
Digital Fountains,
and Their Application to

Informed Content Delivery over
Adaptive Overlay Networks

Michael Mitzenmacher
Harvard University

The Talk
• Survey of the area

– My work, and work of others
– History, perspective
– Less on theoretical details, more on big ideas

• Start with digital fountains
– What they are
– How they work
– Simple applications

• Content delivery
– Digital fountains, and other tools

Data in the TCP/IP World
• Data is an ordered sequence of bytes

– Generally split into packets
• Typical download transaction:

– “I need the file: packets 1-100,000.”
– Sender sends packets in order (windows)
– “Packet 75 is missing, please re-send.”

• Clean semantics
– File is stored this way
– Reliability is easy
– Works for point-to-point downloads

Problem Case: Multicast

• One sender, many downloaders
– Midnight madness problem – new software
– Video-on-demand (not real time)

• Can download to each individual separately
– Doesn’t scale

• Can “broadcast”
– All users must start at the same time?
– Heterogeneous packet loss
– Heterogeneous download rates

Digital Fountain Paradigm

Stop thinking of data as an
ordered stream of bytes.

• Data is like water from a fountain
– Put out your cup, stop when the cup is full.
– You don’t care which drops of water you get.
– You don’t care what order the drops get to your

cup.

What is a Digital Fountain?

• For this talk, a digital fountain is an
ideal/paradigm for data transmission.
– Vs. the standard (TCP) paradigm: data is an

ordered finite sequence of bytes.
• Instead, with a digital fountain, a k symbol

file yields an infinite data stream; once you
have received any k symbols from this
stream, you can quickly reconstruct the
original file.

Digital Fountains for Multicast

• Packets sent from a single source along a tree.
• Everyone grabs what they can.

– Starting time does not matter – start whenever.
– Packet loss does not matter – avoids feedback explosion

of lost packets.
– Heterogeneous download rates do not matter – drop

packets at routers as needed for proper rate.
• When a user has filled their cup, they leave the

multicast session.

Digital Fountains
for Parallel Downloads

• Download from multiple sources simultaneously and
seamlessly.
– All sources fill the cup – since each fountain has an

“infinite” collection of packets, no duplicates.
– Relative fountain speeds unimportant; just need to get

enough.
– No coordination among sources necessary.

• Combine multicast and parallel downloading.
– Wireless networks, multiple stations and antennas.

Digital Fountains for
Point-to-Point Data Transmission
• TCP has problems over long-distance connections.

– Packets must be acknowledged to increase sending
window (packets in flight).

– Long round-trip time leads to slow acks, bounding
transmission window.

– Any loss increases the problem.
• Using digital fountain + TCP-friendly congestion

control can greatly speed up connections.
• Separates the “what you send” from “how much”

you send.
– Do not need to buffer for retransmission.

One-to-Many TCP
• Setting: Web server with popular files, may have

many open connections serving same file.
– Problem: has to have a separate buffer, state for each

connection to handle retransmissions.
– Limits number of connections per server.

• Instead, use a digital fountain to generate packets
useful for all connections for that file.

• Separates the “what you send” from “how much”
you send.
– Do not need to buffer for retransmission.

• Keeps TCP semantics, congestion control.

Digital fountains seem great!

But do they really exist?

How Do We Build
a Digital Fountain?

• We can construct (approximate) digital
fountains using erasure codes.
– Including Reed-Solomon, Tornado, LT,

fountain codes.
• Generally, we only come close to the ideal

of the paradigm.
– Streams not truly infinite; encoding or

decoding times; coding overhead.

Digital Fountains through
Erasure Codes

Message

Encoding

Received

Message

Encoding Algorithm

Decoding Algorithm

Transmission

n

cn

 n

n

Reed-Solomon Codes
• In theory, can produce an unlimited number of

encoding symbols, only need k to recover.
• In practice, limited by:

– Field size (usually 256 or 65,536)
– Quadratic encoding/decoding times

• These problems ameliorated by striping data.
– But raises overhead; now many more than k packets

required to recover.
• Conclusion: may be suitable for some applications,

but far from practical or theoretical goals of a
digital fountain.

Tornado Codes

• Irregular low-density parity check codes.
• Based on graphs: k input symbols lead to n

encoding symbols, using XORs.
– Sparse set of equations derived from input symbols.
– Solve received set of equations using back substitution.

• Properties:
– Graph of size n agreed on by encoder, decoder, and

stored.
– Need k(1+ε) symbols to decode, for some ε > 0.
– Encoding/decoding time proportional to n ln (1/ε).

Tornado Codes

An Example

Encoding Process

a b f! !

a b c d g! ! ! !

c e g h! ! !

b d e f g h! ! ! ! !

a

b

c

d

f

g

h

Decoding Process:
Direct Recovery

b

b g!

b e g h! ! !

a

?

c

d

f

Decoding Process:
Substitution Recovery

indicates right node has one edge

Tornado Codes: Weaknesses

• Encoding size n must be fixed ahead of time.
• Memory, encoding and decoding times

proportional to n, not k.
• Overhead factor of (1+ε).

