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Abstract

Enterprise WLANs need to support a wide spectrum of services and functionalities. This

includes authentication, authorisation and accounting, policy management, dynamic channel

reconfigurations, mobility and interference management, and load balancing. Vendor solu-

tions that address these problems are proprietary, and closed source, leading to vendor lock-

in. They restrict flexibility for the network operator. This thesis explores the introduction of

programmability into the enterprise WLAN, demonstrated through a prototype system named

Odin, with the goal of empowering the network operator, and to make enterprise WLANs ex-

tensible. Through Odin, we provide a set of abstractions and interfaces using which different

enterprise WLAN services can be implemented as network applications. Odin is based on a

software defined networking (SDN) approach, wherein the WLAN is orchestrated through cen-

tralised control, as dictated by a set of network applications. Odin’s SDN framework also takes

into account the unique challenges of WLANs. For instance, clients in the IEEE 802.11 protocol

make access point association choices entirely on the basis of local decisions. To this end, Odin

builds on a light virtual access point abstraction that takes control of the client’s association

decisions, and greatly simplifies client management. Additionally, Odin’s architecture does not

expect any hardware or software modifications on the 802.11 client, and its design supports

WPA2 Enterprise. Experimental evaluations conducted within an enterprise WLAN setting

demonstrate Odin’s feasibility.
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1Introduction
Today’s IEEE 802.11 [1] enterprise WLAN deployments range from a few dozens to thou-

sands of access points (APs), which need to serve a large number of users. These users connect

to the enterprise WLAN through a multitude of devices, including smart phones, laptops, and

tablets. Regardless of their size, these networks need to provide a varied set of services in a scal-

able manner. These services include support for authentication, access, and accounting (AAA),

policy based network management, interference management, mobility management, dynamic

channel reconfigurations, load balancing, intrusion detection and prevention, and providing qual-

ity of service guarantees. The management of these enterprise WLANs is usually centralised

(through a controller). Many vendor solutions exist that cover a set of these features [2, 3, 4, 5].

However, these solutions are usually proprietary, and are closely tied to the hardware provided

by the same vendor as well. There is thus a need for an open and flexible software architecture

for enterprise WLANs.

Recent years have seen a growing adoption of Software Defined Networking (SDN). In SDN,

the network control plane is decoupled from the physical network topology and, instead, uses

software to control how traffic is forwarded in the network. For instance, a switch’s forwarding

tables can be controlled remotely through a software controller (or network operating system).

The OpenFlow [6] protocol is considered an enabler of SDN because it provides a standardised

protocol that can be used by a controller to manipulate forwarding tables of a network of switches

(an analogy would be the x86 instruction set for computer architectures). One can now write

network applications that can programmatically control the forwarding behaviour of a network

by talking to a network controller. Any OpenFlow enabled switch from any vendor will have a

common interface for forwarding plane manipulation via a controller (of which there are many

open source implementations today). This enables flexible and simplified network management.

In this thesis, we take a step forward in designing extensible enterprise WLANs using an SDN

approach, demonstrated through a prototype system named Odin. Odin is an SDN framework



for enterprise WLANs. Using Odin, different enterprise WLAN services can be programmed and

deployed as network applications. By providing the means to program the enterprise WLAN, we

empower the network operator with a flexible way to address the diverse needs of each individual

network. Programmability also avoids the need for developing large monolithic management

systems, and protects against a vendor lock-in of the entire network.

WLANs, however, exhibit some specific challenges which are not present in wired networks.

As per the 802.11 [1] standard, clients are free to make AP association choices purely on the basis

of local decisions. The standard does not define a signalling mechanism to control the client’s

association through an AP. This complicates client management. To overcome this limitation,

Odin builds on a light virtual access point (LVAP) abstraction. LVAPs abstract the association

state away from the physical AP itself. An LVAP is a per-client AP. Each client connecting to

an Odin-based network sees only its own unique AP regardless of the actual physical AP they

are within range of. As we will show in subsequent chapters of this thesis, the LVAP design

also facilitates infrastructure controlled handoffs without invoking a state machine change at

the client.

1.1 Contributions

This thesis’ key contribution is a novel system that brings programmability into enterprise

WLANs. It is the first system of its kind that enables the development of different enterprise

WLAN network services as applications. This is made possible through the simple, yet effective

abstraction in the form of LVAPs. Furthermore, the performance benefits that are achieved

through this system are made possible without any modifications to the 802.11 client. The

architecture and design of the system is compatible with existing enterprise WLAN security

protocols like WPA2 Enterprise.

1.2 Results

The outcome of this thesis is a prototype system named Odin which provides a framework

for implementing typical WLAN services as “network applications”. It builds upon a novel LVAP

abstraction that simplifies client management. The practicality of the system is demonstrated

2



through an experimental evaluation conducted within an operational enterprise network setting.

1.3 Research Context

The research described in this thesis was done within the Intelligent Networks and Manage-

ment of Distributed Systems (INET) research group at Telekom Innovation Laboratories, Berlin.

A paper that describes part of this work has been accepted for publication in SIGCOMM Hot

Topics in Software Defined Networking (HotSDN) 2012. The paper is titled “Towards Pro-

grammable Enterprise WLANs with Odin”. A demo titled “Programming Enterprise WLANs

using Odin” is due to be presented as part of the SIGCOMM 2012 demo session as well.

1.4 Organisation of this thesis

The remainder of this thesis is organised as follows. Chapter 2 describes the background

for this thesis. Chapter 3 provides an overview of the related work. Chapter 4 explains the

architecture of Odin. Chapter 5 describes the details of Odin’s implementation. Chapter 6

presents results obtained from an evaluation of Odin. Lastly, Chapter 7 concludes the thesis,

and describes future work.

3
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2Background
This chapter describes the concepts that are relevant to this thesis. This includes Software

Defined Networking (SDN), and the IEEE 802.11 protocol for Wireless Local Area Networks

(WLANs).

2.1 Software Defined Networking

Architecturally, a network switch is composed of a data plane and a control plane. The

data plane is concerned with forwarding packets through the switch, and for this reason, is also

known as the forwarding plane. The control plane comprises all the logic that the switch needs

in order to correctly set up a forwarding plane, that is, the signalling associated with a switch.

Traditional switches have proprietary firmware and control logic implementations, which

remain under the control of the vendor. This not only inhibits vendor inter-operability, but also

hampers flexibility. Even though these switches can be configured or managed through SNMP

or a CLI, there is no means of introducing a new control plane function or protocol into the

switch. This makes experimenting with new networking protocols cumbersome. The Software

Defined Networking (SDN) approach aims to alleviate these issues by allowing a switch’s control

plane to be remotely accessible and modifiable using an open protocol (such as OpenFlow [6]).

Third-party software can then leverage this open protocol to orchestrate an entire network.

The SDN architecture comprises a logically centralised network operating system, which can

communicate with a network of switches (Figure 2.1). A network “application” that runs on

top of this network OS can then manipulate the forwarding tables of the switches to implement

a particular control function. A clear advantage here is that it simplifies the implementation of

control functions.



Figure 2.1: Architecture of a Software Defined Network (SDN). The network operating system
provides interfaces for applications to control the forwarding tables of a set of switches. Thus,
the control plane is split from the data plane. OpenFlow is an open protocol for a network
operating system to control the forwarding tables of a switch.

2.2 IEEE 802.11 Media Access Control Layer

The IEEE 802.11 Media Access Control Layer (MAC) [7] defines the protocol for stations

to establish connections with each other and transmit data frames.

Medium access in 802.11 is performed by a distributed coordination function (DCF), which

uses carrier sense multiple access with collision avoidance (CSMA/CA) to enable random

medium access among all contending stations (STAs). Hence, it reduces the amount of col-

lisions. Logically, the MAC is divided into two parts, an upper MAC, and a lower MAC. The

upper MAC handles management frames, which include probe, authentication, and association

requests and their corresponding responses. The lower MAC handles control frames, which

includes acknowledgement (ACK) frames, along with request-to-send (RTS) and clear-to-send

(CTS) frames. The frames handled by the lower MAC have real-time constraints. For instance,

ACK frame timeouts are within the order of micro-seconds. For this reason, control frames

are handled and generated within hardware. Management frames, however, have softer time

constraints, and can be handled in software locally (as is the case in Linux systems that use

hostapd [8]), or remotely (as is the case when using a centralised WLAN controller [9]).

An 802.11 based wireless interface can operate under the following operating modes: STA

(client), access point (AP), mesh, ad-hoc and item Monitor mode. The most common mode of

operation is the infrastructure mode (which includes enterprise WLAN environments). In this

6



mode of operation, clients connect to the AP using a series of message exchanges in a process

called “association”. The decision on which AP to associate with is left entirely to the client.

Clients learn about APs either passively through beacon frames that are periodically broadcasted

by the access points, or actively by performing a probe scan. In a probe scan, clients first send

out probe request frames over all channels. APs that receive these frames and are willing to

accept a connection from a client respond with a probe response frame. All APs from which the

client receives probe responses are candidates for the client to associate with. Next, the client

sends an authentication frame, and waits for an authentication response from the AP. This is

followed by the client sending an association request, and receiving an association response from

the AP. If the network is operating in open authentication mode, the client is considered to be

associated at this point, and can now transmit data frames to be forwarded by the AP. If the AP

is configured to use WPA, WPA2, or WPA2 Enterprise, the corresponding 802.1X [8] handshake

is performed after the association phase before clients can forward data frames through the AP.

7
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3Related Work
This chapter discusses previous research related to this thesis. It covers work on software

defined networking (SDN), enterprise WLAN management, wireless device virtualisation, and

infrastructure-controlled handoffs.

3.1 Software Defined Networks (SDN)

SDN research over recent years have spanned many areas. This includes scalability of the

control platform and switch implementations, programming models for SDN based networks,

network applications, SDN for wireless networks, and testing of SDN applications. We will now

cover related work on the areas that are relevant for this thesis.

3.1.1 SDN Scalability

The centrally controlled nature of SDN-based networks raises questions about scalability of

the architecture. This includes a scalability bottleneck in the form of the control platform, and

a bottleneck with the switch (in terms of forwarding table memory, and the overhead of invoking

the control plane). We now describe research efforts that have tried to address these issues.

