Open Software-Defined Wireless Mesh Networks for rural communications

Periplus: An SDN OpenFlow in-band Control Plane

IEEE SA RRSA, Indian Institute of Science, Bangalore, March 2024

Eva M. Castro-Barbero, **Pedro de-las-Heras-Quirós**, Javier Simó-Reigadas, Ignacio-Prieto-Egido <u>eva.castro@urjc.es</u>, <u>pedro.delasheras@urjc.es</u> javier.simo@urjc.es, <u>ignacio.prieto@urjc.es</u>

> Escuela de Ingeniería de Fuenlabrada Universidad Rey Juan Carlos Fuenlabrada, Spain

Target Scenario

Rural areas are frequently characterized by:

- a low population density
- lower resources
- higher costs of transport and access

Main challenges for telcos are:

- high deployment costs where wired technologies are prohibitively expensive
- high maintenance costs
- lack of maintenance staff
- low income

Proposal: Sharing infrastructure through wireless technology that provides

- advanced QoS support
- robustness and resilience
- basic self-configuration
- easy centralized management

Existing technologies

TUCAN3G (a project deployed in Peru (2013-2016) by the team

- strong in QoS support
- demonstrated to be a valid alternative for operators both technically and economically
- too complex and rigid

Community networks based on distributed mesh networks

- flexible and resilient
- but lack QoS support

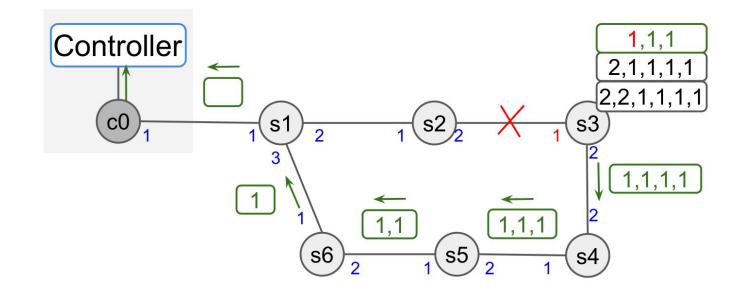
Periplus: in-band control plane

Objectives

- improved connectivity in rural areas
- support of wireless + wired infrastructure with the same control plane
- enabling advanced QoS support in the data plane
- robustness and resilience
- basic self-configuration
- easy centralized management

Periplus: in-band control plane

- Pure SDN OpenFlow in-band control plane
- Support for multiple SDN controllers
- Forwarding of packets based on Slick Packets: a subgraph is encapsulated between L2 and L3 headers with main and alternate paths
 - Robustness and responsiveness: switches react quickly to link and switch failures without requiring communication with the controller
 - Scalability: amount of OF flows stored in switches is reduced
- Multicontroller support
 - subgraphs scale O(switches of 1 controller)
- Mininet prototype, Ryu, entirely based on OpenFlow, standard Open vSwitch code


Periplus: in-band control plane

- OpenFlow + Open vSwitch both in Wired & Wireless nodes
- 802.11 adhoc mode
 - Rewriting of src & dst MAC addresses on each hop
 - Each time an 802.11 frame from a new wireless node is rcvd through the same wireless interface, a new virtual port is assigned to it

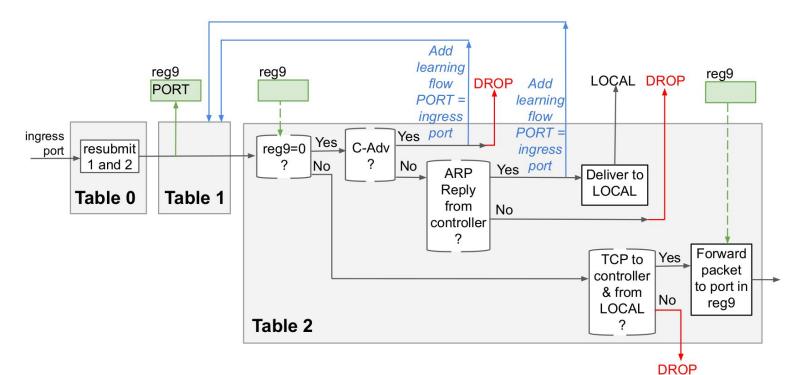
Graph forwarding (Slick Packets)

from s3 to controller (port 1 of s3 is inactive)

