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Abstract. Autonomous driving in unstructured environments is a chal-
lenging task for robotics due to the presence of natural obstacles such
as rocks, trees, water, and vegetation, which can hinder navigation. In
these scenarios, Unmanned Ground Vehicles rely on robust and reliable
perception systems, primarily using cameras and LiDAR sensors for situ-
ational awareness. This paper presents an experimental and quantitative
analysis of three deep learning-based perception modules, exploring their
use for semantic segmentation of raw LiDAR point clouds. We propose
a late-fusion approach that incorporates LiDAR intensity, proving its ef-
fectiveness in reducing class confusion and improving segmentation per-
formance. All models were trained and tested using the GOOSE dataset,
which provides labeled data from unstructured environments. In addi-
tion, we analyze the impact of point cloud density and noise on semantic
segmentation performance.
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1 Introduction

Autonomous driving in unstructured environments has emerged as a prominent
research area in recent literature, due to its potential to transform fields such as
agriculture [6], search and rescue [17], and forest management [11]. While there
has been great progress in urban autonomous driving, transferring that progress
to off-road navigation is still a challenging task. Unlike structured urban areas,
off-road environments lack visual cues to assist navigation such as road mark-
ings or traffic signals, and the traversability of different terrains is not clearly
defined beforehand. In that way, a robust perception module becomes a critical
component for enabling autonomous navigation in unstructured environments.

Perception systems for autonomous navigation typically rely on RGB cam-
eras and LiDAR sensors. While vision-based sensors can potentially provide
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dense semantic information about the scene, they lack spatial 3D information,
which is critical for traversing unstructured environments. On the other hand,
LiDAR provides sparser but precise geometric data about the vehicle surround-
ings. Accurate semantic segmentation of LiDAR, while challenging due to its
sparsity, is an invaluable resource for assessing terrain traversability and con-
structing reliable navigation cost maps.

Data availability is a key factor for the development of perception systems, es-
pecially when considering deep learning-based solutions. In this sense, the release
of large-scale datasets such as SemanticKITTI [1], NuScenes [3], and Waymo
Open Dataset [14] has marked a major breakthrough in the development of
LiDAR-based semantic segmentation systems for urban settings. Only recently,
datasets like RELLIS-3D [18] and GOOSE [24], while still relatively small in
comparison, have begun to bridge the data availability gap between urban and
off-road environments. These datasets make it possible to train and evaluate
data-driven perception solutions for unstructured scenarios.

In this work, we explore the suitability of deep learning-based approaches for
LiDAR semantic segmentation in unstructured off-road environments. Using the
GOOSE dataset as a benchmark, we study two foundational lightweight archi-
tectures for point cloud processing, namely PointNet [12] and PointNet++ [13].
Furthermore, we study the inclusion of the intensity values provided by the
LiDAR sensor. To that end, we propose PointNet++*, a simple yet effective
extension of PointNet++ that introduces an MLP module to incorporate the
remission intensity signal prior to the segmentation head.

Additionally, in order to better understand the robustness of these models,
we conduct a quantitative analysis on the influence of point cloud density and
different noise levels in the segmentation accuracy. This is particularly relevant
for real-world applications, where hardware limitations and environmental con-
ditions can downgrade the LiDAR signal.

Our contributions can be summarized as follows:

– We benchmark deep learning-based solutions for LiDAR semantic segmen-
tation to assess their suitability in off-road environments.

– We propose PointNet++*, an extension of PointNet++ for leveraging the
information provided by the LiDAR intensity signal.

– We study the impact of point cloud density and noise levels in the LiDAR
segmentation quality, offering insights into the limitations of the models
studied under challenging sensor conditions.

