able to outperform state-of-the-art autonomous driving
algorithms in terms of racing time and completion rate. Specifically, the vehicle’s
performance of finishing one lap was increased from nearly 30 seconds to less than 9
seconds, while maintaining a high percentage of completion.

In paper [15], the authors argue that the price of training a model in DeepRacer
Console is too expensive for beginners, so they present a new simulation process in
DeepRacer built on the EC2 platform [16], which is more economical.

In the work presented in [17], Recurrent Neural Networks (RNNs) are incorporated
with attention models with the objective of reducing the computational complexity in
order to deploy the autonomous driving system on embedded hardware. More specifi-
cally, the authors develop an end-to-end framework consisting of using RNNs in Deep
Reinforcement Learning to consider POMDP scenarios. Specifically, they succeed in
developing a framework for lane keeping that was tested in the TORCS simulator.

3 Follow-line driving

The first Autonomous Driving application we coped with RL, more specifically, with
the algorithm Q-learning, is the line following. The first step in solving it was to find
a circuit on which to train and test the solution. Given that CARLA presents very
realistic environments, we conducted an exhaustive search in all the towns that this
simulator offers. Ultimately, we selected a segment in Town07. The reason for this
choice was that this circuit offered favorable conditions in terms of line perception.

6

3.1 Perception

To tackle this task, we employed a color filter centered on yellow (the color of the
line), followed by successive morphological operations of erosion and dilation. In order
to increase the robustness of the image processing algorithm, the image has been
processed in the HSV color space.

Fig. 3 Example of a processed frame where state = 0, 0, 0, 0

Fig. 4 Raw image obtained from the vehicle’s on-board camera (top). Image processed with a color
filter and various morphological operations (bottom).

7

3.2 Decision Making

With that perception the RL states and the reward function were defined for the
Q-Learning algorithm. In this case, we divided the image into n equidistant vertical
strips. Next, using the image provided by the (segmented) perception algorithm, we
calculated the midpoint of the line at different image heights, as shown in Fig. 5.
This midpoint defines the current state. Specifically, in this work we have used 4
perception lines to define the states.

Fig. 5 Example of a processed frame in which we calculated the midpoint at four different heights
of the image.

The reward function was defined as follows. Let Ci be the centers of the line at different
heights, with i ∈ {1, ..., 4}, and being C̄ = (C1, C2, C3, C4). First, we need to define
an auxiliary function, f .

f(C) =

15 if 0 ≤ |320− C| ≤ 38
12 if 38 ≤ |320− C| ≤ 2 · 38
10 if 2 · 38 ≤ |320− C| ≤ 3 · 38
2 if 3 · 38 ≤ |320− C| ≤ 5 · 38
1 if 5 · 38 ≤ |320− C| ≤ 6 · 38
−100 if 6 · 38 ≤ |320− C|

(2)

Let v be the speed of the car in m/s, given by the simulator. Let α be the steering
angle of the selected action. Let be λ = 1.02. Then, our reward function is given by

8

the expression (3)

R(C̄, v, α) =

4∑
j=1

1

4
f(Cj) +

1

2
v − λα (3)

This function gives a higher reward to the agent for placing himself in central positions
with respect to the line. In addition, we will reward this agent for reaching higher
speeds, and penalize him for making too many turns, in order to avoid zig-zagging.
It is worth mentioning that this reward function is based in the one proposed in [18],
with some modifications which have improved its performance.

The actions configured for this algorithm are shown in the following table:

Action 0 1 2 3 4
Throttle 0.32 0.7 0.32 0.2 0.2

Sterring Angle -0.2 0.0 0.2 -0.4 0.4

3.3 Experimental results

With this configuration of states, actions and rewards, we get the agent to learn to
solve the task. The results of training with all of these parameters can be seen in the
following video, published in https://www.youtube.com/watch?v=-yCdYJnClME.

The correct operation of the agent is highly conditioned by the selection of hyper-
parameters, which have been experimentally chosen: α, the learning rate, is set to
0.8; γ, the discount factor, to 0.9; ε, the exploration factor, to 0.9999; and ϕ, that
represents the reduction factor applied to ε, is set to 0.9998.

In order to ensure the proper functioning of the algorithms, a series of metrics have
been extracted from the conducted training sessions. The most important metric
in order to decide when to stop a training session is the accumulated reward. This
metric consists of the sum of the rewards that the agent has been obtaining in a
given episode each time it takes a step, i.e., each time it takes an action in a specific
state. Ideally, this accumulated reward per episode should increase as the training
progresses until convergence is reached.

Fig. 6 shows a graph that reflects the accumulated reward throughout all the epochs of
a training session. The Fig. shows that the accumulated reward is set to a fixed value.