Path coding: NSH Header

No.	Time	Source	Destination	Protocol	Length	Info			
	39 0.363509	10.0.0.1	10.0.0.114	TCP	90	6633 -	→ 59404	[ACK]	Seq
	41 0.405460	10.0.0.113	10.0.0.1	TCP	66	38164	→ 6633	[ACK]	Sec
1	42 0.410590	10.0.0.1	10.0.0.103	OpenFl	190	Type:	OFPT_P	ACKET_	OUT
	43 0.411263	10.0.0.102	10.0.0.1	OpenFl	168	Type:	OFPT_P	ACKET_	IN
4	44.0 444.000	40.0.0.4	40 0 0 400	TOD		0000	00000	ENON3	
- Ne	twork Service Hea 00 0 0 0000 00	<pre> = Version: 0 (0x0) = 0 Bit: 0 = C Bit: 0 = Time to live: 0x00 110 = Length: 6 (0x06)) Pv4 (1) 234)</pre>	JO.00.01), JSC. C	0.00.00_0				0.33.3	
	Context Header:	00000000							
	Context Header:	0000000							
	Context Header:	0000000	200 B 10 B 10 B 10 B						
	ternet Protocol	Version 4, Src: 10.0.0.1, Dst	10.0.0.103						
In		Version 4, Src: 10.0.0.1, Dst ol Protocol, Src Port: 6633,		Seq: 1,	Ack: 1	, Len:	100		

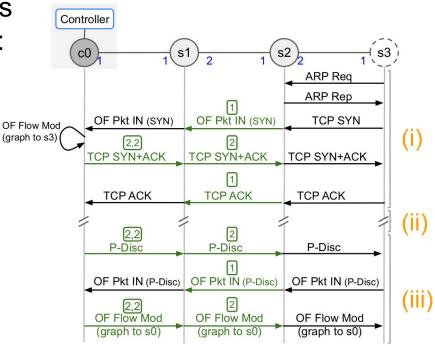
OpenFlow implementation in unmodified Open vSwitch


OF flows in a switch:

"Node: s4" field:00:00:00:00:00:01->arp_sha,pop:NXM_NX_ARP_THAE],pop:NXM_OF_ARP_TPAE],set_field:2->arp_op,encap(ethernet),pop:NXM_OF_ETH_DST [],set_field:00:00:00:00:00:01->eth_src,IN_PORT table_id=2, duration=2s, n_packets=0, n_butes=0, priority=60000,arp,dl_dst=00:00:00:00:00:00:01,arp_tpa=10.0.0.1,arp_op=1,actions=de cap(packet_type(ns=0,type=0)),push:NXM_NX_ARP_SHA[],push:NXM_NX_ARP_SHA[],push:NXM_OF_ARP_SPA[],set_field:2->arp_op,set_field:1 ->arp_spa,set_field:00:00:00:00:00:01->arp_sha,pop:NXM_OF_ARP_TPAE],pop:NXM_NX_ARP_THAE],encap(ethernet),pop:NXM_OF_ETH_DSTE].set field:00:00:00:00:00:01->eth src.IN PORT table_id=2, duration=8382s, n_packets=0, n_bytes=0, priority=39998,arp,arp_tpa=<mark>10.0.0.1</mark>04,actions=LOCAL table_id=2, duration=8382s, n_packets=48577, n_bytes=9798082, priority=39996,ip,nw_dst=10.0.0.104,actions=LOCAL table_id=2, duration=2s, n_packets=25001, n_bytes=2824320, priority=40000,ip,nw_dst=<mark>10.0.0.1,actions=push:NXM_OF_</mark>ETH_SRC[],push:N XM_OF_ETH_DST[],decap(packet_type(ns=0,type=0)),encap(nsh) <mark>set field:0x1234->nsh_spi.set field:0x2411f100->nsh_c1</mark>.set_field:0->ns h_c2.set_field:0->nsh_c3.set_field:0->nsh_c4.set_field:0->nsh_ttl.encap(nsh).set_field:0x1234->nsh_spi.set_field:0x411f1000->nsh_ c1.set_field:0->nsh_c2.set_field:0->nsh_c3.set_field:0->nsh_c4.set_field:0->nsh_ttl.encap(nsh) set_field:0x1234->nsh_spi.set_field d:0x99f10000->nsh_c1_set_field:0->nsh_c2.set_field:0->nsh_c3.set_field:0->nsh_c4.set_field:2->nsh_tt1.encap(ethernet).pop:NXM_OF_ ETH_DSTE],pop:NXM_OF_ETH_SRCE],resubmit(,0) table_id=2, duration=8382s, n_packets=0, n_butes=0, priority=39999,tcp,reg9=0,in_port=LOCAL,nw_dst=10.0.0.1,tp_dst=6633,actions=d rop table_id=2, duration=8382s, n_packets=1, n_bytes=42, priority=39999,arp,reg9=0,arp_tpa=10.0.0.104,actions=learn(table=1,hard_time out=2,priority=24999,load:NXM_OF_IN_PORTEJ->NXM_NX_REG9E0..15J),LOCAL table_id=2, duration=8382s, n_packets=24, n_bytes=2118, priority=39998,tcp,in_port=L0CAL,nw_dst=10.0.0.1,tp_dst=6633,actions=outp ut:NXM_NX_REG9[0..15]

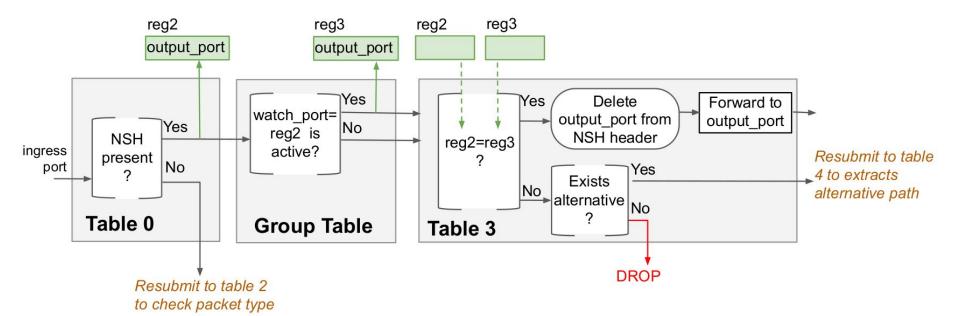
Booting Switch needs to discover controller:

Sends ARP through all ports

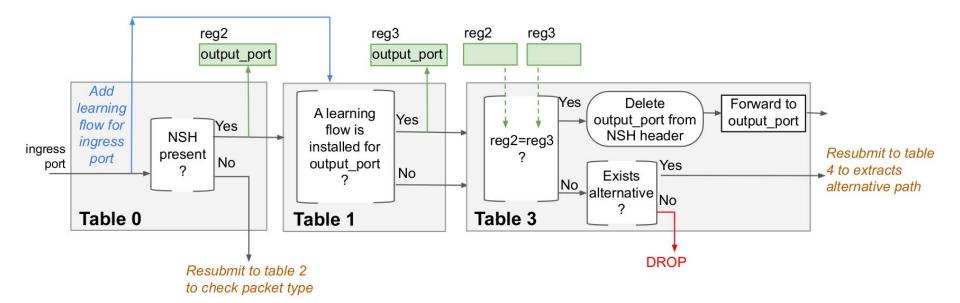

Discovers port to controller through rcvd ARP reply or through C-Adv Then sends SYN through port that leads to any controller