2 Related work

The perception module is a fundamental component of the autonomous naviga-
tion stack, with its design depending on both the vehicle type and its intended
operational design domain. In the case of Unmanned Ground Vehicles (UGVs), it
is often reduced to an assessment of terrain traversability [2], but advanced capa-
bilities such as semantic segmentation might be required for intelligent decision-
making [22]. While vision-based segmentation has been extensively studied [10],
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transferring that information into the 3D space is essential to ensure safe navi-
gation. In that sense, the inclusion of LiDAR sensors in autonomous vehicles has
become a popular choice among practitioners. Although the point clouds pro-
vided by LiDAR are sparser and harder to interpret than images, deep learning
solutions have shown promising success for extracting semantic information [5].

Key to the development of deep learning approaches is the availability of
high-quality annotated data. In the case of urban settings, several large-scale
datasets are available [1,3,14], but the particularities of autonomous navigation
in unstructured environments require datasets specifically tailored for off-road
scenarios. In recent years, datasets such as RELLIS-3D [18], GOOSE [24], and
WildScenes [19] have emerged, providing an invaluable resource for transferring
advances from urban perception to off-road environments.

Numerous deep learning models have been proposed for 3D semantic segmen-
tation. Classic approaches directly process LiDAR data as unstructured point
clouds, without any further assumption or spatial discretization. Such is the
case of PointNet [12] and PointNet++ [13], which will be further studied in Sec-
tion 4. These architectures provided a strong foundation for subsequent works
that explore improvements such as RandLA-Net’s novel sampling strategy [7]
and KPConv’s kernel point convolution [16]. Other solutions focus on address-
ing the sparsity problem through different voxelization methods. For instance,
MinkUNet [4] voxelizes point clouds and applies 3D convolutional layers follow-
ing a UNet-like architecture. Meanwhile, Cylinder3D [27] performs voxelization
in cylindrical coordinates and SPVCNN [15] follows a hybrid approach. Alter-
native solutions transform point clouds into graph-like structures [23] or range
images [8] before processing. More recently, Transformer-based architectures like
PointTransformer [26] and SphereFormer [9] leverage attention mechanisms to
further improve context modeling.

Beyond geometry, recent literature demonstrates that the intensity chan-
nel of LiDAR sensors provides a strong cue for disambiguating similarly struc-
tured objects or surfaces [21], especially when transformation to reflectivity is
possible [20]. Much in the spirit of our work, Yan et al. [25] benchmark sev-
eral learning-based approaches for semantic segmentation using variations of the
SemanticKITTI dataset specifically tailored to explore the impact of different
noise levels, weather conditions, and LiDAR sensors. However, to the best of our
knowledge, our work is the first to explore these topics in the challenging context
of off-road perception.

3 Datasets from unstructured environments

The performance and robustness of deep learning models for semantic segmen-
tation are fundamentally dependent on the quality and diversity of the data
they are trained on. While autonomous driving in structured urban environ-
ments has been the primary focus of research, leading to numerous large-scale
datasets such as nuScenes [3], Waymo Open Dataset [14], or SemanticKITTI
[1], the great challenge lies in applying these technologies to unstructured en-
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vironments. These are predominantly natural or rural settings, such as forests,
agricultural fields, or trails, which lack predictable infrastructure and present
unique perception challenges that have received comparatively less attention.

Datasets in structured environments benefit from the regularity of the scene:
well-defined roads, standard signage, buildings with predictable geometries, and
a clear distinction between traversable elements and obstacles. In contrast, un-
structured environments are characterized by their high variability and geomet-
ric complexity. Dense vegetation, irregular topography, the absence of lanes or
defined boundaries, severe sensor occlusion, and changing lighting conditions
greatly hinder both data acquisition and labeling [18].

Fig. 1. Illustrative samples of GOOSE dataset.

Manual labeling of 3D point clouds is an inherently time-consuming and
resource-intensive task. In unstructured environments, this difficulty is magnified
due to the ambiguity of semantic classes (e.g., distinguishing between different
types of low vegetation or between traversable ground and irregular terrain)
and the complexity of delineating objects with organic and irregular shapes.
Despite these challenges, several public datasets have been developed for off-
road autonomous navigation.