Hyperflow [10], built as an application on top of the NOX [11] OpenFlow controller, works

by having multiple controllers manage different partitions of the network, and having the Hyper-

Flow instances passively synchronise the network views across different controllers. Maestro [12]

is an OpenFlow controller that exploits parallelism to alleviate the performance bottleneck at

the central controller. Onix [13] is a distributed controller that focuses on reliability. It provides

a more general programming API than NOX for network applications. It leaves distributed

coordination to the application logic, but provides primitives like leader election and content

distribution to the applications in order to handle distributed coordination easily. A key dif-

ference between Onix and NOX is that the former does not handle per-packet events, and only



registers for less frequent network events. This is a trade-off made for scalability reasons, since

a server that runs the controller cannot forward packets faster than a switch’s data plane. Also

related is ETTM [14], which is a logically centralised network manager that exposes a set of

APIs to implement control applications. The manager itself is composed of software running on

a number of physical end points, and uses Paxos [15] to ensure consensus among management

applications. DIFANE [16] proposes to avoid the bottleneck at the central controller by having

the controller distribute rules across a subset of the switches known as ‘authority switches’,

which can then handle forwarding table misses from other switches (instead of the controller

itself).

Lastly, DevoFlow [17] highlights the bottleneck at the OpenFlow switch within the context

of high-performance networks (like data centers). This occurs because in OpenFlow based

networks, if a packet is received for which there is no matching forwarding rule, the packet is

forwarded to the controller. Assuming the network performs only reactively, the controller will

end up handling the first packet of every flow before inserting a rule. For a switch to send a packet

to the controller, it has to move the packet from hardware to the context of its management

CPU, before forwarding it. This can be a bottleneck within high performance networks, where

there are several hundred thousand flows being generated per-second. The authors propose to

tackle the problem by addressing short-lived (mice) and long-lived (elephant) flows separately.

Switches only inform the controller about those flows which have lasted beyond a threshold.

We note that in Odin, the scalability of the system is dependent on the scalability of the

control platform, but this aspect is orthogonal to the ability to program enterprise WLANs.

This thesis attempts to solve the latter.

3.1.2 Network Programming

Apart from looking at scalability issues, Onix [13] also sheds light on primitives the controller

should expose to the control applications. Onix exposes a key-value store called the “network

information base”, wherein control applications can obtain information about the network. In

Odin, we use a similar approach to supply applications with statistics.

There have been research efforts to develop programming languages for writing network

applications. Frenetic [18] is a language and compiler runtime for network programming that

10



aims to provide high-level abstractions to the programmer. It provides means for network pro-

grammers to specify the network’s behaviour at a high-level, using a functional and declarative

language. An important focus of Frenetic is to keep these constructs compositional, so as to

facilitate modularity and easier reasoning about code. Frenetic is based on the NetCore compiler

and run- time [19]. [20] addresses the need for consistency guarantees to be provided by the

run-time when propagating forwarding table updates to multiple switches in an SDN. Nettle [21]

also demonstrates network control using a functional reactive programming approach. Another

domain specific language to manage network configurations is the Flow-based Management Lan-

guage (FML) [22]. With Odin, we explore the abstractions required for programming enterprise

WLANs, and language level support as proposed by the above would be a good complement for

our system.

3.1.3 Applications of SDN

There has been many research efforts in writing SDN applications. Jose et. al. [23] propose

using commodity OpenFlow enabled switches for traffic measurement. The authors propose

a framework where a collection of rules are installed on OpenFlow switches, and having a

controller track the corresponding flow match counters. The controller can then draw inferences

from the counters and dynamically tune the rules as required in order to identify different traffic

aggregates.

Resonance [24] uses programmable switches to enforce access control in the network. The

authors assert that today’s enterprise networks rely on different combinations of middle boxes,

intrusion detection systems, and network configurations in order to enforce access control poli-

cies, whilst placing a burden on end-hosts in the system to remain patched and secure. The

proposed system uses an SDN approach comprising programmable switches and a controller,

which together implement a network monitoring framework, a policy specification framework,

and the ability to trigger specific actions at the switch level.

OpenSAFE [25] is a framework that enables network monitoring using OpenFlow. It ad-

dresses the problem of routing traffic for network analysis in a reliable manner without affecting

normal traffic.

Hedera [26] is an adaptive flow scheduling system for data center networks. The premise

11



for Hedera is that existing IP multipathing techniques used in data centers usually rely on

per-flow static hashing, which can lead to under-utilisation of some network paths over time

due to hash collisions. The system works by detecting large flows at the edge switches of a

data center, and using placement algorithms to find good paths for the flows in the network.

Experiments performed using simulations indicate significant improvements over static load

balancing techniques.

In [27], the authors address the problem of server load balancing using OpenFlow switches.

The number of flow entries that can be saved on an OpenFlow switch is much less than the

number of unique flows that a switch might need to handle in data center workloads. Thus, micro

flow management using per-flow rules is not practical for performing distributing flows between

different servers using a switch. The authors thus take advantage of OpenFlow’s wildcard based

rules capability, and propose algorithms to compute concise wildcard rules that achieve a specific

distribution of traffic.

With Odin, we extend the scope of network applications like the above to enterprise WLAN

specific functionalities as well.

3.1.4 SDN and wireless

In [28], the authors describe the use of OpenFlow for wireless mesh networks. Many protocols

like AODV, OLSR, and BATMAN are typically used for mesh networks, which route on a per-

packet basis. However, these protocols cannot handle flow based routing, where flows from

different sources are routed differently. The authors show that introducing OpenFlow to wireless

mesh networks can help overcome this issue.

The Stanford OpenRoads deployment [29] explores the use of OpenFlow for conducting

experiments on wireless networks. By creating network slices differentiated by the wireless

network’s SSID, different experiments can be assigned different slices.

The OpenRadio project [30] explores the use of an SDN architecture to program the datapath

of a frame down till the PHY (for instance, the kind of modulation to be used for transmitting a

frame). With Odin, programmability of the PHY as proposed by OpenRadio would be a natural

complement.
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3.2 Enterprise WLAN management

Enterprise WLAN management systems are characterised by the existence of a large number

of users, who can connect to a large number of access points, all of whom are under a central

administrative authority. The last property is important, as it makes such networks a natural

fit for centralised management systems.

Many systems have been proposed that exploit centralised management to deliver improved

services to clients in the network. CENTAUR [31] improves the data path in enterprise WLANs

by using centralisation to mitigate hidden terminals and to exploit exposed terminals. Dyson [32]

addresses the problem of extensibility in wireless LANs, by defining a set of APIs for clients and

access points to be managed by a central controller. The controller can query these nodes for

information such as radio channel conditions, form a global view of the network, and then control

the network’s behaviour to enforce a set of policies. However, CENTAUR, and Dyson propose

modifications to the client in order to achieve the said results. But requiring special software or

hardware on a client raises questions of practicality, and goes against the design requirements

for Odin.

There are also systems that do not modify the client in order to deliver services. In

DenseAP [33], channel assignment and association related decisions are made by disconnec-

tion message, and forcing the client to scan and connect to the network again. In DAIR [34],

the authors take advantage of the fact that an enterprise network usually has good wired con-

nectivity even when the wireless network is loaded. The authors propose equipping desktop

machines with USB-WiFi cards for continuous wireless monitoring, and then making use of the

collected information to effectively manage the network. DenseAP and DAIR do not modify the

client, but this has a trade-off in performance limitations. For instance, both systems cannot

work around the inherent delay involved with an 802.11-handover, which can be on the order of

several seconds.

Lastly, Rozner et al. describe traffic aware channel assignment in enterprise WLAN de-

ployments [35] with the intention of improving performance in the wireless network. Bahl et.s

al. [34] propose the use of desktop computers as monitoring stations in order to collect statistics

about the network. These statistics can then be analysed in order to make effective network

management decisions.
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3.3 Wireless Device Virtualisation

There have been several research efforts around the virtualisation of the 802.11 protocol. In

MultiNet [36], clients use a special device driver that makes use of 802.11’s power saving mode

in order to continuously switch between multiple networks. Spider [37] designs a driver that

allows clients to be connected to multiple APs at the same time. The authors in Spider also

conclude that using multiple APs can demonstrate better throughput when the APs are on the

same channel, even though their system can manage multiple channels.

Wireless virtualisation is also an attractive option for testbeds and experimentation facilities.

This is demonstrated by G. Smith, et. al. [38], to perform time division based multiplexing of

the air interface in order to support multiple concurrent experiments on the same wireless

testbeds.However, all the above methods expect client side modifications.

Researchers have also proposed the use of the 802.11 point coordination function (PCF)

and power saving mode (PSM) to implement wireless device virtualisation [39]. PSM allows

an STA to instruct the AP to buffer packets destined to the STA. This allows the STA to go

into power saving mode. With PSM, an STA can transmit on multiple channels (and be on

multiple networks) with the same physical interface. Before switching the interface to a new

channel, the STA can instruct the AP of the current network to buffer packets destined to the

STA using PSM. However, PSM is a client side mechanism. On the other hand, with PCF, the

AP takes the role of a point coordinator (PC), giving it higher access priority. It can then assign

access slots to different STAs. This can allow it to receive frames through multiple channels by

carefully scheduling transmission times for different STAs on different channels. However, PCF

is an optional feature as per the 802.11 standard, and there are no vendors that implement this

feature in 802.11 hardware.

3.4 Infrastructure Controlled Handoffs

Reducing handoff latency in wireless networks is a well studied problem. On the basis of

extensive measurements conducted in a live deployment using different combinations of vendor

hardware, Mishra et. al. [40] explain that the probe scan step in the 802.11 association sequence

(see Section 2.2) consumes most of the time in a handoff (upto 90% of the overall duration).
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Additionally, the authors assert that not only does the overall handoff duration vary between

different vendors, but that it is large enough to lead to a bad quality of service to applications.

These delays can be as long as several seconds, and on average, tends to be around 400 ms [40, 41].

A similar conclusion was drawn by [42], wherein an investigation was conducted on how 802.11

handoffs impacted voice traffic. Another study which was based on an analysis of data collected

from the 67th Internet Engineering Task Force (IETF) meeting [43] also concluded that current

STA side mechanisms that trigger handoffs negatively impact clients.

