
Self-configuration Mechanisms for SDN Deployment
in Wireless Mesh Networks

Mohamed Labraoui1,2, Michael Boc1, Anne Fladenmuller2
1CEA, LIST, Communicating Systems Laboratory 2Laboratoire d’Informatique de Paris 6 (LIP6/CNRS)

Commissariat l’Energie Atomique (CEA) Université Pierre et Marie Curie-Paris VI
F-91191 Gif-sur-Yvette CEDEX, France 4 Place Jussieu, 75005 Paris, France

{mohamed.labraoui,michael.boc}@cea.fr, anne.fladenmuller@lip6.fr

Abstract—Software-Defined Networking (SDN) is a frame-
work conceived to make network infrastructures more pro-
grammable and more easily manageable. We explore the integra-
tion of the latter in Wireless Mesh Networks (WMNs) through
the design of an opportunistic and self-configurable SDN solution.
Opportunistic to be able to cope with the intermittent connectivity
and network partitioning and merging scenarios caused by the
dynamic nature of the wireless medium; and self-configurable
to be able to redirect dynamically SDN-enabled Wireless Mesh
Routers (WMRs) to the most suitable SDN controller. This paper
proposes mechanisms allowing to make automatic an SDN-based
WMN deployment. Our proposed solution enables (1) for each
WMR to discover the reachable SDN controllers, then to select
and connect by itself to the most suitable one; (2) the setting
up of new SDN controller(s) among the WMRs in case of
controllers unavailability. We validated our work using NEON,
an SDN solution developed by CEA LIST that supports fast
devices configuration and services deployment in dynamic and
unconfigured infrastructures contexts.

Keywords—Software-Defined Network, Wireless Mesh Network,
self-discovery, auto-configuration, bootstrapping, SDN deployment.

I. INTRODUCTION & CONTRIBUTION
The integration of an SDN [1] solution into a WMN [2]

involves a certain number of prerequisites: it is necessary to
plan ahead the SDN controller location and to set up each
WMN device (mesh router) to establish the connection to the
SDN controller. If now, the SDN controller has to be relocated
(due to network topology modification for instance), all WMN
devices have to be reconfigured. Besides, due to the unstable
nature of WMNs (the wireless medium can cause intermit-
tent connectivity, interference, asymmetric communications, to
name a few) the SDN controller can often be unreachable
preventing normal operations.

Despite the significant progress accomplished on the re-
liability and scalability aspects in the field of distributed
SDN control plane architectures, there are very few works
focusing on the deployment-related challenges in dynamic
environments. Indeed, while some of those solutions assume
(in particular during the "master controller" election phases)
that communications between the different SDN controllers
are stable [3], others require an initial configuration and/or an
additional component such as a DHCP server [4] [5]. Insofar
as these two solutions classes are only effective within stable
mediums (in terms of communications quality), they are not
suitable for WMNs.

In this paper, we propose mechanisms to achieve a fully

Fig. 1: Network Architecture Scenario

automated and reliable deployment solution for SDN-based
WMN architectures:

• A mechanism to allow WMRs (Wireless Mesh
Routers) to discover SDN controllers present in the
network.

• A solution to elect the master controller in a scenario
with multiple concurrent SDN controllers. The solu-
tion considers their potential heterogeneous natures (in
terms of computational capabilities), this aspect has a
significant impact on the network scalability.

• A mechanism to set up an SDN controller on the
fly among the WMRs when necessary (in case of
controllers unavailability). The WMRs will be able to
manage themselves, creating hence an opportunistic
SDN-based wireless mesh network.

To address these challenges, we used NEON [6], an SDN
framework for dynamic networks. NEON was developed by
CEA LIST and aims at enabling fast devices configuration and
services deployment - within seconds - in dynamic and uncon-
figured infrastructure contexts. NEON has also the capacity
to control the configuration of other local applications and
libraries such as Open vSwitch (OpenFlow [7] application).
At the base defined as an SDN southbound protocol API,
we enhanced NEON in such a way to integrate also its own
SDN controller as well as a set of services. In our network
architecture scenario (Figure 1), each device is equipped with978-1-5386-2723-5/17/$31.00 c© 2017 European Union

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 13,2021 at 14:17:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of NEON SDN reference architecture NEON software.

Typically, a device equipped with NEON software (Figure
2) can have two possible working modes depending on the
status of its NEON SDN controller [7]: (i) "master mode" if
its controller has the master status, (ii) "slave mode" if its
controller has the slave status.