Bootstrap messages (s3 switch):

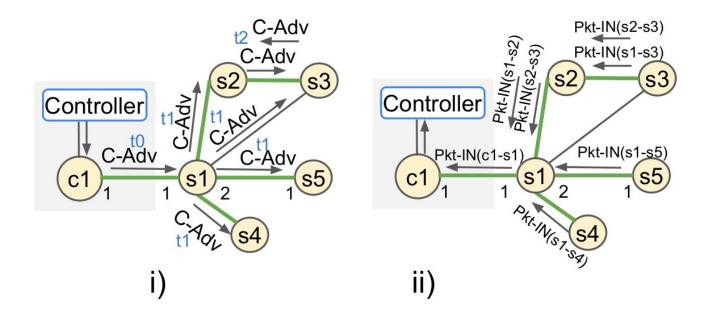
- (i) ARP req. target=controller to all ports Already MANAGED neighbor switch:
 - does Proxy ARP
- then TCP 3-way handshake
 (ii) OpenFlow session establishment
 (iii) Port discovery:


(port 1 of s3 ~ root port)

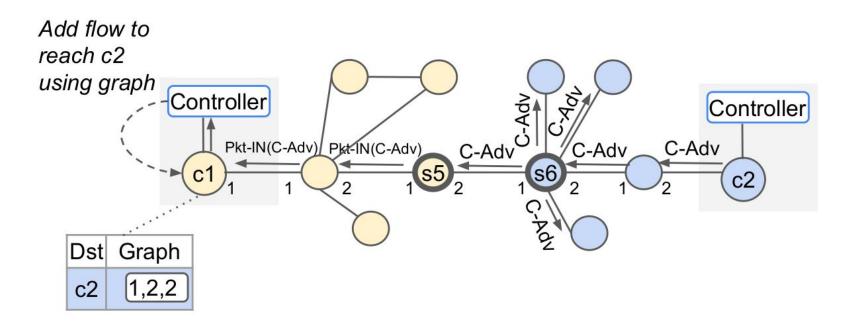
Switch s3 is MANAGED


Link/Switch fault detection:

BFD port monitoring checks if output_port is active If not: commute to alternate path in subgraph

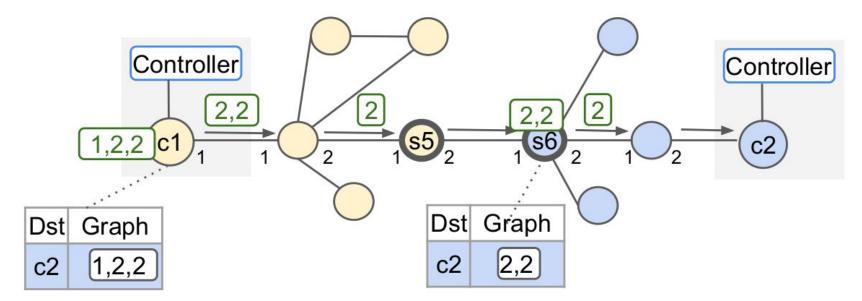

Link/Switch fault detection:

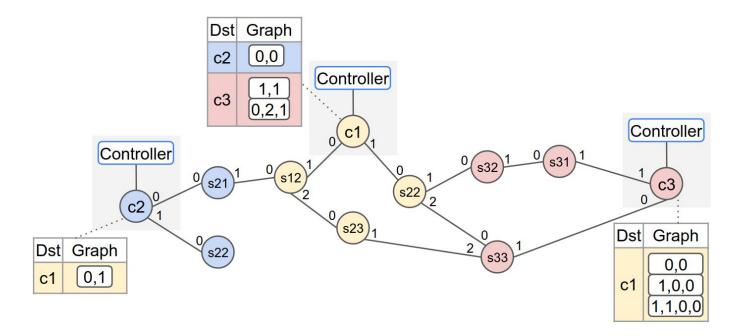
No BFD? ITD (Input traffic detection)