It is to be noted that unlike 802.11, cellular networks manage to achieve smooth intra-domain

handovers by sharing information between towers about a particular client [44, 45], and by having

a signalling mechanism to initiate a handover by a client. Since 802.11 networks lack such a

mechanism, there have been many proposals to realise fast handovers in such networks. These

techniques mostly involve client side modifications such that the client doesn’t scan through

all channels explicitly in order to find a new association, and receives some directions from the

infrastructure itself [46]. SyncScan [47] proposes synchronising clients with the access points

beacon transmission cycle so that clients can quickly discover new associations, thus speeding

up the handoff, and managing to reduce handover times to as low as 5 ms. An approach that

doesn’t require any modifications to the client is used by SMesh [48]. In SMesh, a mesh network

provides the illusion of a single omnipresent access point to the clients. The mesh nodes work

together to proactively monitor all clients in the system, and use a combination of DHCP and

gratuitous ARP to make clients perform handovers. The eTIMIP micro-mobility protocol also

uses a gratuitous ARP-based handover initiated by the infrastructure [49]. All the mesh nodes

work together by means of a distributed protocol. However, all mobile clients in SMesh need to

be run in ad-hoc mode, as opposed to running the entire network in infrastructure mode (as is

the case in an enterprise WLAN).

The need for infrastructure-controlled handoffs is not only motivated by the need for un-

interrupted connectivity for the client, but also has potential for being used to load balance

the network. Much of the existing work in this direction forces these handovers through some

specialised software on the client which the infrastructure can use to control client associa-

tions [46, 50, 51]. The authors in [28] make use of Media Independent Handover (MIH) [52]

to realise administrator-initiated client handovers in an OpenFlow-based network. In [53], the

authors use cell breathing techniques to regulate the transmission power of the APs in order to
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force a client to re-associate to another AP. However, cell breathing would affect the signal-to-

noise ratio of all the STAs that remain associated with an AP that has just lowered its trans-

mission power, and does not solve the problem of handover delay for the client. The 802.11k

standard [54], which is now in development, enables better management of a wireless LAN by

introducing a signalling technique into the protocol for APs to assist clients in selecting a new

AP to re-associate with, as opposed to having clients blindly pick a new AP on the basis of

signal strength, which can potentially lead to overloaded APs.

There are also standardisation efforts that are relevant in the direction of re-association based

load balancing. The 802.11k amendment [54] deals specifically with load balancing in WLANs.

It requires changes in the client as well. The amendment defines a mechanism by which APs can

provide the client with information such that the latter can make better association decisions.

Lastly, the 802.11r amendment [55] specifies “fast basic service set transition”, wherein a client

that is to handoff between two APs can perform a re-association faster. This is done by pre-

caching intermediary results of the key negotiation process between the original AP where the

client first authenticated, and the authentication server at different parts of the wireless network.

This requires client side protocol amendments as well, which Odin explicitly avoids.
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4Designing Odin

In this chapter, we describe the design of Odin. We start by describing the design goals for

the system, the high-level architectural overview of the solution, and the concept behind light

virtual access points (LVAPs), which is an important component of Odin.

4.1 Design Objectives

To address the specific challenges of enterprise WLANs (discussed in Section 1), we lay forth

the following design requirements for our system:

Extensibility: The system should be extensible in order to account for the diverse needs of

different enterprise WLAN deployments. We opt to achieve this through network programma-

bility (defined in Section 3.1.2). Hence, the system should provide abstractions for developers

to implement network services as applications.

Simplified Programming Model: The programmer of a WLAN network service should

not have to deal with WiFi state machine transitions of the client. As described in Section 2.2,

the 802.11 client makes association decisions locally, without any signalling from the infrastruc-

ture. This means that the client’s link to the network can change unpredictably. Requiring the

programmer to reactively handle these state machine changes would be cumbersome. Instead,

the programmer should always see the client’s link to the network as a fixed link. The frame-

work should provide the programmer with primitives to express complex network services as

applications.

Client Transparency: The system should not require any hardware or software modifica-

tions of the clients, which should operate as legacy 802.11 infrastructure mode clients.

Security: The system’s architecture should be compatible with regular 802.11 network

security protocols like WPA2 Enterprise.



Figure 4.1: Architecture of Odin. The Odin Master (an OpenFlow application), speaks Open-
Flow to the switches and the APs, and uses a custom protocol to talk to each Odin Agent running
on APs. Odin applications use Odin’s primitives to implement enterprise specific services.

4.2 Architecture of Odin

Odin’s architecture comprises a logically centralised master, multiple agents, and a set of

Odin applications (Figure 4.1). The master is implemented as a network application on top of

an OpenFlow controller. This gives the master a full view over the network topology, and allows

it to be aware of every flow in the network. However, the OpenFlow protocol does not cover

the 802.11 MAC functions (e.g., handling association logic, and configuring wireless interfaces).

Odin agents fill this gap. They run on the APs, which are also OpenFlow-enabled switches.

Lastly, Odin applications programmatically implement network services through the interfaces

provided by the framework.

The interaction between these components is as follows. The agents and the master together

implement a WiFi split-MAC (along the lines of CAPWAP [56] and LWAPP [9]), where the MAC

layer logic is divided between a central controller and the APs. The master uses OpenFlow to

communicate with the switches (including the APs), and an Odin specific protocol to speak with

the agents. The master can thus collect standard OpenFlow specific statistics (such as number

of packets matched per-flow) from the APs and other switches in the network, and also radio

specific information (such as per-frame receiver signal strength and bit-rate) exposed by the

agents themselves. The master exposes these statistics along with some primitive operations as

interfaces. Odin applications run atop the master and make use of these interfaces in order to

implement different network services.
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Figure 4.2: Processing path for 802.11 frames in Odin. When an 802.11 management frame is
received by an agent, it checks whether an LVAP is hosted for the client that generated the
frame. If yes, it processes and responds to the frame as per the 802.11 protocol. If there is
no LVAP for the client, the agent informs the controller which assigns the client an LVAP. The
agent then responds to the client accordingly.

4.3 Light Virtual Access Points (LVAPs)

In an 802.11 setting, when clients in managed mode perform a probe scan in order to find

APs, they generate probe request messages. APs responding with probe response messages

become potential candidates for the client to associate with. The client then initiates a series

of handshakes with the AP that culminates in a successful connection between the two entities.

The client can now transmit data frames that will be forwarded by the AP. At this juncture,

the infrastructure has no signalling mechanism to instruct the client to handoff to another

access point without explicitly disconnecting the client (which is done by sending the client a

disassociation frame, and forcing it to repeat all the association handshakes again). This is

inconvenient for the client. We tackle this inconvenience through the LVAP abstraction, which

enables Odin to take control of a client’s association decisions, and leads to a logical isolation of

clients with respect to the 802.11 MAC. We now describe the LVAP abstraction and how Odin

uses it to achieve the said logical isolation of clients.

In Odin, every client receives a unique BSSID to connect to, i.e., every client is given the

illusion of owning its own AP. This client specific AP is the LVAP. A physical AP thus hosts an

LVAP for each client connected through it. The per-client LVAP is assigned when a probe scan
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from the client is detected (see Figure 4.2). From the client’s perspective, the LVAP is a regular

802.11 AP, with which it first associates with and then forwards data frames through. Removing

a client’s LVAP from a physical AP and spawning it on another (an LVAP-handoff) achieves the

effect of handing off a client without the client performing a re-association, generating additional

layer 2 or 3 messages, and most importantly, without requiring any special software or hardware

at the client. This is because once a client is associated with an AP, the only protocol level

requirement is that the client gets ACK frames for the data frames that it generates from the AP

that it is associated with, and that it receives beacons periodically from the AP. At the client’s

MAC layer, it does not matter if the actual radio that generates these ACK frames changes.

By abstracting away the association state of a client’s connection away from individual physical

APs, Odin’s LVAPs thus achieve a form of wireless network virtualisation, where each client

sees a logical access point unique to it regardless of the actual physical AP it is communicating

with. Intuitively, an LVAP-handoff is equivalent to physically moving an AP whilst retaining

all its state.

Thus, using LVAPs, Odin always provides clients a consistent link to the network, and the

programmer of an Odin application need not be concerned with the client’s link to the network

changing. The end-point of a link always corresponds to the client’s IP and MAC addresses,

along with the unique BSSID assigned by Odin. Furthermore, since the LVAP abstraction

preserves the interfaces between the client and the APs, and does not expect any client-side

modifications, the design is compatible with enterprise WiFi security protocols such as WPA2

Enterprise.

Section 5.3 explains the details of the LVAP assignment at the protocol level, along with the

associated resource utilisation. Note that LVAPs are considerably different from using virtual

interfaces on a physical wireless interface (as is leveraged by OpenRoads [29]), wherein networks

are sliced by the network name (or SSID). With regular virtual APs, there is a state machine

maintained for each association that the infrastructure has no control of.

4.4 Summary

In Odin, the infrastructure’s WiFi MAC is decoupled from the individual physical APs. This

is done using the concept of a virtual link, realised using LVAPs. That is, the WiFi client always
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sees a consistent link to the network, regardless of the physical AP it is actually transmitting

through. The framework provides primitives for programmers to implement network services

as ‘apps’, whilst taking into account the specific needs of enterprise WLANs. Lastly, Odin’s

architecture is compliant with the 802.11 protocol, and thus does not require any special software

or hardware on the client. In the following chapter (Chapter 5), we describe how this architecture

of Odin is realised into an implementation.
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5Implementation

5.1 Odin Master

The Odin master is implemented as an application on top of the Floodlight OpenFlow

controller [57]. The master uses the OpenFlow protocol to update forwarding tables on the APs

and switches. In its current design, Odin applications execute as a thread on top of the Odin

Master. The master uses a separate control channel to invoke commands on the agents. The

protocol between the master and the agents is described in Table 5.1. The master listens on a

particular port for messages from the agents. When the master receives a PING message from an

agent for the first time, the former checks to see if there is an OpenFlow switch corresponding

to the agent’s AP registered as well. If yes, the master “tracks” the agent. The PING message

from the agents also serves as a keep-alive mechanism. As of now, the system assumes all agents

attempting to connect to the master are legitimate. Upon missing a configurable number of

PING messages from an agent, the master declares the agent to have failed and clears the agent

from its agent tracker. An application running on the master can also request for statistics and

network information. This can work in both pull-based (active probing) and push based (publish-

subscribe mechanism) mechanisms. For the former, the master uses the QUERY STATS protocol

message to retrieve a set of statistics that the agent collects. Applications can then view these

statistics in a key-value format. The publish subscribe mechanism works with the application

expressing “interests” to the master, the master informing the agents about the interests, and

the agents notifying the master when a packet is received that matches a subscription. This

mechanism is described in detail in Section 5.5.