– Hard to design around. In practice ε = 0.05.
• Conclusion: Tornado codes a dramatic step

forward, allowing good approximations to digital
fountains for many applications.

• Key problem: fixed encoding size.

Digital Fountains through
Erasure Codes : Problem

Message

Encoding

Received

Message

Encoding Algorithm

Decoding Algorithm

Transmission

n

cn

n

≥ n

Digital Fountains through
Erasure Codes : Solution

Message

Encoding

Received

Message

Encoding Algorithm

Decoding Algorithm

Transmission

n

n

≥ n

LT Codes
• Key idea: graph is implicit, rather than explicit.

– Each encoding symbol is the XOR of a random subset
of neighbors, independent of other symbols.

– Each encoding symbol carries a small header, telling
what message symbols it is the XOR of.

• No initial graph; graph derived from received
symbols.

• Properties:
– “Infinite” supply of packets possible.
– Need k +o(k) symbols to decode.
– Decoding time proportional to k ln k.
– On average, ln k time to produce an encoding symbol.

LT Codes

• Conclusion: making the graph implicit
gives us an almost ideal digital fountain.

• One remaining issue: why does average
degree need to be around ln k?
– Standard coupon collector’s problem: for each

message symbol to be hit by some equation,
need k ln k variables in the equations.

• Can remove this problem by pre-coding.

Rateless/Raptor Codes

• Pre-coding independently described by
Shokrollahi, Maymoukov.

• Rough idea:
– Expand original k message symbols to k (1+ε)

symbols using (for example) a Tornado code.
– Now use an LT code on the expanded message.
– Don’t need to recover all of the expanded

message symbols, just enough to recover
original message.

Raptor/Rateless Codes
• Properties:

– “Infinite” supply of packets possible.
– Need k(1+ε) symbols to decode, for some ε > 0.
– Decoding time proportional to k ln (1/ε).
– On average, ln (1/ε) (constant) time to produce

an encoding symbol.
– Very efficient.

Raptor codes give, in practice, a digital fountain.

Impact on Coding

• These codes are examples of low-density
parity-check (LDPC codes).

• Subsequent work: designed LDPC codes
for error-correction using these techniques.

• Recent developments: LDPC codes
approaching Shannon capacity for most
basic channels.

Putting Digital Fountains To Use
• Digital fountains are out there.

– Digital Fountain, Inc. sells them.
• Limitations to their use:

– Patent issues.
– Perceived complexity.

• Lack of reference implementation.
– What is the killer app?

Patent Issues

• Several patents / patents pending on irregular
LDPC codes, LT codes, Raptor codes by Digital
Fountain, Inc.

• Supposition: this stifles external innovation.
– Potential threat of being sued.
– Potential lack of commercial outlet for research.

• Suggestion: unpatented alternatives that lead to
good approximations of a digital fountain would be
useful.
– There is work going on in this area, but more is needed

to keep up with recent developments in rateless codes.

Perceived Complexity

• Digital fountains are now not that hard…
• …but networking people do not want to deal with

developing codes.
• A research need:

– A publicly available, easy to use, reasonably good
black box digital fountain implementation that can be
plugged in to research prototypes.

• Issue: patents.
– Legal risk suggests such a black box would need to be

based on unpatented codes.

What’s the Killer App?

• Multicast was supposed to be the killer app.
– But IP multicast was/is a disaster.
– Distribution now handled by contend

distributions companies, e.g. Akamai.
• Possibilities:

– Overlay multicast.
– Big wireless: e.g. automobiles, satellites.
– Others???

Conclusions, Part I

Stop thinking of data as an
ordered stream of bytes.

Think of data as a digital fountain.

Digital fountains are implementable
in practice with erasure codes.

A Short Breather

• We’ve covered digital fountains.
• Next up:

– Digital fountains for overlay networks.
– And other tricks!

 Pause for questions, 30 second stretch.

Overlays for Content Delivery
• A substitute for IP multicast.
• Build distribution topology out of

unicast connections (tunnels).
• Requires active participation of

end-systems.
• Native IP multicast unnecessary.
• Saves considerable bandwidth over

N * unicast solution.
• Basic paradigm easy to build

and deploy.
• Bonus:

Overlay topology can adapt to network conditions by
self-reconfiguration.

SOURCE

Limitations of Existing Schemes
• Tree-like topologies.

– Rooted in history (IP Multicast).
– Limitations:

• bandwidth decreases monotonically from the source.
• losses increase monotonically along a path.

• Does this matter in practice?
– Anecdotal and experimental evidence says yes:

• Downloads from multiple mirror sites in parallel.
• Availability of better routes.
• Peer-to-peer: Morpheus, Kazaa and Grokster.