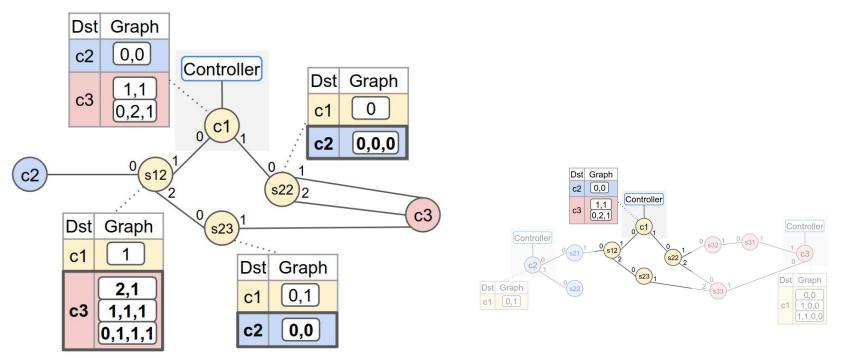
New protocol alternative to LLDP/OFDP

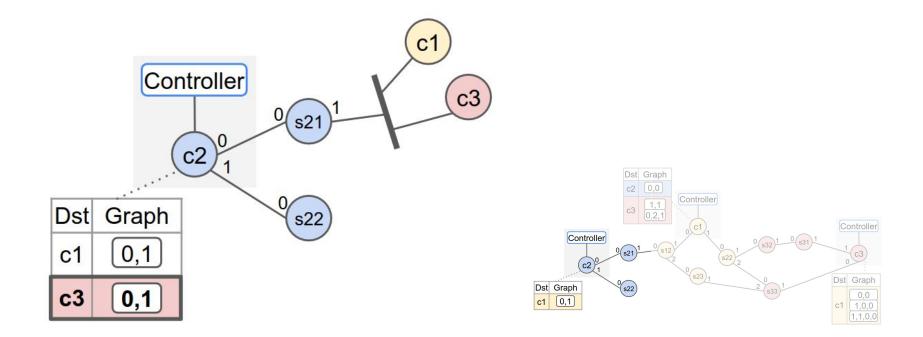
Purpose: Discovery of links not in the tree discovered in bootstrap How: controlled flooded C-Adv msgs

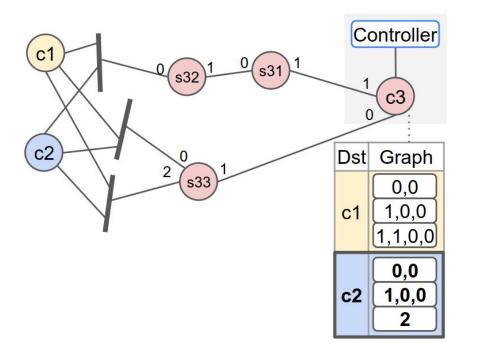

Multicontrollers: discovery of neighbor controllers

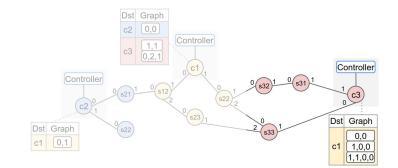

Multicontrollers: Forwarding between neighbor controllers

Scaling: size of subgraph is O(diameter of net of 1 controller)


- routing subgraph inserted by c1 only until frontier switch s5
- s6 inserts new subgraph with routes towards c2

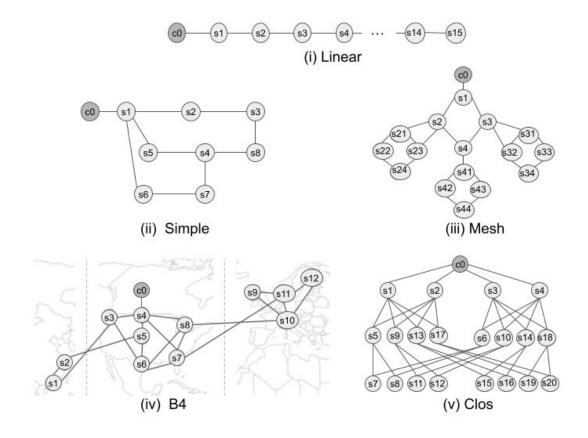

- Path vector protocol (not shown) run between c1, c2, c3
- Enables c1 & c2 to discover that they can reach each other through c1 network