5.2 Odin Agent

Odin agents run on physical APs, and are implemented using Click [58]. We chose Click

because of its flexible and modular packet processing capabilities. As mentioned in Section 4.2,



Table 5.1: Protocol between Odin master and agents

Message Arguments Direction Description
ADD LVAP ip addrsta Master → Agent Used by the

mac addrsta, master to spawn an
lvap bssidsta, LVAP at an agent
lvap ssidsta

REMOVE LVAP mac addrsta Master → Agent Used by the
master to remove an
LVAP from an agent

QUERY STATS None Master → Agent Used by the master
to query an agent

for statistics
ADD SUBSCRIPTION subscription string Master → Agent Insert a

subscription for
a per-frame

event at the agent
RECVD PROBE REQUEST mac addrsta Agent → Master Used by the agent

to inform the Master
that a probe-scan

from a client mac addrsta
was detected. This can

trigger an LVAP assignment
by the master.

PING None Agent → Master Serves as a heartbeat
from the agent to the
controller, and is used

to detect
newly spawned agents

PUBLISH mac addrsta, Agent → Master Notify the master
listsubscription Ids that a frame was received

from the client
mac addrsta which matched

the subscription Ids in
listsubscription Ids

the agents contain the logic for the Wi-Fi split-MAC and LVAP handling. The agent runs atop

a network interface running in Monitor mode. This allows the agent to receive all frames that

the interface can listen to (includes both management and data frames), along with per-frame

reception information exposed using a radiotap header [59]. This information includes the signal

strength of the reception, the bit-rate or Modulation Coding Scheme for 802.11n at which the

frame was transmitted by the source, and the noise. The agent saves this information on a per-

source basis, and keeps track of “last heard” timestamps for each source as well. The physical

AP hosting the agent also requires a modified Wi-Fi device driver to generate ACK frames for

every LVAP hosted on the AP (explained in Section 5.3). Open vSwitch [60] is used to turn the
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AP into an OpenFlow enabled switch.

When an LVAP is migrated and a new data-path is used for forwarding a client’s traffic,

the transport network can issue an ARP request for the client’s IP address (since the physical

AP runs as a bridge). Again, with the goal of client transparency in mind, the agents intercept

ARP requests for the client’s IP, and use the LVAP information to answer with the appropriate

ARP responses themselves.

Although this aspect of its implementation is still under way, agents will also perform

encryption key installation into the WiFi driver as part of WPA/WPA2 authentication. This is

explained in detail in Section 5.6.

5.3 Realising LVAPs

The first step in assigning per-client LVAPs is to have Odin agents track probe request frames

generated by clients1. When an agent receives a probe request from a client for which it is not

already hosting an LVAP, the agent informs the master about it using the RECVD PROBE REQUEST

message. If the client is not already associated with the network, the Odin Master spawns an

LVAP on the Odin agent which received the probe request (or one of the many agents which

received the request). The agent then responds to the client probe request using a BSSID and

SSID provided by the master. This BSSID/SSID combination can either be statically assigned

on a per-client basis, or generated programmatically by the master. To ensure logical separation

between clients and their respective LVAPs, beacons (and probe requests) are only unicast to

the clients. Since the client’s lower MAC will drop unicast frames that are not destined to it

(when operating as stations in infrastructure mode), beacons are only received by the clients to

which they are unicast specifically to. Thus, each client can be presented with a unique BSSID

to connect to. From this point onwards, the client connects to the newly spawned LVAP as in

standard 802.11. An important implementation detail is to ensure that a client is consistently

provided the same BSSID. In its current form, we statically assign BSSIDs to clients, but this is

easily remedied by generating a BSSID deterministically for the client on the basis of its MAC

address. Per-user SSIDs can be statically assigned, or a common SSID can be provided to all

1For this discussion, we consider clients that are connecting in open authentication mode. We explain two

different modes of authentication that are possible with Odin’s architecture in Section 5.6
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clients that attempt to connect to the network.

As mentioned earlier, the agent needs to ensure that an ACK is generated for each data

packet that the client sends to its LVAP. ACK frames are handled by the hardware because they

have a strict real time constraint. Our testbed uses ath9k [61] based wireless cards running the

OpenWRT Linux distribution [62]. ath9k based cards use a register which act as a BSSID mask.

This mask is used by the hardware to decide which incoming frames to generate ACKs for.

The value that this mask holds is equal to the common bits of all BSSIDs that are being hosted

on the device (as a consequence of having multiple virtual interfaces). The algorithm is as follows:

bssid mask = 0xffffffffffff

foreach bssid in BSSID SET do

bssid mask = bssid mask & !(hw mac addr ⊕ bssid)

end

And on receiving a frame, the hardware verifies whether the incoming frame’s destination

MAC address matches the BSSID mask. The check performed in hardware is as follows:

if (frame dst mac addr & bssid mask)

== (bssid mask & hw mac addr) then

//acceptframe

end

Thus, we modified the ath9k driver to expose a debugfs [63] based userspace interface

to allow modification of the hardware’s BSSID mask register. The BSSID mask value should

include the BSSIDs of all the LVAPs in the mask calculation. This value is computed, updated

and applied to the register by the Odin agent whenever an LVAP is added or removed. Thus

any data frame destined to a BSSID that matches the said mask will force the access point to

generate an ACK from hardware.

An LVAP is represented by the following four-tuple:

{mac addressclient, ip v4 addressclient, lvap bssidclient, lvap ssidclient}

This takes up a fixed size of 16 bytes, along with the length of the SSID. It is stored on the

agent within a hash map keyed by the client’s MAC address. With a worst case length of 32
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characters for the SSID, the storage involved on the AP with each addition of an LVAP is only

48 bytes. For this reason, hosting an LVAP does not incur a significant memory load on the

AP. For each frame that the AP generates to a client, a lookup on this hash map is performed

in order to obtain the right BSSID value to be used as the source MAC address in the 802.11

frame. Since this lookup is constant time and is not a function of the number of LVAPs, the

processing load on the AP will remain a function of the number of packets the agent has to

process (as is the case with a regular AP), and not a function of the number of LVAPs. This is

validated through an evaluation in Section 6.

However, since the agent generates beacons corresponding to each LVAP, having too many

LVAPs can lead to more beacon generation, which in turn leads to more contention on the

channel. Although we’re yet to measure the impact of this on a client throughput, this can be

easily remedied by using longer beacon intervals.

5.4 Failure Scenarios

Odin’s current implementation comprises a single master server. This is a consequence of

the underlying OpenFlow controller, Floodlight, not being distributed. Note that the master’s

reliability follows directly from the reliability of the control platform being used, but this is

orthogonal to introducing programmability into the enterprise WLAN. That said, if the Odin

master (or the controller) fails, there are the following consequences. First, the system cannot

assign fresh LVAPs to newly connecting clients. Second, Odin applications are no longer running,

implying that network services like mobility management and LVAP migrations will not function.

This implies that connected clients can only transmit via the physical AP on which their LVAP

is hosted as of the time at which the master fails.

However, the above issue is easily circumvented. This is because by design, the master does

not maintain any state that needs to be preserved after a failure. When the master boots, it

waits to receive a PING message from the agents in order to track them. If the master is hearing

from an agent for the first time, it also probes the agent to see if the latter is hosting any LVAPs.

If yes, it records the LVAP information and their binding to the respective agent. Thus, the

master always syncs with the rest of the system upon boot. The convergence time depends on

the ping interval used by the agents.
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This design makes the Odin master a natural fit for running on top of a high availability

cluster suite like Linux HA [64] in failover mode. A standby instance of Floodlight and the Odin

Master can be launched as soon as the cluster suite detects the failure of the current master.

As mentioned in Section 5.1, the PING messages from the agents serve as a heartbeat. When

the master misses a configurable number of pings from the agents, it assumes the agent to have

failed. It then marks the clients associated with the failed agent as ‘unassigned’. At this point, if

the client generates data frames that are detected by a neighbouring agent, it can be immediately

re-assigned using a mobility manager. If the client generates a probe scan, the master performs

a re-assignment.

5.5 Supporting Proactive and Reactive Programming Models

Depending on the network service being implemented, an Odin application will need to work

either proactively, reactively or both. An example of a purely proactive application can be an

AP load balancer, which looks at the number of clients associated with each AP periodically,

and then hands off clients such that the processing load over the APs remains balanced. An

example of a purely reactive application can be a mobility manager, which would initiate a

handoff if the framework detects that a client is moving.

To support the proactive model, every application executes as a thread on the Odin mas-

ter which can cycle between sleeping and performing some activity. To support the reactive

programming model, applications will need a mechanism to express interest in certain events

to the framework, and the framework will need to notify the concerned applications whenever

such events occur. This is a natural fit for a content-based publish-subscribe solution, because

the master can act as a broker for events published by the agents that are to be delivered to

interested applications. We now describe how this is implemented.

First, applications register subscriptions with the master. A subscription is described by

the following four fields:

1. src-addr: can be a valid unicast MAC Address, or ‘∗’ (which means ‘any’). Only frames

with this value for a source address are of interest to the subscriber.

2. stat: any statistic being recorded at the agent.
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3. rel: can hold values EQUALS, GREATER THAN, or LESS THAN.

4. val: a double value.

The above is interpreted by the master as follows: “Notify the application if a frame is

received from src-addr, such that the value of the statistic stat corresponding to the frame

should have a relation rel with the value val”

For each subscription that an application registers with the master, it should also provide a

callback that is to be invoked as a notification. The callback’s arguments include the subscription

message that lead to the notification, and context information (such as the source address of

the frame which triggered the notification, and the agent at which the event was recorded).

The master assigns each subscription a unique identifier, and then informs all concerned agents

about the subscriptions. When an agent receives a frame, it performs a check to see if any of the

collected statistics corresponding to the packet matches with any of the subscriptions that have

been registered with it. If there are matches, the agent then forwards the master a PUBLISH

message, indicating the source address of the frame that triggered the notification, along with

the identifiers of the subscriptions that matched the frame. The master then forwards the events

to the concerned applications by invoking the appropriate application provided handlers.