For our experimental evaluation, we have focused on the German Outdoor
and Offroad Dataset (GOOSE) [24]. It is a large-scale dataset specifically de-
signed for perception in a wide variety of unstructured outdoor environments
in Germany. The dataset incorporates 10,000 labeled pairs of images and point
clouds captured from a ground vehicle across diverse off-road scenarios, includ-
ing forests, fields, and dirt tracks. As shown in Figure 1, the dataset provides
rich, multimodal data, including RGB images of the scene, the corresponding 3D
LiDAR point clouds, and the pixel-wise 2D semantic segmentation ground truth.
GOOSE provides its own detailed ontology with 64 semantic classes, which for
our evaluation purposes were grouped into the main categories relevant to our
study. The scale, variety of environments, and quality of the annotations make
this dataset a crucial benchmark for developing and testing robust perception
models for off-road navigation.
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4 Deep learning models for LiDAR semantic
segmentation

Processing 3D point clouds with deep neural networks presents a unique chal-
lenge compared to structured data like images. Point clouds are unordered sets of
points in space, meaning their representation is invariant to permutations. Fur-
thermore, the number of points can vary, and they must be robust to geometric
transformations such as rotation and translation. To address these challenges,
specialized architectures have been developed. In this work, we focus on two
foundational models that pioneered the direct processing of point clouds: Point-
Net and PointNet++.

4.1 PointNet

PointNet [12] was a groundbreaking architecture, being one of the first to directly
consume raw point clouds without converting them to intermediate regular for-
mats like voxels or 2D images. The key insight of PointNet is to learn a spatial
encoding for each point individually and then aggregate all individual point fea-
tures into a global representation.

Fig. 2. Block diagram of the PointNet architecture.

To achieve permutation invariance, PointNet uses a simple and powerful
strategy:

– Shared Multi-Layer Perceptrons (MLPs): Each point in the cloud is
processed independently and identically through a series of shared MLPs.
This ensures that the network learns to extract the same type of features for
every point, regardless of its position in the input order.

– Symmetric Function: A symmetric function, specifically max pooling, is
applied across the feature dimension of all points. This function aggregates
the learned features from all points into a single global feature vector that
describes the entire shape. This aggregation is inherently invariant to the
order of the points.

– Transformation Networks (T-Nets): To ensure invariance to geometric
transformations, PointNet incorporates small neural networks called T-Nets.
These networks predict an affine transformation matrix that is applied to
the input points and their features, canonicalizing the data before feature
extraction.
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For semantic segmentation, where a label is required for each point, PointNet
concatenates the global feature vector with the per-point features learned be-
fore the max pooling layer. This combination provides both global context and
local information for each point, allowing the network to make a final per-point
prediction.

4.2 PointNet++

Fig. 3. Block diagram of the PointNet++ architecture.

While PointNet was revolutionary, it did not explicitly capture the local geo-
metric structure induced by the metric space of the points. It treated each point
independently before global aggregation, missing fine-grained patterns in local
regions. PointNet++ [13] was proposed to address this limitation by introducing
a hierarchical feature learning approach that captures features at multiple scales.

PointNet++’s architecture is built upon a series of Set Abstraction (SA)
modules, which progressively abstract a larger and larger region of the point
cloud into a higher-dimensional feature vector. Each SA module consists of three
key layers:

– Sampling Layer: A subset of points is selected from the input set, defining
the centroids of local regions. The Farthest Point Sampling (FPS) algorithm
is used to ensure the centroids cover the entire point cloud, providing a better
receptive field than random sampling.

– Grouping Layer: For each centroid, a local region is defined by finding all
points within a certain radius (k-nearest neighbors). These points form a
local neighborhood.

– PointNet Layer: A mini-PointNet is used to process each local region, ex-
tracting a higher-level feature vector that summarizes the geometric pattern
within that neighborhood.
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By stacking these SA modules, PointNet++ creates an encoding hierarchy.
At each level, the number of points is reduced, but the dimensionality of their
feature representation is increased. This process is analogous to the convolutional
and pooling layers in a CNN, which reduce spatial resolution while increasing
the number of feature channels.