An Illustrative Example

 1. A basic tree topology.

1

2. Harnessing the power of parallel downloads.

2

3. Incorporating collaborative transfers.

3

Our Philosophy

• Go beyond trees.
– Use additional links and bandwidth by:

• downloading from multiple peers in parallel
• taking advantage of “perpendicular” bandwidth

– Has potential to significantly speed up
downloads…

• But only effective if:
– collaboration is carefully orchestrated
– methods are amenable to frequent adaptation of

the overlay topology

Suitable Applications

• Prerequisite conditions:
– Available bandwidth between peers.
– Differences in content received by peers.
– Rich overlay topology.

• Applications
– Downloads of large, popular files.
– Video-on-demand or nearly real-time streams.
– Shared virtual environments.

Use Digital Fountains!
• Intrinsic resilience to packet loss, reordering.
• Better support for transient connections via

stateless migration, suspension.
• Peers with full content can always generate useful

symbols.
• Peers with partial content are more likely to have

content to share.

•• ButBut using a digital fountain comes at a price:
– Content is no longer an ordered stream.
– Therefore, collaboration is more difficult.

Informed Content Delivery:
Definitions and Problem Statement

• Peers A and B have working sets of symbols SA,
SB drawn from a large universe U and want to
collaborate effectively.

• Key components:
oo Summarize: Furnish a concise and useful

 sample of a working set to a peer.
oo Approximately Reconcile: Compute as many

 elements in SA - SB as possible and transmit
 them.

• Do so with minimal control messaging overhead.

Approximate Reconciliation

• Suppose summarization suggests
collaboration is worthwhile.

• Goal: compute as many elements in SA - SB

as possible, with low communication.
• Idea: we do not need all of SA - SB , just as

much as possible.
– Use Bloom filters.

Lookup Problem

• Given a set SA = {x1,x2,x3,…xn} on a
universe U, want to answer queries of the
form:

• Bloom filter provides an answer in
– “Constant” time (time to hash).
– Small amount of space.
– But with some probability of being wrong.

Bloom Filters
Start with an m bit array, filled with 0s.

Hash each item xj in S k times. If Hi(xj) = a, set B[a] = 1.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

To check if y is in S, check B at Hi(y). All k values must be 1.

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B

0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 0B
Possible to have a false positive; all k values are 1, but y is not in S.

Errors
• Assumption: We have good hash functions,

look random.
• Given m bits for filter and n elements,

choose number k of hash functions to
minimize false positives:
– Let
– Let

• As k increases, more chances to find a 0, but
more 1’s in the array.

• Find optimal at k = (ln 2)m/n by calculus.

Example

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

F
a

ls
e
 p

o
si

ti
v

e
 r

a
te

m/n = 8

Opt k = 8 ln 2 = 5.45...

Bloom Filters for Reconciliation

• B transmits a Bloom filter of its set to A; A
then sends packets from the set difference.
– All elements will be in difference: no false

negatives.
– Not all element in difference found: false pos.

• Improvements
– Compressed Bloom filters
– Approximate Reconciliation Trees

Experimental Scenarios
• Three methods for collaboration

– UninformedUninformed: A transmits symbols at random to B.
– SpeculativeSpeculative: B transmits a minwise summary to A;

 A then sends recoded symbols to B.
– ReconciledReconciled: B transmits a Bloom filter of its set to A;

 A then sends packets from the set difference.

• Overhead:

– Decoding overhead: with erasure codes, fixed 2.5%.
– Reception overhead: useless duplicate packets.
– Recoding overhead: useless recoding packets.

symbols received - symbols needed
symbols needed

Pairwise Reconciliation

Containment of B in A:
|SA ∩ SB|

|SB|

128MB file
96K input symbols

115K distinct symbols
in system initially

Four peers in parallel

128MB file
96K input symbols

105K distinct symbols
in system initially

Containment of B in A:
|SA ∩ SB|

|SB|

Four peers, periodic updates

128MB file
96K input symbols

105K distinct symbols
in system initially

Filters updated at
every 10%.

Containment of B in A:
|SA ∩ SB|

|SB|

Subsequent Work
• Maymounkov: each source sends a stream of

consecutive encoded packets.
– Possibly simplifies collaboration, with loss of

flexibility.
• Bullet (SOSP ’03):

– An implementation with our ideas, plus purposeful
distribution of different content.

• Network coding
– Nodes inside the network can compute on the input,

rather than just the endpoints.
– Potentially more powerful paradigm
– Practice?

Conclusions

• Even with ultimate routing topology optimization,
the choice of whatwhat to send is paramount to content
delivery.

• Digital fountain model ideal for fluid and
ephemeral network environments.

• Collaborations with coded content worthwhile.
• Richly connected topologies are key to harnessing

perpendicular bandwidth.
• Wanted: more algorithms for intelligent

collaboration.