One aspect that is important to highlight is that, initially this algorithm was trained
without taking into account the synchrony between the simulator and the client. This
introduced problems when calculating the reward obtained by performing an action
in a certain state, since we were calculating the reward of a past state and not the
current one. First, we tried to solve this problem by changing the states, the rewards

9

https://www.youtube.com/watch?v=-yCdYJnClME

and the hyperparameters. Finally, we realized that the problem was in the lack of syn-
chrony in CARLA. Enforcing the synchronous mode in CARLA the results went from
a graph that did not converge to any established value to what is shown in the Fig. 6.

0 50000 100000 150000 200000
Steps

0.0

0.2

0.4

0.6

0.8

1.0
E

ps
ilo

n
Epsilon decay

0 200 400 600 800 1000 1200 1400
Episodes

0

500

1000

1500

2000

2500

3000

A
cc

um
ul

at
ed

re
w

ar
d

Accumulated reward per episode

0 200 400 600 800 1000 1200 1400
Episodes

0

50

100

150

200

250

St
ep

s

Steps per episode

Fig. 6 Graphs showing the convergence of the algorithm. First graph, show the epsilon decay along
every step of the training session. Second, the accumulated reward per episode. And last, the number
of total steps per episode.

4 Follow-lane driving

The second Autonomous Driving application we coped with the Q-learning algorithm
was lane following. Although this task may seem very similar to the previous one,
we must emphasize that they are very different tasks. In the case of follow-line, we
can perform a simple image processing, based on a color filter in HSV space that
always or almost always provides good results when calculating the current state of

10

the agent. In addition, having a line as a reference, we can give more slack to the
agent, since it has to deviate a lot to stop seeing completely the line it has to follow.
In the case of follow-lane, we must use more complex visual techniques and be much
stricter when restarting the agent.

4.1 Perception

Perception is one of the most important elements that allow this type of algorithms
to work correctly. If we want to make good decisions, we must make sure that the
perception that the agent is making is robust and correct. That is why in this work we
have used neural networks. Specifically, we have used a convolutional neural network
(CNN) trained for segmentation. This network receives the image captured by the
agent’s camera and gives as a result two images: the image with the pixels belonging
to the left line of the lane in white, and the same image but with the pixels of the
right line of the lane in white.

In this way, we can use the output of this CNN to calculate the midpoint of the lane
at different heights of the image, so that, as we did in the case of follow-line, we can
calculate the state in which the agent is.

Fig. 7 Example of a processed frame where state = s1

In Fig. 7, we can observe several key elements:

• The green vertical lines delineate different states.
• Four lane centers are indicated by green circles.
• The current state, where the agent is located, is highlighted in yellow.
• The output of processing the frame with the CNN is represented by the blue and
red lines, which correspond to the lane boundary pixels.

11

4.2 Decision making

Just as we did for the follow-line application, we have developed a visual controller
based on the Q-learning algorithm. In this case, we defined five different states,
as illustrated in Fig. 7. These states are determined by calculating the average x-
coordinate of four distinct lane centers at various rows.

The reward function utilizes the average x-coordinate, as well as the four points
representing the lane center. It calculates a reward based on the distance and angle
between the lane and the vehicle, resulting in different rewards. Formally, we defined
the reward function:

Let C be the x coordinate of the point marking the center of the lane (in the Fig.,
highlighted in yellow), calculated as the mean of the four points marked in green in
that Fig. It is noteworthy that these points are obtained from the output of the trained
network for lane detection. Then, a auxiliary function, f∗, is defined as follows:

f∗(C) =

10 if 0 ≤ |512− C| ≤ 15
5 if 15 ≤ |512− C| ≤ 2 · 15
2.5 if 2 · 15 ≤ |512− C| ≤ 3 · 20
1 if 3 · 20 ≤ |512− C| ≤ 4 · 20
−10 if 4 · 20 ≤ |512− C|

Let be p1 = (512, 512) and p2 = (512, 0). And let be p3, p4, two of the middle of the
lane points detected in the image. It is also necessary to determine the angle between
a vertical line in the image, defined by the vector −−→p1p2, and the line defined by the
vector −−→p3p4.

With this information, the auxiliary function g∗ is defined to calculate this angle as

g∗(p1, p2, p3, p4) = arctan

(
p4y − p3y
p4x − p3x

)
− arctan

(
p2y − p1y
p2x − p1x

)
In this function, two terms can be observed. The first of them calculates the angle
formed by the vector −−→p3p4 with the horizontal, and the second one calculates the
angle formed by the vector −−→p1p2 with the same horizontal. Subtracting both terms
yields the desired angle.

