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Abstract

Recently, the mesh connected trees (MCT) network
has been proposed as a possible architecture for paral-
lel computers. MCT networks are obtained by com-
bining complete binary trees using the cross product
operation. This paper focuses on structural, embed-
ding, routing, and layout properties of the MCT net-
works. We show that MCT networks are computa-
tionally more powerful than grids and complete bi-
nary trees, and at least as powerful as meshes of trees
(MOT). Analysis of VLSI complexity shows that the
additional power is obtained without asymptotically in-
creasing the layout area with respect to the grid of at
least 3 dimensions or to the MOT of any number of
dimensions. A variation of the basic architecture with
same mazimum vertexr degree and same asymptotic
area complexity is also investigated. This variation
contains the torus as a subgraph as well as the MOT,
further increasing the computational power of the ba-
sic architecture. These results suggest that the basic
MCT network and its variant are suitable architec-
tures for a large class of masswely parallel computa-
tions.

Introduction

The Mesh Connected Trees (M CT) network is the
multidimensional cross product of complete binary
trees. It was originally presented as a parallel archi-
tecture in [2]. The major advantage offered by the
MCT architecture is that it can perform grid com-
putations with a small constant slowdown and Mesh
of Trees (MOT) computations without any slowdown.
While grids and meshes of trees are powerful architec-
tures for certain computation patterns, neither one of
these architectures is very effective in the application
domain of the other. MCT architectures and their
variants bridge this gap between grids and meshes of
trees since they are able to emulate both networks.

We use the notation MCT to refer generically to
the class of mesh connected trees networks, while we
use MCT,(N) when we refer specifically to the N'-
node r-dimensional mesh connected trees obtained as
the cross product of N-node complete binary trees.
Figure 1.(a) shows the 49-node 2-dimensional mesh
connected trees, M CTs(T7).
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Recently, several new interconnection networks
based on the product operation have been proposed.
Ganesan and Pradhan [4] introduced the product
graph obtained by combining hypercubes and de
Bruijn networks. Rosenberg [8], introduced the prod-
uct of de Bruijn graphs as a potential parallel architec-
ture and analyzed several of its computational prop-
erties. Youssef [10] defined new product networks by
combining the hypercube with various other networks
and presented general results for product networks in
terms of the properties of the factor networks.

Efe and Fernandez [2] restricted their study to
product networks whose factor graphs are all isomor-
phic. Structural and embedding properties were stud-
ied for these networks and three specific cases were
analyzed in some detail. The M CT graph was among
the cases studied, and in our knowledge the M C'T net-
work first appeared there as a potential candidate for
a parallel architecture.

An interesting property of the MCT is that the
size of the network can be increased either by increas-
ing the size of the base tree (N) or by increasing the
number of dimensions (r). While r is likely to exceed
one, for practical purposes it can be considered as con-
stant (and so shall be considered in this paper), and
the network grows by growing the size of the binary
trees. This facility for modular growth without in-
creasing the number of dimensions, and therefore the
vertex degree, implies that a parallel computer based
on the M C'T topology can be expanded in size without
increasing the number of I/O channels at the proces-
sors.

An interesting variant of the MCT network, which
we call MCXT, 1s obtained as the cross product of an
extended form of complete binary trees as follows: we
first connect the leaves of the binary tree by a straight
line to obtain an extended tree (XT), and then con-
struct the product of the resultant XT graph. While
the added connections do not increase the asymptotic
VLSI complexity, the computational properties are
improved significantly.

This paper is organized as follows: in the next sec-
tion we present definitions and terms used through-
out the paper. The subsequent sections address, re-
spectively, the structural properties of M CT, several
embedding capabilities, routing properties, and VLSI
layout area. Subsequently we present a simple exten-
sion to the basic network. Finally, conclusions and
open problems are presented.
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Figure 1: (a) 49-node 2-dimensional mesh connected
trees M CT5(7) and (b) two dimensional mesh of 4-leaf
trees (leaves are shown as dark nodes).

Definitions

In this paper a interconnection network is seen as an
undirected graph, whose vertices represent processors
and whose edges represent bidirectional links between
the processors. We use the terms graph and network
interchangeably. Since the M CT is obtained from the
complete binary tree, we start by formally defining
this latter graph.