II. AUTOMATING SDN DEPLOYMENT
Unlike the wired networks, routing packets in the software-

defined wireless mesh networks represents a key challenge [8].
Through our previous work covering the SDN-assisted routing
in wireless mesh networks [9], our insight is that distributed
routing protocols for WMNs have been used for a long time
and are an integral part of mesh networks, nevertheless the
SDN approach provides advantages that can positively help
the distributed routing protocol operations. Consequently, in
the present deployment, a classical distributed routing protocol
(babel routing protocol in our case [10]) will guarantee the
reachability between devices, while the SDN solution ensures
all aspects of management and reliability of the network.

WMRs are configured to boot by default in slave mode,
however they are able to switch into master mode when
necessary. In contrast, an SDN controller is programmed to
be always in a master mode. The operating principle of these
two modes is detailed below:

A. Slave Mode
As shown in Figure 3, when a WMR is newly added to

the network, its default mode is set to "slave mode" (1). Then
through its local NEON-based service, it joins automatically
the mesh network, allowing it to communicate with the rest
of the network (2). Once this step achieved, it broadcasts
periodically over a given interval of time (fixed by a timeout)
messages of type "Presence Indicator" announcing its existence
(3). The same operation is carried out by all devices (i.e.
WMRs and SDN controllers) in the mesh network. And in par-
allel, a dedicated database (located in the WMR newly added)
is populated with all detected devices across the network (4-5).
If the timeout is reached (7), the WMR stops announcing its
presence as well as populating the database. At this stage, it
checks whether SDN controllers are present in the database.
There are two possible cases:

• Presence of SDN controllers in the database: the
WMR selects the most suitable controller (Section III)
and connects to it (8,11), passing hence to a "managed
status". In this status, routing rules originating from
the controller have systematically a higher priority

Device boot

Slave mode

Mesh
networking

BroadcastingCollectingDB

Timeout?

Controllers? Selecting

Better
Slaves?3

Master mode

Connection

Managed

1

2

3
45

6

7 Yes

8

Yes

NoLoop

Yes

Exist

9 No

10

11

Connected

Devices data

Fig. 3: Operating diagram of a device in slave mode

compared to those incurred by the distributed routing
protocol. In addition, a WMR in this status has also to
manage messages of type "Connection Request" from
its controller if the latter wishes to assign it to another
one. Besides, as soon as it loses the connection with
its controller, it returns to step 3.

• No SDN controllers in the database: According to the
controller election procedure defined in Section III,
the WMR compares its capabilities with those of other
slave devices. If it considers itself as the most adequate
device to become the master controller, it switches to
master mode, otherwise it returns to step 3.

B. Master Mode
The operating diagram of a device in master mode is

depicted in Figure 4. In master mode, the device (i.e. WMR or
SDN controller) ensures the WMN management. In addition,
it participates in the automatic SDN deployment using the
following procedures:

• It broadcasts periodically messages of type "Presence
Indicator" to announce its existence (2). At the same
time, it receives the same type of message from all
devices present in the same mesh network (3). This
will enable it to populate its database (4).

• It ensures the presence of a single "master controller"
in the network (5). Indeed, the WMNs are often led
to split into multiple partitions, or rather the opposite,
to merge between them. Consequently, several master
controllers might coexist managing only a subset of
the whole network. Therefore, a control plane central-
ization procedure is required. This procedure consists
in selecting, among the master controllers, the best
candidate to manage the whole network.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 13,2021 at 14:17:21 UTC from IEEE Xplore. Restrictions apply.

Master mode

Mesh
networking

BroadcastingCollectingDB

Control plane
centralization

1

2

34

5

Loop

Loop

Devices data

Fig. 4: Operating diagram of a device in master mode

III. CONTROLLER ELECTION PROCEDURE
Considering the fact that all WMRs in the network are

configured to launch NEON application at boot-up, and con-
sequently the potential of each one of them to play the role of
an SDN controller, the election process can be summarized as
a "master assignment problem" [11] [3]. A naive approach of
master-selection in a SDN-based WMN scenario with multiple
concurrent SDN controllers has already been proposed in [3].
Considering the issues incurred by the wireless mesh envi-
ronment (topology changes, links unreliability, ...), the authors
suggest that the master controller selection procedure should be
made directly at the mesh routers level. Similarly, we propose
to implement in each mesh router a mechanism that enables
it to select autonomously its own master controller. However,
our mechanism considers more additional aspects compared to
what was proposed in [3].