As an example, a mobility manager can register a subscription ["*","signal", GREATER

THAN, 180], and associate a handler with the same. This subscription is then pushed to the

agents via the master. If the agent receives any frame (regardless of the source address, because

of the “*” value for the address) for which the signal strength is greater than 180, the agent

sends a PUBLISH notification to the master indicating the subscription id against which the

frame matched, along with the value of the signal strength that triggered the match. The

handler corresponding to the subscription is then invoked, and the relevant context information

is passed to the application as well. The context information includes the client that triggered

the subscription, the agent at which the notification was generated, and the corresponding value

of the signal strength. Within the handler, the application can track the signal strengths of the

client as observed by different agents, and use this information to make LVAP-handoff decisions.
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5.6 Security

Security is a key component of any enterprise WiFi management solution. The implemen-

tation for this is on-going work, but we describe how Odin’s architecture is compatible with two

approaches to authentication, both of which fit well with the LVAP abstraction scheme.

5.6.1 Post authentication using WPA2 Enterprise

In post authentication, a client is authenticated against the system after it is assigned a

LVAP. This can be done using 802.1X [8] and WPA2 Enterprise, the de-facto standard for

authentication and security in enterprise networks.

In WPA2 Enterprise, a client (or supplicant) authenticates against an authentication server

with the access point acting as an authentication proxy. The first time the client connects to

the network, it will begin a probe scan, to which the infrastructure will respond with probe

responses from the client’s LVAP. In the next step, the client performs open authentication with

the access point, and then associates with it. The client is now in the unauthenticated state,

and only EAPOL frames from the client are accepted by the access point. The client then uses

its credentials to authenticate against the authentication server, mediated by the access point.

If the client successfully authenticates, the server provides the client with the master key that

is to be used for the session, from which both entities derive a pairwise-master key (PMK). The

server then moves the PMK to the authenticator (the access point).

Next, a four way handshake is performed between the access point and the client to derive

a session key:

1. the AP generates a random value called the ANonce and sends it to the client.

2. the client generates a random value called the SNonce. It then derives the Pairwise Tran-

sient Key (PTK) by making use of the ANonce, the SNonce, and the PMK. It then informs

the AP about these two values including a message integrity code (MIC).

3. The AP derives the PTK using the ANonce, the SNonce, and the PMK. The AP then

informs the client about the group temporal key (GTK), which is used for encrypting

broadcast messages.
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4. client installs the PTK and the GTK, then sends an acknowledgement to the AP. The

latter then proceeds to install the PTK.

Any entity with the PTK or session key can thus successfully encrypt and decrypt packets

in a WPA2 secured session. Including this session key in the LVAP encapsulation, and installing

the key in the new AP would suffice to allow secure roaming of the client. Note that this

approach is also compatible with the re-keying mechanism in WPA2, wherein the access point

can invoke the 4-way handshake again with the client in order to refresh the session key being

used.

Furthermore, in the AES-CCMP and AES-CMAC algorithms, a replay counter is used

internally in the encryption process to prevent replay attacks. This replay counter is encoded

in the WPA2 encrypted packet as a 48-bit packet number (which itself is part of a 64 bit

initialisation vector). The only constraint here is that the packet numbers must be monotonically

increasing. Thus as long as the packets generated by the new AP satisfy the monotonically

increasing sequence property of the same, then the STA’s verification of the packet number will

not fail. This can be easily done by having the replay counters used by the access points for each

client correspond to an NTP synchronised timestamp, or by incorporating the replay counter

state in the LVAP handoff. Thus, Odin’s LVAP based handoffs can be used even in the presence

of standard enterprise grade WiFi encryption.

Thus, the transferability of the transient keys (or the re-computability of it), along with the

use of a high enough replay counter value will suffice to implement LVAP handovers in the face

of encryption.

5.6.2 Pre authentication for Guest WiFi

In pre authentication, a client is assigned its own LVAP only after it has authenticated

against the system. This fits with the common mode of authentication in guest WiFi systems

and in public WiFi environments (like in cafés), wherein a user is given an unsecured WiFi

connection, and is re- directed to a login page through the web browser. Guest and public WiFi

systems usually provide the user with credentials prior to this access attempt. The authors in

[65] propose the use of OpenID and OAuth2 [66] for logging into such WiFi networks.
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Regardless of the type of credentials used, the authentication mechanism can return a token

to the Odin Master for the client after successful authentication by the latter. The LVAP that

is then spawned for the client can either be unencrypted, or require the client to negotiate a

key with the access point (and thus the Master) over 802.1X, which is then bound with the

LVAPs state. Furthermore, in a true Open WiFi scenario with a shared controller for a number

of networks, the LVAPs themselves can be re-used, allowing the client to use cached credentials

for accessing a WPA2 enterprise protected network.

In enterprises which require the user to provide the IT section with their MAC addresses

for access control, pre-authentication can be implemented trivially by having the Odin Master

perform a lookup in a database of MAC addresses when Odin agents report a probe scan by a

particular client. Only clients which appear in this database are assigned a LVAP by the Master.

In its current implementation, Odin supports such a form of pre-authentication.

5.7 Example Odin Applications

In this section, we illustrate example applications that can be built on top of Odin (note

that we haven’t implemented all of them). As we describe in Section 4.2, these use- cases cannot

be handled using only OpenFlow. This is because the scope of the OpenFlow protocol does not

cover the 802.11 MAC.

5.7.1 Seamless Mobility

As explained in Section 4.3, an LVAP handoff does not affect the 802.11 state machine at

the client. This property can be leveraged by an Odin based application to implement a mobility

manager.

Figure 5.1 shows how an LVAP based mobility manager can work. By striving to keep an

LVAP as close as possible (on the basis of some metric, e.g. signal strength) to the corresponding

client, the latter continues to receive ACKs for data frames that it generates, preventing it from

performing a re-scan.

This mobility manager can be implemented using a reactive model, by leveraging the event

subscription mechanism of the Odin framework. One way to achieve this would be for the
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a) b)

Figure 5.1: LVAP abstraction being used for mobility management: a) Clients connect to
LVAPs, with one or more LVAPs being hosted on the same physical AP. LVAPs on top of a
physical AP share the same wireless channel. b) The Odin master detects a client movement
and performs an LVAP migration to realize a smooth handoff.

application to inform the master to invoke a handler whenever a frame is received at any agent

at a signal strength greater than a specific value. Using the context information passed by

the master when the handler is invoked, the application can then verify if the subscription was

triggered at an agent different from the one where the client is currently associated. It can also

determine whether the signal strength at this agent is higher than the one at which the client is

currently associated. If yes, then the agent can LVAP-handoff the client to the new agent. An

example implementation is shown in Appendix A.1.

5.7.2 Load Balancing

In Section 3.4 we discussed re-association based load balancing, wherein the load across

multiple APs can be balanced by dynamically re-assigning clients to different APs. Different

metrics (or combinations of them) can be used to determine when and how these re-assignments

should be performed. Most existing work employs specialized software on the client, which the

infrastructure uses to control client associations (as described in Section 3.4). Since handoffs with

LVAPs are inexpensive and fast, re-association based load balancing can be easily implemented as

an Odin application (in Section 6, we show that even executing these handoffs every 100 ms does

not result in any TCP perceived throughput degradation at the client). One possible approach

to implement a load balancer application is for it to run in proactive mode, and periodically
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inspect the number of active LVAPs per agent, and the processing load on each physical AP. It

can then use a heuristic to re- assign LVAPs to even out the processing load on different APs,

whilst taking care to ensure that the clients are still within transmission range of the physical

APs to which their respective LVAPs are migrated to.

5.7.3 Hidden Terminal Mitigation

Hidden terminal mitigation is a classic problem in enterprise WLANs. Many approaches

have been researched to measure and mitigate the impact of hidden terminals in enterprise

WLAN environments. These span from adaptive RTS/CTS to centralised scheduling (such as

in CENTAUR [31]). However, most approaches require client modifications, due to the lack

of control on the clients’ association decisions. A hidden terminal mitigation application is

a natural fit for Odin because of the centralized view of the network at the master, and the

control over the association state of a client. This application would require some extensions

to the agents (with regards to information collected about the channel). The application can

then provide per client measurements of link impairments (see [67]) such as hidden and exposed

terminals, and collisions.

5.7.4 Access Control

Access control is a common feature in enterprise WLANs. A typical use-case is restricting

guest users from accessing servers that are part of the internal employee network. This form of

access control can also be performed using LVAPs. In Odin’s current setup, a set of OpenFlow

flow table entries is associated with each LVAP. Every time the master triggers an LVAP-

handoff, the corresponding flow table entries are installed on the new physical AP as well. This

mechanism can be extended further by having an Odin application associate a set of forwarding

table entries that implement access control policies with a particular LVAP. The policies can be

differentiated according to the type of user, which can be determined from an authentication

server (Section 5.6). Every time the LVAP is migrated between physical APs, the access control

policies for the corresponding client would be moved to the new AP as well.
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5.8 Summary

In this chapter, we have described the implementation of Odin, based on the design de-

scribed in Section 4. We’ve described how the Odin master, and agents work, along with the

implementation details of LVAPs. We have also explained how Odin’s design is compatible with

standard WiFi security protocols. Lastly, we also described some possible applications that can

be built on top of the Odin framework. In the subsequent chapter (Chapter 6), we conduct a

performance evaluation of this implementation.
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6Evaluation
The overall objective of Odin is to enable programmability of WLANs with an emphasis on

not requiring client side modifications. It is important to see the different overheads incurred

by the system in order to support programmability of a WLAN. In this chapter, we present an

evaluation of Odin to understand how it performs under different workloads. The objective is

to understand the practicality of the system.

The evaluations are conducted under the following operational setting for Odin. An Odin

based network comprises clients that connect to the network, the agents that host per-client

LVAPs, the master that assigns LVAPs, and applications that run atop the master. Apart

from the channel conditions, the throughput that a client gets when transmitting data via an

LVAP is dependent on the packet forwarding performance of the agent, along with the impact of

LVAP handoffs that can be triggered by different Odin applications. Once a client connects to

the network, the master installs OpenFlow forwarding rules for that client on the physical AP

corresponding to the client’s LVAP. This leads to data flows being handled fully by the agent,

and not incurring an overhead at the master. The overheads incurred at the master during run

time are that of maintaining state for each client and agent in the system, and handling control

traffic from agents (caused by OpenFlow messages, subscriptions triggered at the agent, PING

and PROBE messages).