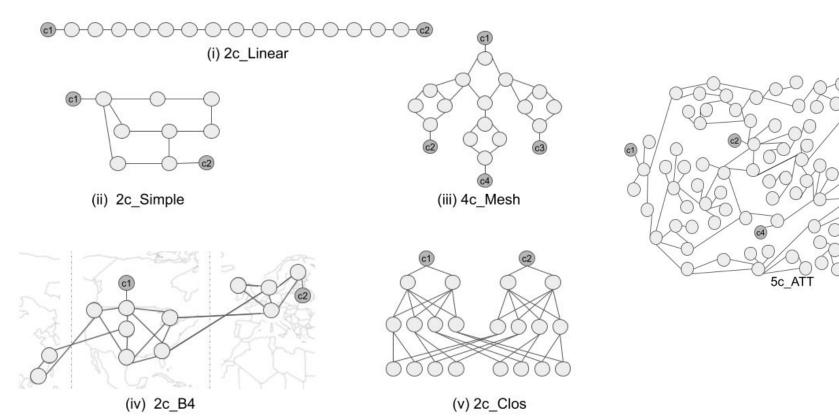

- c1 is neighbor of c2 and c3
- so it can install routing subgraphs in frontier switches s12, s23, s22
- this enables routing between $c2 \Leftrightarrow c3$



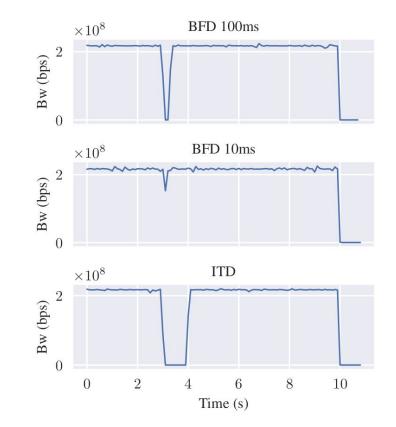
Routing subgraph from c2 to reach c1 and c3

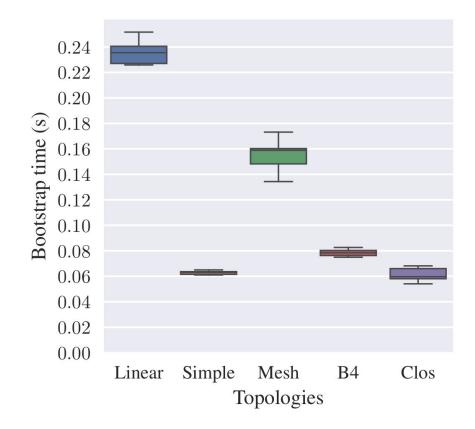
Routing subgraph from c3 to reach c1 and c2