Indeed, one of the major characteristics of our network ar-
chitecture scenario is the heterogeneous nature of the physical
network infrastructure (in terms of hardware resources). To
the best of our knowledge, none of the existing deployment
solutions for SDN-based WMNs (with multiple concurrent
controllers) considers the case where the SDN controllers
would have highly-variable hardware characteristics. There-
fore, we can easily highlight the necessity of having a mean
through which one could classify controllers based on their
hardware capacities. This is particularly necessary considering
the fact that the aim behind the SDN solution deployment
is to ensure all aspects of management and reliability in the
network, consequently an SDN controller needs to manage
a large amount of data. From there, we will focus on the
following criteria:

A. The Controller Capacity
As mentioned above, we aim to find out an approach that

would allow routers to select the SDN controller which may
lead to the best network management capability. This latter
depends largely on the SDN controllers hardware resources
(i.e. computational capabilities) given that the NEON software
stack is the same for all. The issue is that, classifying the
controllers on the basis of their highly-variable hardware
characteristics (CPU, Number of CPU Cores and RAM) is
not an easy task in the sense that it’s impossible to consider
all scenarios and all existent technologies [12]. Moreover, the
design of a module in NEON software that analytically predicts
the controller capacity based on the hardware characteristics is
not the optimal option. In fact, if we change the current pro-

Algorithm 1: Testing SDN controller capacity
Data: N fake switches (N=16 by default)
Create N OpenFlow sessions to the controller;
for each session do

while buffer not full do
queue packet_in’s;
count flow_mod’s as they come back;

end
end
Result: average flow setup throughput (flows/s)

gramming and execution model of NEON software, the entire
performance prediction model should be updated accordingly.

In order to find another approach for controllers capacity
classification, we conducted an exhaustive experimental study
on the benchmarking methodology for SDN controllers. We
find out that the average flow setup throughput (flows/sec)
[13] is the adequate metric to reflect the SDN controller
computational performance. This metric is usually defined as
the maximum number of new flows rate that an SDN controller
can support. Obviously, the more this metric is high, the more
suitable an SDN controller is for the network management.
Therefore, we think that the controller election procedure
should be initially based on the controllers’ average flow setup
throughput estimations. In this sense, each controller S will be
characterized by its average flow setup throughput estimation,
referenced by the term Capacity(S). Consequently, using that
metric, WMRs will select the most powerful controller.

B. Integrating a Controller Testing and Analysis Module
In order that each device involved in the deployment can

inform all others of its average flow s etup t hroughput, a
controller performance analyser module has been integrated
in NEON software. This module is based on Cbench algo-
rithm [13] summarized in the Algorithm 1.

This controller testing operation is performed at each
device boot phase. Table I summarizes the parameters used
for tests. Once calculated, the average flow s etup throughput
(flows/sec) m etric i s i ncluded i n " Presence I ndicator" mes-
sages, and sent to the other devices.

TABLE I: CONTROLLER BENCHMARKING PARAMETERS

PARAMETER DESCRIPTION VALUE
Devices Number Number of fake OpenFlow devices con-

nected to the controller
50

Version OpenFlow protocol version 1.4
Test Loops Number of tests carried out 5
Test Duration (ms) Duration of each test 1000

IV. VALIDATION
The purpose is to validate the controller election procedure

which represents the key phase of the SDN deployment
architecture. The proposed metric is based on the controllers’
average flow setup throughput estimations. Therefore, it’s
important to validate that the latter is effective and allows
routers to select the most powerful SDN controller.

A. Experiment Setup
We created our network using the Common Open Research

Emulator (CORE) [14]. In order to quickly create a large
number of virtual network components (links, hosts, switches,

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 13,2021 at 14:17:21 UTC from IEEE Xplore. Restrictions apply.

routers and so on), CORE uses a virtualization technology
based on the Network Namespaces functionality in Linux
Containers (LXC). In our setup, we emulated a Wireless Mesh
Network (WMN) consisting of 8 routers (Figure 5).

Fig. 5: Validation Architecture Scenario

Considering the case where the SDN controllers would
have highly-variable hardware characteristics, we have con-
nected to the network 4 controllers running on different
hardware platforms (Laptop, Raspberry Pi and two servers). In
the table II, one can find t he h ardware c haracteristics (CPU,
Number of CPU Cores and RAM) associated to each SDN
controller. Besides, Each one of them was configured t o start
the NEON application at boot-up.

TABLE II: HARDWARE CHARACTERISTICS

Controllers 1 2 3 4
Hardware Characteristics

CPU frequency (MHz) 900 933 3312 3312
Number of CPU Cores 4 4 14 23
RAM (MBytes) 862.40 3720 18930 35580

B. Results
In the table III below, we summarize the principal results

of this validation. As already explained, the controllers testing
phase is performed at boot time at the level of each one, the
average flow setup throughput estimations are noted in the part
"NEON Evaluation" of the table. As expected, the controller
4 has been chosen by the routers given its evaluation result.