Metrics: Given the above mentioned operational nature of the system, we evaluate the

following.

1. Impact of LVAP handoffs on an Odin client’s throughput. This will help un-

derstand if it is practical to have Odin applications perform LVAP handoffs, which is an

important primitive for Odin applications. This is evaluated within Section 6.2.

2. CPU, and memory overhead of the agent when hosting LVAPs. This includes

active LVAPs where the corresponding client is transmitting a data flow, and passive



Figure 6.1: The x86 based wireless testbed in an office environment on the 15th (bottom figure)
and 16th (top figure) floors of the TEL building at TU-Berlin. The red squares indicate the
positions of the APs that comprise the indoor testbed.

LVAPs where there is an LVAP assigned but the client is yet to associate with it and

transmit data flows. This will give us an understanding of the performance limits of

agents. This is evaluated within Section 6.3.

3. CPU, memory, and control traffic overhead at the Odin master under different

workloads. This is important to understand the scalability of the master with regards to

maintaining client and agent state, and responding to control messages from the agents.

This is evaluated within Section 6.4 and Section 6.4.4.

6.1 Testbed description

The testbed for the evaluations consist of six x86 based PC Engines 3d2 WiFi APs equipped

with an IEEE 802.11abgn AR9220/AR9280 WiFi card used with the ath9k driver. 2dBi “rubber

duck” antennas are attached to the WiFi card. The operating system is the OpenWrt “Backfire”

release (subversion revision 29984). The nodes run Open vSwitch version 1.0.3, and Click version

2.0.1. The APs are placed across the 15th and 16th floors of the TEL building at the TU-Berlin

campus as indicated in Figure 6.1. For running the Floodlight controller and Odin Master, a

KVM based virtual machine is used with the specifications outlined in Table 6.1.
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Table 6.1: Specifications of virtual machine used to host the OpenFlow controller and Odin
master

Total Memory 1000M

Processor type QEMU Virtual CPU version 0.12.3

Number of processing cores 1

CPU MHz 2133.087

CPU cache size 4096 KB

CPU frequency stepping levels 3

6.2 LVAP-Handoff Feasibility Evaluation

LVAPs offer a mechanism to abstract the association state of a connection (to a client) away

from physical APs. As mentioned in Chapter 4, an LVAP migration should not trigger any layer

2 or layer 3 protocol message exchanges between the client and the concerned physical APs.

Odin applications can make use of LVAP migrations to implement different network services.

It is important that these migrations can be completed fast enough that it does not affect a

client’s throughput, or interrupt its TCP sessions. In the following experiments, we validate

whether LVAP-handoffs satisfy this requirement. If they do introduce significant interruptions

to a client’s connections, the practicality of the system is limited. Note that we evaluate the

CPU/memory load on an agent hosting LVAPs in Section 6.3.

6.2.1 Layer 2 Delay in Legacy WiFi Re-association

Objective: In an Odin network, an LVAP-handoff does not trigger the layer 2 re-association

mechanism. The aim of this experiment is to observe the handoff delay at layer 2 in the case of a

regular 802.11 handoff across different combinations of channels. It will thus help us understand

the delays we can avoid when performing LVAP handoffs. This is our baseline comparison.

Experiment description: The experiment is conducted within the TEL building’s 16th

floor in the TU-Berlin campus during normal working hours. A Linux based laptop is used as

a client to resemble a typical user device, running the brcsmac driver on Linux kernel version

3.1.0-030100-generic with Ubuntu 10.04. Two APs of the same specifications as described in

Section 6.1 are used. The client is first made to connect to one AP, and then forced to re-

associate with the other AP. Using the nmcli utility, we observe the layer 2 delay incurred for
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Table 6.2: Latencies involved in a layer 2 handoff using open authentication. The latency is
higher when handing off from one channel to another than within the same channel. This is
because the probe scan duration is lower.

Scenario Min (s) Max (s) Avg (s) Std. Dev.

Same channel
handoff 0.1737 0.3793 0.1897 0.0320

Different channel
handoff 0.1767 18.3059 0.3632 1.0260

performing a handoff. This is measured as the time it takes for the client’s WiFi driver to

transition from the state of having disconnected from the first AP, to having completed the

association with the new AP. The experiments were performed in the 2.4Ghz band since most

consumer WiFi devices operate within this frequency, providing a noisy environment. Handoffs

were performed between all combinations of channels (1 to 11). The experiment is repeated 10

times and the results averaged.

Discussion: The results of this experiment are described in Table 6.2. The average handoff

delay of ∼350ms is consistent with the existing literature [68, 40]. The average delay for a handoff

within the same channel is ∼190ms. Note that the delay for handing off within the same channel

does not apply to Odin because of the LVAP based handoff mechanism (which does not trigger

a client side state machine change, and thus no protocol message exchanges). As mentioned in

Chapter 5, in case of Odin, an LVAP-handoff is executed by issuing the REMOVE LVAP command

to the old AP, and the ADD LVAP command to the new AP. The period of disconnectivity for

the client (when it does not get ACKs for data frames) is the time between the old AP having

executed the REMOVE LVAP command, and the new AP executing the ADD LVAP command. If this

delay is small enough, the client won’t observe any disconnectivity and will not disassociate. We

demonstrate the performance effects of not triggering the state machine change at the client in

the next experiment (Section 6.2.2).

6.2.2 Impact of Single Handoff on HTTP download throughput (Odin vs.

IEEE 802.11)

Objective: An LVAP-handoff in an Odin based network does not trigger any layer 2 or

3 protocol messages to be exchanged between the client and the AP. It is thus devoid of the
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handoff delays shown in Table 6.2. Intuitively, if this LVAP-handoff is performed fast enough, the

impact on a client’s active data flows should be minimal. This experiment is aimed at validating

this claim. We use a static IP for the client and open authentication in this experiment, thus

avoiding delays caused by DHCP and authentication. This gives us a lower bound for the delays

involved in handoffs. The experiment is repeated 10 times and the results averaged.

Experiment description: We use the same AP setup as in the previous experiment, but

we operate the APs within the 5Ghz band, which in our testbed environment, is not as noisy

as the 2.4Ghz band. This allows us to compare the effect of a regular 802.11 handoff and an

LVAP-handoff on a client’s throughput, with a lesser degree of perturbation from channel noise.

The client used for this setup is of the same specification as the APs (described in Section 6.1).

The client first connects to one AP, and initiates an HTTP download using the wget utility. We

use HTTP traffic since it is a common client activity. It is then made to handoff after 13 seconds

to another AP. When performing a regular 802.11 handoff, the client is made to explicitly re-

associate using the iw command. When using Odin, an LVAP-handoff is performed instead.

We then observe the client’s HTTP flow using a tcpdump trace, and extract its throughput over

one second intervals using tshark. The client uses a static IP and open authentication, which

means the delay is purely caused by a layer 2 change in case of regular 802.11. The AP and the

client use a fixed bit-rate of 54 MBit/sec. Note that in Odin, the LVAP-handoff does not trigger

layer 3 or layer 2 messages.

Discussion: Figure 6.2 shows the throughput over time when using a regular 802.11 setup

and having a handoff performed during a download session. We observe that the throughput

drops to zero for up to 4 seconds before recovering. Note that in the presence of DHCP,

and 802.1X authentication, this delay would be much larger. Figure 6.3 describes the same

experiment performed with Odin and LVAP-handoffs instead of regular handoffs. We can see

that the throughput curve is uninterrupted in spite of the LVAP-handoff. However, Figure 6.3

indicates an overall reduction of throughput (close to 5Mbit/sec) as opposed to that in Figure 6.2.

This is because we are using userspace Click to run the Odin agents, leading to slower and jittery

forwarding performance on our AP hardware. This forces the client’s TCP connection (used for

the HTTP download) to throttle down. However, this is orthogonal to maintaining layer 2 and

3 connectivity in spite of performing a handoff, which Odin does achieve.

41



 0

 5

 10

 15

 20

 25

 30

 35

 40

T
h

ro
u

g
h

p
u

t 
 (

M
b

it
/s

e
c
)

Time (seconds)

Throughput versus time for normal handoff experiment (wget)

Normal handoff

Figure 6.2: Effect of a regular 802.11 handoff without authentication or DHCP on the throughput
of a file download over HTTP. There is a period of disconnectivity of up to 4 seconds when such
a handoff is made.

6.2.3 LVAP Handoff Micro-Benchmark

Objective: As shown in the previous experiment (Section 6.2.2), a single LVAP-handoff has

a negligible impact on a client’s download throughput. Since LVAP-handoffs are an important

aspect of an Odin, it is important to understand how frequently they can be executed by Odin

applications without negatively impacting a client’s data flow. This experiment is aimed at

observing this.

Experiment description: The same setup as the previous experiment (Section 6.2.2) is

used, but an iperf based TCP session is executed with the client as the source. The duration

of the experiment is 30 seconds, with handoffs being performed repeatedly between the 5th

and 25th seconds at a fixed interval. We decrease the interval to observe how the throughput

decreases. As with the previous experiment, we use the tcpdump and tshark utilities to measure

the throughput at the client. The experiment is repeated 10 times, and the results averaged.

Discussion: The results of the experiment are shown in Figure 6.4. We observe that in

spite of performing an LVAP migration every 100 ms, there is no significant degradation of

throughput. Note that it is unrealistic for a network service to have to handoff a client at such

a frequency, but serves to validate the inexpensive nature of the LVAP migration.
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Figure 6.3: Effect of an Odin LVAP-handoff on the throughput of a file download over HTTP.
There is no throughput degradation caused by performing a handoff.

6.3 Odin Agent Performance Evaluation

We will now evaluate the CPU and memory overhead on the Odin agent when hosting

LVAPs. We observe these metrics on the agent in the presence of passive clients, which are

clients that are assigned LVAPs but do not associate with the network, and with active clients,

which are clients that do associate with their LVAPs and generate data flows.

6.3.1 Agent Overhead: With Passive Clients

Objective: In this experiment, we observe the CPU and memory overhead on an agent with

hosting LVAPs. By conducting the experiment in a regular office setting, we can understand

whether an Odin agent can operate with reasonable performance.