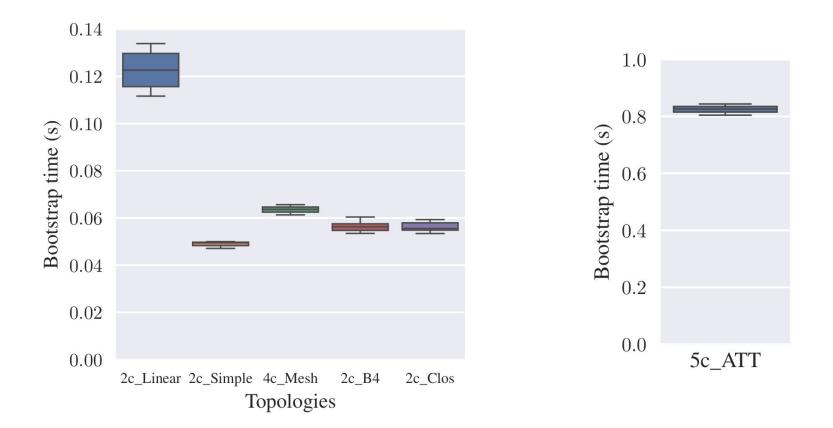



Testbed

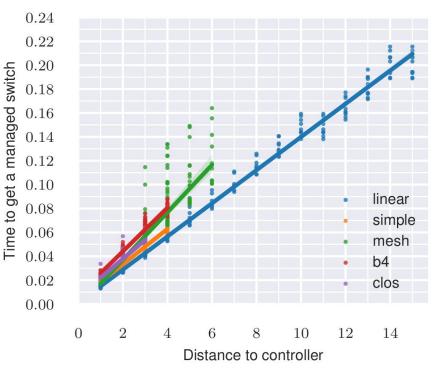
- RyU implementation of controller
- Open vSwitch
- Mininet WiFi
- TLA+ specs of protocols


Testing in topologies using one controller


Testing in topologies using multiple controllers


Throughput fall due to node/link failure.

Time until all switches MANAGED in topologies with one controller



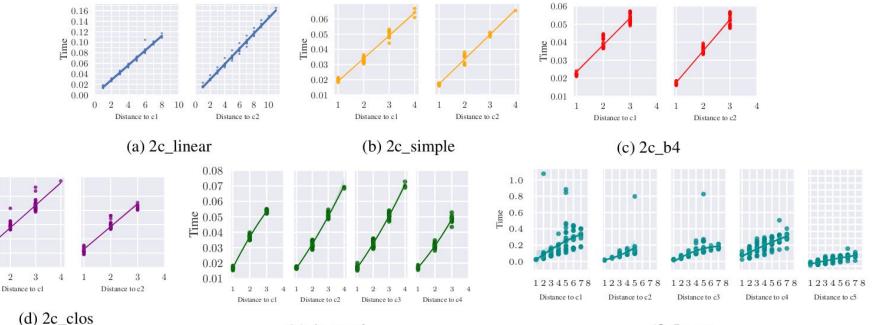
Time until all switches MANAGED in topologies with multiple controllers

Time until a switch is managed vs distance to controller

topologies with 1 controller

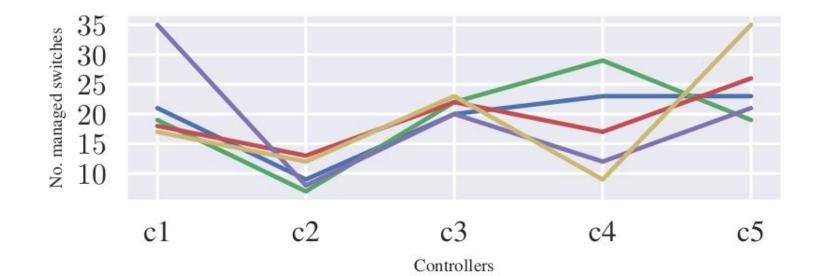
Time until each switch is MANAGED vs distance to controller

topologies with multiple controllers

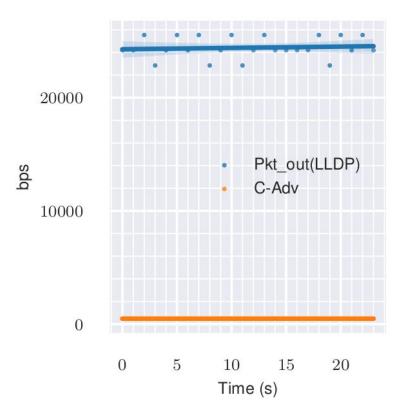

0.06

en 10.05 0.04

0.03


0.02

0.01



Number of switches per controller in 5c_ATT topology

each line is a different execution

C-Adv messages vs LLDP