Now, let a be the action selected at a specific instant, chosen from among those
described in the previous section. Under these conditions, the sought reward function,
R∗, can be defined as

12

R∗(C, a, p1, p2, p3, p4) =

f∗(C) if g∗(p1, p2, p3, p4) > ζ

2f∗(C) if g∗(p1, p2, p3, p4) ≤ ζ ∧ a = 3

f∗(C)

2
if g∗(p1, p2, p3, p4) ≤ ζ ∧ a ̸= 3

As can be observed, this reward function grants a higher reward to the agent when
it is aligned with the lane, that is, when g∗(p1, p2, p3, p4) < ζ, and it has selected the
action to go straight, meaning a = 3.

The parameter ζ has been set to 6, and in this case, it has been determined experi-
mentally.

This function is a novel contribution of the paper, as we have not founnd any similar
one in the literature.

Now that we have thoroughly examined the reward function, we will proceed to discuss
the available actions for the agent. Specifically, the following five actions have been
set up:

Action 0 1 2 3 4
Throttle 0.35 0.35 0.3 0.6 0.3

Sterring Angle -0.04 0.04 -0.08 0.0 0.08

The selection of actions is carefully tailored to the agent’s environment, which is
anticipated to primarily involve highway driving scenarios. Consequently, the chosen
actions include high accelerations, which give the agent an average speed of 30 km/h.

4.3 Experimental results

The main objective of this application is to keep the car inside the lane while driving
smoothly. The model has been trained with the hyper-parameters: α, is set to 0.8, γ
to 0.9, ε to 0.9999, ϕ to 0.9998.

To ensure the convergence of the algorithm and to terminate its training, we used
the cumulative reward per episode as a metric. This cumulative reward is reflected
in Fig. 8 (middle) in which it can be seen that after about 550 episodes the system
converges getting the maximum reward.

As we have discussed in section 3.3, to achieve convergence in this problem we have
also needed to activate the CARLA synchronous mode. The difference between using

13

0 5000 10000 15000 20000 25000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

E
ps

ilo
n

Epsilon decay

0 100 200 300 400 500 600
Episodes

0

500

1000

1500

2000

2500

3000

3500

A
cc

um
ul

at
ed

re
w

ar
d

Accumulated reward per episode

0 100 200 300 400 500 600
Episodes

0

100

200

300

400

500

St
ep

s

Steps per episode

Fig. 8 Graphs showing the convergence of the algorithm. First graph, show the epsilon decay along
every step of the training session. Second, the accumulated reward per episode. And last, the number
of total steps per episode

this mode and not doing so becomes noticeable in the cumulative reward plot, since
the use of this mode makes possible a convergence of the cumulative reward to a
particular value.
In the Fig. 9 it can be seen how the vehicle is able to navigate properly
though the lane. For a better understanding of the behaviour and sce-
nario an illustrative video of the operation of this agent can be found in
https://www.youtube.com/watch?v= 2ma1SqN1MY.

5 Conclusions

We have studied the problem of vision-based autonomous driving in a realistic sim-
ulator (CARLA) and developed two different prototype behaviours: follow-line and
follow-lane. In both, reinforcement learning (Q-learning) approach has been used for
decision making. We have programmed our own implementation of this algorithm
in CARLA for both line and lane following applications. We have experimentally
validated the convergence of the algorithms and their safely driving along the road.
The trained agent is able to control the vehicle solely using visual information. One

14

https://www.youtube.com/watch?v=_2ma1SqN1MY

Fig. 9 Vehicle navigating along Town04 in curves situation (left) and in a straight line (right).

key factor for convergence is the activation of the synchronous mode on the CARLA
simulator. This work shows that vision-based RL is a robust approach for several
simple tasks in Autonomous Driving domain. However, it is worth to mention that
these visual-controllers are highly dependent on the implemented perception, which
will be less robust in real scenarios. In the case of lane following, it would be desir-
able to retrain the lane detection network with real images, in order to reduce this
simulation-reality gap.

One main future line of this work is extending the capabilities of the agent, making the
vehicle to successfully drive in environments where other agents are also present. This
could be addressed with other more complex deep reinforcement learning algorithms,
such as DQN or DDPG.

6 Acknowledgments

This research work has been supported by the following projects:

• TED2021-129162B-C22, funded by the Recovery and Resilience Facility program
from the NextGenerationEU Plan of the European Union and the the Spanish
Research Agency.

• PID2021-128362OB-I00, funded by the Spanish Plan for Scientific and Technical
Research and Innovation of the Spanish Research Agency.