Experiment description: A single AP on the 16th floor of the TEL building within the

TU-Berlin campus is used for this experiment (Section 6.1). The AP is set to operate on channel

6 of the 2.4Ghz band, which is the most noisy channel in our environment. The AP runs an

agent, which connects to the controller node. The specifications of the AP and the controller

are the same as in Section 6.1. The agent is left active for a period of 250 seconds. During

the 130th second, the master begins pushing subscriptions to the agent every second. Each
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Figure 6.4: Average throughput achieved in the presence of continuous Odin LVAP-handoffs at
fixed intervals. The throughput degradation is negligible.

subscription matches against every frame received by the agent. Up to the 130th second, we

can observe the baseline performance at the agent when only adding LVAPs without connecting

clients. From that point onwards, we can see the effect of the agent triggering an increasing

number subscriptions against frames generated by stations in a noisy channel. The CPU and

memory overhead at the agent is measured using the top utility. The experiment is repeated 10

times, and the results averaged.

Discussion: During the experiment, we used the agent’s statistics collection feature to

observe the number of stations. The average number of observed stations across all experiments

was 82. Figure 6.5 shows the CPU utilisation over time on the AP running the agent. Up to

the 130th second, adding of LVAPs have no effect on CPU utilisation. Once the subscriptions

are added every second that match against every frame (130th second onwards), we can see

that the CPU overhead increases linearly. This is because in its current implementation, the

subscriptions are stored as a linked list on the agent, and the entire list is traversed for every

frame received. We plan to improve this by using a data structure like an R-tree [69] or a Kd-

tree [70] which are more effective for content based subscription matching. Figure 6.6 shows the

memory utilisation over time for the same experiment. As mentioned in Section 5.3, the memory

overhead associated with each LVAP is a worst case of 48 bytes along with overheads associated

with Click’s hash table implementation, and other data types used in the LVAP struct (like the
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Figure 6.5: CPU overhead versus time for an agent running in a channel with an average of 82
transmitting stations. Note that when there are no subscriptions to match against, there is no
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Figure 6.6: Memory overhead versus time for an agent running in a channel with a high number
of stations (on the order of 82). As mentioned in Section 5.3, the memory overhead associated
with each LVAP is little (worst case of 48 bytes + data type overheads). This is reflected in the
curve.
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timestamp and EtherAddress types).

6.3.2 Agent Overhead: With Active Clients

Objective: In this experiment, we observe the CPU and memory overhead on an agent

with hosting LVAPs in the presence of active clients. This will help us understand the overheads

associated with connected clients that transmit data.

Experiment description: The same setup as the previous experiment is used (Sec-

tion 6.3.1), except that the single AP is switched to channel 48 in the 5Ghz band. Since

this channel has only a few other stations in our testbed (on the order of 10), it will allow us

to exclusively observe the agent overhead associated with active clients that are transmitting

data. The clients used for the setup are two nodes that are of the same specification as the

APs (Section 6.1). The two clients are made to connect to the AP one after the other over a

spacing of 20 seconds. The clients begin a large file download over HTTP using wget as soon

as they associate successfully. At the 130th second, a dummy Odin application begins pushing

a subscription per second that matches against every frame received by the AP. The CPU and

memory overhead is measured using the top utility. The experiment is repeated 10 times, and

the results averaged.

Discussion: Figure 6.7 illustrates the CPU utilisation over time with transmitting clients

on the AP. The CPU utilisation increases by 6% for every HTTP download being handled

(initiated by two different clients) since the agent is processing flows. As already seen in the

previous experiment (Section 6.3.1), the increase in processing overhead with the number of

subscriptions is linear because of the growing linked list of subscriptions being traversed for

every frame received. Figure 6.8 shows the memory overhead during the same experiment. The

number of LVAPs being hosted is low, and the memory utilisation only increases negligibly with

each subscription added to the agent.

6.4 Odin Master Performance Evaluation

In the following experiments, we will explore the overhead associated with running the Odin

master under different workloads. The metrics we will be using for this evaluation are the CPU
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Figure 6.7: CPU overhead versus time on a single AP with two active clients. The jump in
CPU utilisation by about 6% per at the 40th and 60th seconds are due to the clients initiating
the HTTP downloads. As already observed in the previous experiment (Section 6.3.1), the
processing overhead due to subscriptions increases linearly with the number of subscriptions.
The load tails off at the end because of the downloads being completed.
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Figure 6.8: Memory overhead versus time on a single AP with two active clients. Since the
number of LVAPs being hosted is less, the memory increase over time is negligible, and only
increases marginally with the number of subscriptions added.
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and memory overheads at the master, and the control traffic generated in the network (as a

result of both Odin and OpenFlow messages).

Experimental Setup: The testbed for this evaluation comprises 6 APs distributed across

the 15th and 15th floors of the T-Labs building, and a server to run the OpenFlow controller

(see Section 6.1).

6.4.1 Master Overhead: No Applications, No Clients

Objective: This experiment aims to observe the CPU, memory, and control traffic over-

heads that result from the master having to maintain connections and state to a set of Odin

agents. The APs are operated in the 5Ghz channel, and the master does not assign any LVAPs,

nor run any applications. This eliminates all Odin control traffic with the exception of PING

messages from the agents. Through this experiment, we will get an indication of the baseline

overhead associated with running an Odin setup.

Experiment description: In this experiment, we launch the Odin master, and spawn one

agent at a time on the APs over an interval of 10 seconds, starting from the 10th second. There

are no applications running on the master, implying that there will be no event subscriptions or

statistics queries being executed. Furthermore, the APs are made to operate in the 5Ghz channel

which has very little wireless activity so as to not introduce control messages from client scans

and data frame transmissions. This setup will indicate the CPU, memory, and control traffic

overheads at the master with maintaining connections to each agent. As with the experiments in

Section 6.3, we measure the CPU and memory overhead using the top utility, and control traffic

overhead using tcpdump and tshark. The experiment is repeated 10 times, and the results are

averaged.

Discussion: Figure 6.9 shows the CPU utilisation over time for the controller (and master).

After the initial bootstrap period, the CPU utilisation is minimal (less than 10%). The small

spikes that are visible at the 40th, 52nd and 67th seconds are due to agent joins and Floodlight’s

StaticFlowPusher component periodically pushing flows onto the Open vSwitch instances.

Figure 6.10 indicates the memory utilisation during the same period. Floodlight’s use of memory

grows up to an average of 140MB during bootstrap before remaining stable. The addition of

each agent has a negligible affect on memory consumption. Lastly, Figure 6.11 indicates the
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Figure 6.9: CPU utilisation of the master during startup, and synchronisation with each agent.
The startup period includes the time it takes for Floodlight to bootstrap, and accept connections
from Open vSwitch instances. Agent joins (through the agents’ PING command), are distributed
between the 10th and 80th seconds as can be seen from the small spikes.
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Figure 6.10: Memory utilisation at the master over time. The memory increases during startup
as Floodlight instantiates its different components including the master itself, then stabilises at
140Mb.
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Figure 6.11: Control traffic overhead versus time. This includes the OpenFlow messages ex-
changed between the controller and the switches, and the protocol messages between the master
and the agents. The average value is 3KB/sec in a 6-AP testbed.

control traffic overhead for the system over time. The control traffic includes the OpenFlow

messages exchanged between the controller and the Open vSwitch instances on the APs, and

the Odin protocol messages exchanged between the master and the agents. The curve indicates

an average overhead of 3KB/sec, with periodic spikes which are due to OpenFlow messages.

The only Odin protocol messages that contribute to this curve are the PING messages from the

agents to the master.

6.4.2 Master Overhead: With Applications, Passive Clients

Objective: The aim of this experiment is to observe the additional overhead at the master

when assigning LVAPs, and handling a synthetic Odin application. The Odin application pushes

a subscription to all the agents every second. The subscription matches against any frame

received by an agent. With this setup, we can observe the CPU, memory, and control traffic

overhead at the master in an environment with many stations that do not connect to the network.

Experiment description: In this experiment, we launch the Odin master, and spawn

one agent at a time on the access points every 40 seconds, starting from the 40th second. The

APs operate within channel 6 of the 2.4Ghz band, which is the most noisy channel within our

50



 0

 20

 40

 60

 80

 100

 50  100  150  200  250  300

C
P

U
 U

ti
lis

a
ti
o

n
 (

%
)

Time (seconds)

CPU utilisation versus time for 6-Agent baseline experiment, with applications, passive clients

CPU utilisation

Figure 6.12: CPU utilisation of the master during startup, and synchronisation with each agent.
The load on the master increases as the number of agents and the corresponding number of
subscriptions increase. The subscription notifications in this experiment are generated by non-
associated clients.

lab’s environment. The number of unique transmitting stations within this channel is on the

order of 250 (across the APS on the 15th and 16th floors of our testbed building, described in

Section 6.1). We observe this through the statistics collection mechanism of the agents. Odin

is run in open access mode, where any station will be assigned an LVAP if it performs a scan.

A dummy application runs on the master. The application starts when the master boots, and

adds a subscription ["*", "signal", GREATER THAN, 0] every second. This subscription will

match against any frame received by the agents. Furthermore, If the application has been

running for T seconds, every active agent will have T such subscriptions to match every packet

against. Ultimately, each frame received by the agent will trigger T subscriptions. This scenario

is unrealistic in terms of the number of subscriptions, and in the fact that the subscription

matches against any frame. However, it serves to observe the limits of Odin’s implementation.

Discussion: Figure 6.12 represents the CPU utilisation over time during this experiment.

As can be seen, the processing load on the master increases over time because of the application

adding a subscription per second, which matches against frames sent by any of the 250 plus

stations in the environment, leading to a burst of PUBLISH messages from each agent. With the

addition of each agent, the control traffic to be handled by the master increases proportionally.

The master server’s CPU is a QEMU virtual CPU, which has three stepping states (see Sec-
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Figure 6.13: Memory utilisation at the master over time. The memory increases during startup
as Floodlight instantiates its different components including the master itself. The memory
usage does not increase significantly with the increase in number of agents.
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Figure 6.14: Control traffic overhead versus time. This includes the OpenFlow messages ex-
changed between the controller and the switches, and the protocol messages between the master
and the agents. Every frame received in the experiment by an agent matches a subscription.
Thus the number of notifications sent to the master by each agent increases with the number of
subscriptions added, and increases proportionally with each additional agent. The increase in
number of subscriptions at the agent eventually leads to more processing overhead for the agent,
and thus the rate of control traffic generated by each agent degrades (the trend is increasingly
evident with each additional agent).
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tion 6.1). As can be seen in the graph, the server’s CPU is pushed to the highest frequency

state, and becomes stable at 85%. Figure 6.13 represents the memory utilisation of the master,

which increases slowly over time with the number of agents joining the system, and the number

of clients that are tracked at the master.