For dense prediction tasks like semantic segmentation, the features must be
propagated back to the original, full-resolution point cloud. PointNet++ achieves
this through a hierarchical feature propagation architecture that works as a
decoder. Feature propagation is done level by level, using interpolation and skip
connections:

– Interpolation: In the decoder stage, features learned at higher levels (where
there are fewer points and the information is more global) are transferred
back to lower, denser levels. This transfer is done by interpolating the fea-
tures of the nearest neighboring points, assigning higher weights to closer
points (inverse distance weighted interpolation).

– Skip Connections: After interpolation, these features are combined with
the ones stored from the encoder at the same hierarchical level. This allows
the network to recover fine local details that may have been lost during
hierarchical sampling, while also leveraging the global context captured at
coarser levels. As a result, the model can make per-point decisions using
both broad contextual and precise local information.

– Shared MLP: After this concatenation, the combined features are passed
through a "unit PointNet" (a few shared MLP layers) to update the per-point
features. This process is repeated until the features have been propagated to
all original points.

This hierarchical structure with its encoding and decoding phases allows the
model to learn robust and detailed features at multiple scales, leading to superior
performance in complex scene understanding tasks.

4.3 PointNet++*

The standard PointNet++ architecture primarily operates on the spatial coor-
dinates (XYZ) of the point cloud. However, LiDAR sensors provide additional
valuable information, such as remission intensity. This value, which measures
the return strength of the laser pulse, can offer crucial clues about the mate-
rial properties of a surface, helping to distinguish between objects with similar
geometry but different materials.

To leverage this information, we propose a simple yet effective modification to
the PointNet++ backbone, which we denote as PointNet++*. As illustrated in
Figure 4, the modification is applied at the final stage of the network, after the
decoder has propagated the learned hierarchical features back to the original
points. It is important to note that the feature values output by the decoder
and the raw remission intensity values have very different scales. The decoder’s
features are approximately in the range [0, 3.2], whereas intensity can be much
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Fig. 4. Proposed modification to the PointNet++ backbone.

larger. To prevent the intensity values from dominating the feature space and
to ensure a stable training process, we first normalize the remission intensity
using Z-score normalization. The mean and standard deviation required for this
normalization are computed exclusively from the GOOSE training set to perform
experiments correctly. These are the proposed modifications:

– The normalized remission intensity value for each point is then concatenated
to its corresponding feature tensor. This augments the feature space, result-
ing in a new tensor of size N × 129.

– This combined feature tensor, which now contains both geometric context
and material information at a comparable scale, is passed through a final
shared MLP for per-point classification.

This late-fusion approach allows the network to first learn complex spatial hi-
erarchies and then use the intensity information as a powerful final discriminator
to refine its predictions.

5 Experimental evaluation

In this section, we present a detailed quantitative and qualitative analysis of the
performance of the proposed models. To prepare the data, we first preprocessed
the point clouds by cropping them within a 25-meter radius centered on the ve-
hicle. From this cropped region, we randomly subsampled 16,384 points to create
uniform inputs for training, validation, and testing. To introduce variability and
promote generalization, this random subsampling was performed independently
at each iteration during training. In contrast, for validation and testing, a fixed
subset of subsampled points was used consistently to ensure fair comparisons
across all experiments.

Furthermore, the original semantic classes from the GOOSE dataset were
consolidated into a set of nine final categories to better align with the intended
application. Specifically, classes such as human and animal were grouped into
the broader Object category (representing generic obstacles), while the sky
class was merged into the Void category. The final set of evaluation classes
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Table 1. Intersection over Union (IoU %) per class (see the corresponding column)
and model (row) when considering point clouds not used for training. The mean of all
IoU percentages (mIoU %) is presented in the rightmost column.