15

References

[1] Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous
driving: Common practices and emerging technologies. IEEE Access 8, 58443–
58469 (2020) https://doi.org/10.1109/ACCESS.2020.2983149

[2] Kiran, B.R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.A.A., Yogamani, S.,
Pérez, P.: Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems 23(6), 4909–4926 (2022)
https://doi.org/10.1109/TITS.2021.3054625

[3] Chen, S.-L., Wu, H.-Z., Han, X.-L., Xiao, L.: Multi-step truncated q learning algo-
rithm. In: 2005 International Conference on Machine Learning and Cybernetics,
vol. 1, pp. 194–198 (2005). https://doi.org/10.1109/ICMLC.2005.1526943

[4] Hasselt, H.: Double q-learning. In: Lafferty, J., Williams, C., Shawe-Taylor, J.,
Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 23. Curran Associates, Inc., ??? (2010). https://proceedings.neurips.
cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

[5] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
Hassabis, D.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

[6] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. Proceedings of the AAAI Conference on Artificial Intelligence 30(1)
(2016) https://doi.org/10.1609/aaai.v30i1.10295

[7] Ruan, X., Ren, D., Zhu, X., Huang, J.: Mobile robot navigation based on
deep reinforcement learning. In: 2019 Chinese Control And Decision Conference
(CCDC), pp. 6174–6178 (2019). https://doi.org/10.1109/CCDC.2019.8832393

[8] Cano Lopes, G., Ferreira, M., Silva Simões, A., Luna Colombini, E.: Intelligent
control of a quadrotor with proximal policy optimization reinforcement learn-
ing. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium
on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp.
503–508 (2018). https://doi.org/10.1109/LARS/SBR/WRE.2018.00094

[9] Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadrotor with rein-
forcement learning. IEEE Robotics and Automation Letters PP, 1–1 (2017)
https://doi.org/10.1109/LRA.2017.2720851

[10] Dong, Y., Zou, X.: Mobile robot path planning based on improved ddpg rein-
forcement learning algorithm. In: 2020 IEEE 11th International Conference on
Software Engineering and Service Science (ICSESS), pp. 52–56 (2020). https:

16

https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/ICMLC.2005.1526943
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1109/CCDC.2019.8832393
https://doi.org/10.1109/LARS/SBR/WRE.2018.00094
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/ICSESS49938.2020.9237641
https://doi.org/10.1109/ICSESS49938.2020.9237641

//doi.org/10.1109/ICSESS49938.2020.9237641

[11] Saadatmand, S., Azizi, S., Kavousi, M., Wunsch, D.: Autonomous control of a
line follower robot using a q-learning controller. In: 2020 10th Annual Computing
and Communication Workshop and Conference (CCWC), pp. 0556–0561 (2020).
https://doi.org/10.1109/CCWC47524.2020.9031160

[12] Xiong, X., Wang, J., Zhang, F., Li, K.: Combining deep reinforcement learning
and safety based control for autonomous driving (2016). https://arxiv.org/abs/
1612.00147

[13] McCalip, J., Pradhan, M., Yang, K.: Reinforcement learning approaches for racing
and object avoidance on aws deepracer. In: 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC), pp. 958–961 (2023). https:
//doi.org/10.1109/COMPSAC57700.2023.00129

[14] Zhu, W., Du, H., Zhu, M., Liu, Y., Lin, C., Wang, S., Sun, W., Yan, H.:
Application of reinforcement learning in the autonomous driving platform of
the deepracer. In: 2022 41st Chinese Control Conference (CCC), pp. 5345–5352
(2022). https://doi.org/10.23919/CCC55666.2022.9902325

[15] Li, J., Abusharkh, M., Xu, Y.: Deepracer model training for autonomous vehicles
on aws ec2. In: 2022 International Telecommunications Conference (ITC-Egypt),
pp. 1–5 (2022). https://doi.org/10.1109/ITC-Egypt55520.2022.9855675

[16] Services, A.W.: Amazon Elastic Compute Cloud (EC2). https://aws.amazon.
com/ec2/ Accessed 2023-09-22

[17] Sallab, A., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. Electronic Imaging 2017, 70–76 (2017) https:
//doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023

[18] Amazon Web Services: Amazon DeepRacer Documentation.
https://docs.aws.amazon.com/deepracer/latest/developerguide/
deepracer-reward-function-examples.html

17

https://doi.org/10.1109/ICSESS49938.2020.9237641
https://doi.org/10.1109/ICSESS49938.2020.9237641
https://doi.org/10.1109/ICSESS49938.2020.9237641
https://doi.org/10.1109/CCWC47524.2020.9031160
https://arxiv.org/abs/1612.00147
https://arxiv.org/abs/1612.00147
https://doi.org/10.1109/COMPSAC57700.2023.00129
https://doi.org/10.1109/COMPSAC57700.2023.00129
https://doi.org/10.23919/CCC55666.2022.9902325
https://doi.org/10.1109/ITC-Egypt55520.2022.9855675
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-reward-function-examples.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-reward-function-examples.html

	Introduction
	Related Work
	Value-based methods
	Policy-Based Methods
	Reinforcement Learning in Autonomous Driving

	Follow-line driving
	Perception
	Decision Making
	Experimental results

	Follow-lane driving
	Perception
	Decision making
	Experimental results

	Conclusions
	Acknowledgments