Figure 6.14 represents the control traffic overhead observed at the master over time. The

curve’s trend can be explained as follows. Each agent handles an increasing number of subscrip-

tions per second, leading to more control traffic being generated per frame received. With each

additional agent joining, the overhead increases proportionally. However, as the number of sub-

scriptions to be match a packet against increases, the load on the agent increases as well. This

is because the agent’s implementation stores the subscriptions as a linked list, which is better

suited for smaller numbers of subscriptions. The degradation in the agent’s performance can be

observed by the decreasing rate of control traffic (from around the 150th second, indicating that

each agent on our hardware can perform well up to 150 subscriptions in the presence of passive

clients). As mentioned earlier, the agent’s matching of subscriptions can be improved further

with data structures like R-trees or Kd-trees.

6.4.3 Master Overhead: With Active Clients

Objective: When the master assigns an LVAP to a client, it installs the appropriate

OpenFlow based forwarding rules on the corresponding physical AP. Once this flow entry is

installed, the switch handles all the data forwarding for the client without the intervention

of the master (unless of course, an Odin application requires certain packets of a flow to be

forwarded to the controller). By not making the master handle every packet of each flow, the

system works around a potential bottleneck at the master. The objective of this experiment is

to validate this behaviour.

Experiment description: The same 6-AP testbed is used as the previous experiment (see

Section 6.1 for the specifications). There is no application requesting any subscriptions. The

APs operate in 5Ghz band which has only on the order of 10 clients present. This will minimise

the control traffic generated from probe scans and client connection attempts. As part of the

experiment, two clients are made to connect to the same AP and start an HTTP download using

wget. An AP is launched every two seconds, starting 20 seconds after the master boots. As

with the previous experiments, CPU and memory overhead is measured using top command,
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Figure 6.15: CPU overhead versus time at the master in the presence of only active clients
and no applications. There is no additional overhead created at the master when there are no
subscriptions requested by any application and the clients are transmitting data flows. This is
because data flows are handled entirely at the agent.

and control traffic overhead is measured using tcpdump and tshark.

Discussion: Figure 6.15 represents the CPU utilisation at the master during the course

of the experiment. As can be seen from curve, there is no increase in overhead when the

clients begin transmitting after the 50th second. Figure 6.16 indicates the memory utilisation

which, like in previous experiments, remains stable. Lastly, Figure 6.17 shows the control

traffic overhead measured at the master. The periodic spikes are caused by OpenFlow messages

exchanged between the controller and the switch, which include HELLOmessages, and Floodlight’s

forwarding application which keeps routes on the switches up to date.

6.4.4 Master Overhead: Mobility Manager Application

Objective: In this section, we observe the performance overhead of an example reactive

mobility manager application that runs on Odin. The code for the application is described in

Appendix A.1 and Section 5.7.1. Note that the effectiveness of the application follows partly

from the smooth handoff capability that was evaluated in Section 6.2. The other aspect is the

accuracy of the metric used by the application to detect mobility of a client device. We do not

evaluate the latter as it is outside the scope of this thesis.
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Figure 6.16: Memory utilisation versus time at the master when there are only active clients
in the network and no applications. The master does not consume more memory since it does
keep track of any state with regards to data flows.
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Figure 6.17: Control traffic overhead versus time at the master when there are only active
clients in the network and no application. Except for periodic spikes resulting from Floodlight’s
Forwarding application and StaticFlowPusher component, there is no continuous flow of control
traffic generated by the agent when it is handling data flows without any subscriptions to match.
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Figure 6.18: CPU overhead on the master versus time from running a mobility manager appli-
cation. The load increases as the mobility manager has to track more LVAPs, and the agents
trigger more subscriptions.

Experiment description: In this experiment, the same 6-AP testbed is used that is

described in Section 6.1. The master is run with the mobility manager application. The APs

are configured to run on channel 6 in the 2.4Ghz band, which is a noisy wireless channel in

our testbed environment. Since there are many transmitting stations, this causes as many

LVAPs to be assigned. The mobility manager does not distinguish between active or passive

clients, and performs LVAP migrations based on receiver signal strength. This helps us simulate

the load created by a mobility manager handling on the order of 250 clients (as observed in

our testbed environment through our agent’s statistics collection mechanism). The CPU and

memory utilisation is measured using the top utility. Control traffic overhead is measured using

tcpdump and tshark. The experiment is repeated 10 times, and the results averaged.

Discussion: Figure 6.18 shows the CPU load on the master over time. Once the master and

the agents have fully booted, the system begins detecting probe scans from different stations.

This leads to LVAPs being assigned. The subscription pushed down by the mobility manager

also gets triggered at the agents by different stations, causing the mobility manager’s handler

to be invoked more often. This leads to the increased CPU usage over time (oscillating between

60% and 80%). Figure 6.19 indicates the memory utilisation over time during the experiment.

The increase in memory consumption with time is a result of the information being collected
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Figure 6.19: Memory utilisation of the master versus time from running a mobility manager
application. The memory utilisation increases with time as the application tracks the signal
strengths of an increasing number of clients.
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Figure 6.20: Control traffic overhead versus time from running a mobility manager application.
The control traffic increases as the system tracks an increasing number of clients, and then
stabilises once all of them have been tracked.
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by the mobility manager. It maintains a map where it keeps track of the signal strength of

the client as observed by the agent that is hosting the client’s LVAP. As more stations are

detected by the system, more entries are added to the map. Lastly, Figure 6.20 indicates the

control traffic overhead observed at the master versus time. The number of subscriptions being

triggered increase with each agent booting, leading to the increasing trend of the curve between

the 25th and 55th seconds. Once all six agents are running, the control traffic remains stable

around 180 KB/sec.
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7Conclusions
The software defined networking approach to orchestrating networks is picking up momen-

tum. By using open interfaces and protocols to programmatically control network elements, it

is becoming easier to introduce new functionalities to a network, without being constrained by

vendor lock-in. In this thesis, we consider the specific case of introducing programmability to

enterprise WLANs. Through the Odin software defined networking framework, we have demon-

strated that by using a set of abstractions, it is possible to express common enterprise WLAN

services as network applications. This property avoids the need for large, monolithic systems

that are difficult to extend. It empowers the network operator with flexibility, as opposed to

being restricted by proprietary and closed-source platforms.

7.1 Discussion

This thesis explores the idea of flexible enterprise WLAN architectures wherein network

services can be expressed as applications. Using this approach, it is easier to introduce new

features and functionalities into such networks. We have taken a step forward in this direction

by using the design outlined in Chapter 4. By virtualising the association state of the AP, and

introducing the concept of LVAPs, we have provided the network application developer with a

simplified programming model. The programmer does not need to keep track of the association

state machines at the client and authoriser. This has been achieved without any client side

hardware or software modifications. The design allows for developing network applications

according to both proactive and reactive programming models. The ideas described are validated

through an implementation described in Chapter 5. A performance evaluation of the system

(Chapter 6) demonstrates the practicality of the system within the context of an enterprise

WLAN setting at T-Labs. It has been tested on a live network using real clients and access

points.



7.2 On-going Work and Future Directions

There are many possible extensions for Odin. We are currently implementing support for

WPA2 Enterprise and guest authentication. We are also investigating policy based network

management using Odin, where a policy can be expressed using a domain specific language

(DSL), which can be translated into a set of Odin applications. We are also exploring other

applications that can be built using Odin, integration with DHCP, dynamic channel reconfigu-

rations, and physical layer virtualisation by slicing the air interface. Another extension would

be to integrate Odin agents with different measurement tools, so as to facilitate techniques like

hidden terminal mitigation. Lastly, we are also considering Odin within the context of home

network management.
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AAppendix
A.1 Example Reactive Mobility Manager



pub l i c c l a s s OdinMobilityManager extends OdinAppl icat ion {

pr i va t e ConcurrentMap<MACAddress , Long> c l i entCurrentS igna lMap = new
ConcurrentHashMap<MACAddress , Long> ( ) ;

. . .

. . .
/∗ r e g i s t e r s ub s c r i p t i on [ ”∗” , ” s i g n a l ” , >, 200 ] ∗/
. . .
. . .

p r i v a t e void handler ( OdinEventSubscr ipt ion oes ,
Not i f i c a t i onCa l lbackContex t cntx ) {

/∗ Check to see i f t h i s i s an a s s o c i a t ed c l i e n t ∗/
OdinClient c l i e n t = odinMaster . g e tC l i e n t s ( ) . get ( cntx . staHwAddress ) ;
i f ( c l i e n t != nu l l ) {

/∗ The agent that t r i g g e r e d t h i s handler i s the one
∗ hos t ing the c l i e n t ’ s LVAP ∗/
i f ( c l i e n t . getOdinAgent ( ) != nu l l

&& c l i e n t . getOdinAgent ( ) . getIpAddress ( )
== cntx . agent . getIpAddress ( ) ) {

c l i entCurrentS igna lMap . put ( cntx . staHwAddress , cntx . va lue ) ;
}
/∗ The sub s c r i p t i on was t r i g g e r e d at an agent other than the

c l i e n t ’ s LVAP. I f the s i g n a l s t r ength i s 10 un i t s h igher
at the new agent than at the c l i e n t ’ s cur r ent one , then
perform an LVAP handof f ∗/

e l s e i f ( ( c l i e n t . getOdinAgent ( ) == nu l l )
| | ( c l i e n t . getOdinAgent ( ) . getIpAddress ( )

!= cntx . agent . getIpAddress ( )
&& cl ientCurrentS igna lMap . get ( cntx . staHwAddress )

+ 10 < cntx . va lue ) ) {

odinMaster . handoffClientToAp ( cntx . staHwAddress ,
cntx . agent . getIpAddress ( ) ) ;

c l i entCurrentS igna lMap . put ( cntx . staHwAddress , cntx . va lue ) ;
}

}
}

Figure A.1: Java code for a simple reactive mobility manager. The application LVAP-handoffs
the client to the AP where the client has the best received signal strength.
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