Model Construction Object Road Sign Terrain DVeg. NDVeg. Vehicle Void mIoU

PointNet 23.62 11.08 45.62 28.39 31.74 33.46 28.37 10.64 79.60 32.50
PointNet++ 69.90 23.16 27.66 40.15 59.01 66.69 86.45 72.63 82.78 58.71
PointNet++* 68.32 25.24 31.30 42.77 59.26 70.15 88.91 74.67 82.79 60.38

includes: Construction, Object, Road, Sign, Terrain, Drivable vegetation,
Non drivable vegetation, Vehicle, and Void.

Each architecture is evaluated on point clouds not considered during training.
We considered key performance metrics, in particular Intersection over Union
(IoU) and Recall, obtained as

IoU =
TP

TP + FP + FN
Recall =

TP
TP + FN

(1)

where, for a specific class, TP (true positives) is the number of correctly pre-
dicted positive points, FP (false positives) refer to points incorrectly identified
as positive by the model, and FN (false negatives) are instances incorrectly
identified as negative. Thus, IoU measures the spatial overlap between the pre-
dicted segmentation and the ground truth, while Recall quantifies the model’s
ability to detect actual positives (higher recall means fewer positive instances
are missed). To complement these figures of merit, we also present the corre-
sponding confusion matrices to analyze strengths and limitations across classes,
since class representation is imbalanced. Finally, we examine how point cloud
density and sensor noise affect model robustness.

Fig. 5. Qualitative comparison of semantic segmentation results on a GOOSE test
point cloud not used for model training. Class labels are shown at the top.

5.1 Quality assessment of PointNet

The PointNet model was evaluated to establish a performance baseline. The
quantitative results in Table 1 and Table 2 show that the model struggles with
complex classes. This is visually confirmed in Figure 5, where the PointNet
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Table 2. Recall (%) per class (see the corresponding column) and model (row) when
considering point clouds not used for training. The mean of all Recall percentages
(mRecall %) is in the rightmost column.

Model Construction Object Road Sign Terrain DVeg. NDVeg. Vehicle Void mRecall

PointNet 47.36 18.25 70.39 43.18 45.78 51.63 47.46 23.03 87.79 48.32
PointNet++ 78.83 40.14 34.05 60.65 73.73 80.63 93.87 78.13 98.07 70.90
PointNet++* 86.02 32.10 59.88 59.39 68.95 87.06 93.35 84.91 83.74 72.82

segmentation shows significant failures, misclassifying large portions of the scene,
such as labeling construction as a vehicle. The confusion matrix in Figure 6
further reveals these issues, with significant confusion between classes, indicating
a difficulty for the model to capture the distinct local features necessary to
differentiate between geometrically similar objects.

Fig. 6. Confusion matrix for PointNet model.

5.2 Quality assessment of PointNet++

To address PointNet’s limitations, the standard PointNet++ model was imple-
mented. This hierarchical model demonstrates a significant performance leap,
boosting the overall mIoU to 58.71%. The qualitative results in Figure 5 show
a much more coherent and accurate interpretation of the environment, correctly
identifying the terrain, constructions, and vegetation boundaries. The confusion
matrix in Figure 7 supports this, showing a much cleaner diagonal, which con-
firms that the hierarchical feature learning approach effectively captures local
geometric patterns. However, some confusion persists; for example, Object is
still misclassified as Non Drivable Vegetation (24.33%).
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Fig. 7. Confusion matrix for PointNet++ model.

5.3 Quality assessment of PointNet++*

The proposed PointNet++* variant, which incorporates LiDAR intensity data,
further refines the predictions, achieving the best overall mIoU of 60.38%. Vi-
sually, as seen in Figure 5, the segmentation is very similar to the standard
PointNet++, maintaining a coherent scene interpretation while refining small
details. The confusion matrix in Figure 8 shows a notable improvement in recall
for key classes, with Vehicle reaching 84.91%. This suggests that intensity in-
formation provides powerful discriminative features, helping the model to better
resolve ambiguities between classes with similar geometric profiles.