To validate this choice, we have tested the four SDN
controllers separately. For each one, the network management
capacity (i.e. the data flow rate that can be managed in the
WMN) has been evaluated. We can note that the controller
4 presents the best network performance, which confirms the
smooth operating of our controller selection procedure.

V. CONCLUSION
This paper proposes mechanisms permitting to deploy an

SDN-based WMN architecture automatically. The key target
for us was to bypass preconfiguration phases usually required.
To address this challenge we extended NEON, a light-weight
SDN software for dynamic networks developed by CEA lab.
Equipped with NEON, WMRs are able to discover the SDN
controllers present in the network and then to connect by them-
selves to the most efficient one, without any pre-configuration.

TABLE III: VALIDATION RESULTS

Controllers 1 2 3 4

NEON Evaluation
Average flow setup throughput
(flows/s)

42495 55265 94439.67 128539.30

Relative Standard Deviation (%) 6.5 1.8 2.33 4.84
Measurement of the average data flow rate treated by the WMN

Network performance (flows/s) 39123 45933 80042.21 100399.62

Besides, in case of controllers unavailability, the WMN can
manage itself by setting up SDN controllers on the fly among
the routers. In the context of this work, an SDN-based Mesh
deployment service based on the NEON capabilities has been
implemented. By using the CORE emulator, we have been
able to validate our controller selection procedure. The latter is
performed by the routers in order to select the SDN controller
leading to the best network management performances.

Acknowledgements : The work presented in this paper
is supported by the French-German project BERCOM jointly
funded by ANR and BMBF under the grant number ANR-14-
PICS-0001.

REFERENCES
[1] N. M. et al., “Openflow: enabling innovation in campus networks,” in

ACM SIGCOMM Computer Communication Review. ACM New York,
NY, USA, March 2008, pp. 69–74.

[2] I. Akyildiz and X. Wang, “A survey on wireless mesh networks,”
Communications Magazine, IEEE, vol. 43, no. 9, 2005.

[3] S. Salsano, G. Siracusano, A. Detti, C. Pisa, P. L. Ventre, and N. Blefari-
Melazzi, “Controller selection in a wireless mesh SDN under network
partitioning and merging scenarios,” CoRR, vol. abs/1406.2470, 2014.

[4] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Automatic bootstrapping of openflow networks,” in Local Metropolitan
Area Networks (LANMAN), 2013 19th IEEE Workshop on, April 2013.

[5] R. Katiyar, P. Pawar, A. Gupta, and K. Kataoka, “Auto-configuration
of sdn switches in sdn/non-sdn hybrid network,” in Proceedings of the
Asian Internet Engineering Conference, ser. AINTEC ’15. New York,
NY, USA: ACM, 2015, pp. 48–53.

[6] S. Decremps, S. Imadali, and M. Boc, “Fast deployment of services
in sdn-based networks: The case of proxy mobile {IPv6},” Procedia
Computer Science, vol. 40, pp. 100 – 107, 2014, moWNet’2014.

[7] Open Networking Fundation, “OpenFlow Specification 1.4.0.” [Online].
Available: https://www.opennetworking.org

[8] N. A. Jagadeesan and B. Krishnamachari, “Software-defined networking
paradigms in wireless networks: A survey,” ACM Comput. Surv., vol. 47,
no. 2, pp. 27:1–27:11, Nov. 2014.

[9] M. Labraoui, M. M. Boc, and A. Fladenmuller, “Software defined
networking-assisted routing in wireless mesh networks,” in 2016 Inter-
national Wireless Communications and Mobile Computing Conference
(IWCMC), Sept 2016, pp. 377–382.

[10] J. Chroboczek, “RFC6126 - The Babel Routing Protocol,” IETF, 2011.
[11] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,

“Towards an elastic distributed sdn controller,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. ACM, 2013, pp. 7–12.

[12] S. Gurun, C. Krintz, and R. Wolski, “Nwslite: A general-purpose,
nonparametric prediction utility for embedded systems,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 3, pp. 32:1–32:36, May 2008.

[13] R. SHERWOOD and K.-K. YAP, “Cbench con-
troller benchmarker,” 2010. [Online]. Available:
http://archive.openflow.org/wk/index.php/Oflops

[14] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “Core: A
real-time network emulator,” in MILCOM 2008 - 2008 IEEE Military
Communications Conference, Nov 2008, pp. 1–7.

Authorized licensed use limited to: Universiteit Antwerpen. Downloaded on October 13,2021 at 14:17:21 UTC from IEEE Xplore. Restrictions apply.