5.4 Density effect

Point cloud density is a critical factor in real-world applications. To evaluate
the robustness of our best model, PointNet++*, we subjected it to different
levels of subsampling, from the original 16k points down to 2k points. Figure 9
shows the confusion matrices for each density level. As expected, the model’s
accuracy degrades as the point cloud becomes sparser. At 10k and 8k points, the
model maintains high performance. However, a significant drop is observed at 6k
points, where confusion between classes like Terrain, Road, and different types
of vegetation increases. At 2k points, the model struggles to identify most classes
correctly, with widespread confusion making the segmentation unreliable. This
analysis shows that while the model is robust to moderate density reductions,
its performance is highly dependent on a sufficient number of points to capture
detailed geometric features.
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Fig. 8. Confusion matrix for PointNet++* model.

Fig. 9. Impact of Point Cloud Downsampling on Semantic Segmentation (Point-
Net++*).

5.5 Noise effect

Besides point density, sensor noise is another key challenge. We simulated ther-
mal noise by adding Gaussian noise with an increasing standard deviation (σ) to
the point coordinates. Figure 10 illustrates the performance of the PointNet++*
model under noise levels of σ = 0.01, σ = 0.04, and σ = 0.08. The model shows
remarkable robustness at σ = 0.01, with minimal changes in the confusion ma-
trix obtained when evaluating original data. At σ = 0.04, performance begins
to degrade, particularly for the Sign class. At a high noise level of σ = 0.08,
the model’s performance drops sharply, with widespread misclassifications, es-
pecially for classes that are not structurally dominant, highlighting the model’s
reduced ability to extract meaningful features under high noise.
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Fig. 10. Impact of Gaussian Noise on Semantic Segmentation (PointNet++*).

6 Conclusions

This work explores the use of deep learning architectures for the semantic seg-
mentation of LiDAR point clouds in unstructured environments, a fundamental
challenge for off-road autonomous navigation. Through a comprehensive exper-
imental evaluation using the GOOSE dataset, we benchmarked two baseline
models, PointNet and PointNet++, and a novel variant named PointNet++*
has been proposed to incorporate LiDAR intensity data.

The experimental results conclusively demonstrate that hierarchical archi-
tectures outperform approaches that process points globally. PointNet, although
pioneering, showed significant limitations for capturing the fine-grained local
structures necessary for accurate segmentation in complex scenes. This is re-
flected in the low values for mIoU and mRecall, 32.50% and 48.32%, respectively.
PointNet++ increased mIoU performance to 58.71% and mRecall to 70.90%, by
capturing multi-scale geometric features. Our proposal, PointNet++*, further
improved both figures of merit, reaching 60.38% mIoU and 72.82% mRecall,
which confirms that fusing additional information such as LiDAR intensity can
reduce class confusion.

The robustness analysis, a critical aspect for real-world applications, revealed
the operational limits of these models. It was observed that PointNet++* is re-
silient to moderate reductions in point density, maintaining good performance
down to 8k points. Below this, performance decreases considerably, being insuffi-
cient for reliable segmentation with only 2k points. Similarly, the model showed
high tolerance to low levels of simulated thermal noise, but its performance de-
graded notably under high noise levels, mainly affecting the ability to distinguish
small objects and classes with poorly defined boundaries.

In summary, hierarchical models like PointNet++ are well-suited for seman-
tic segmentation in off-road settings, and multimodal feature integration such
as LiDAR intensity enhances prediction performance in unstructured environ-
ments. For future work, we will explore more advanced architectures, such as
those based on transformers, and investigate on more sophisticated intensity
fusion strategies beyond the current late-fusion approach. Enhancing data aug-
mentation techniques could also improve robustness to sparse and noisy inputs.
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Finally, the models trained on GOOSE will be tested on other datasets such as
the RELLIS-3D to assess generalization by leveraging its distinct environments
and sensor configurations in data capture.
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