The h-level complete binary tree, T(h;, is the
graph whose vertices comprise the set {1...N}, where
N = 2" — 1, and whose edges connect each vertex
u < 277! with the vertices 2u and 2u+1. The vertices
at level j are labeled from 291 to 2/ — 1, for j = 1...A.
The vertex labeled 1, al level 1, is the root of the tree.
The vertices at level h are the leaves of the tree.

The N"-node r-dimensional mesh connected
tree, M CT.(N), is the graph whose vertices comprise
all the r-tuples * = x,_1...x12¢, such that, for ¢ =
0..r—1,every z; is a vertex of T((h), where N = 2 1
and the pair (#,y) defines an edge in MCT,(N) if and
only if x and y differ in exactly one index position
and (z;,y;) is anedge in T'(h). A node # = x,_1...2120
where z; is a leaf of T'(h), for i = 0...r — 1, is a leaf of
MCT,(N). The node # = xp_1...212¢9 where z; = 1
for i = 0...r — 1 is the root of MCT,(N).

The N"-node r-dimensional grid (resp. torus)
is the graph whose vertices comprise all the r-tuples
T = &,_1...0120, such that ¢; € {0.. N—1},i=0...r—
1, and whose edges connect any pair of nodes & and
y if and only if x and y differ in exactly one index
position ¢ and |z; —y;| = 1 (resp. #; = (y;+1) mod N
or y; = (z; + 1)modN).

The r-dimensional mesh of N-leaf trees is the
graph obtained from the N"-node r-dimensional grid
by substituting the linear connections along each di-
mension by N-leaf complete binary trees. The leaves
of the trees are the original nodes of the grid, and ad-
ditional nodes are introduced to obtain the internal
nodes of the trees (see Figure 1.(b)).

An embedding of a “guest” graph G in a “host”
graph H is a one-to-one mapping of the vertices of ¢
into the vertices of H and of the edges of (G into paths
in H. The main cost measures of an embedding are
the dilation, the length of the longest path to which
an edge of (G is mapped, and the congestion, the max-

imum number of paths (images of edges of () sharing
any edge of H.

Structural Properties

Several structural properties of the MCT where
presented in [2]. There it was shown that MCT,(N)

has N7 vertices and rN"~}(N — 1) edges. The mini-
mum vertex degree is 7 and the maximum vertex de-
gree is 3r. This makes the vertex degree bounded
if the number of dimensions is bounded. Since grids
and meshes of trees with more than 3 dimensions are
rarely used, we expect that r will be generally small
for MCT also, and the vertex degree wil be also small
and constant for practical purposes.

It was also shown in [2] that M CT,(N) has diam-
eter 2r(h — 1) (logarithmic in the number of nodes)

and bisection width of at least % These at-

tributes of the MCT, coupled with its small vertex
degree make 1t an attractive architecture.

A network is k-partitionable if it can be divided
into k 1somorphic subgraphs consistent with its class
definition. A partitionable network adapts better to
different problem sizes, may be used to simultaneously
solve several problems, and computes recursive algo-
rithms more naturally. Since T'(h) is 2'-partitionable
for ¢ = 0..h — 1, and MCT,(N) contains N dis-
joint copies of MCT,_1(N) as subgraphs, it is eas-
ily observed that MCT,.(N) is 2*"-partitionable, for
¢t =0...h— 1, and NJ-partitionable for j = 0...7.

Embedding Properties
Embedding properties are among the most impor-
tant properties of a network, because they transfer the
computational power of a guest network to a host net-
work. In this section we present results regarding the
embedding properties of the MCT.

Embedding the grid and the torus

We start this section by recalling a result in [2]
which states that the N"-node r-dimensional torus
(and hence the grid) can be embedded into MCT,.(N)
with dilation 3 and congestion 2.

Although the embedding presented there does not
have unit dilation and congestion, they are small and
constant. Later, we will show that simple extensions
made in the basic topology of the binary tree allows re-
ducing these constants to unity. Even without such ex-
tensions, the above embeddings are much better than
any embedding of the n-node grid (and, hence, the
torus) in the de Bruijn or the shuffle-exchange graphs
that requires Q(loglogn) dilation [1], or in the but-
terfly, cube connected cycles, or Bénes networks that
require Q(logn) dilation [1, 6]. The slowdown intro-
duced by these bounds in the embedding of a graph
as important as the grid, reduces the practical value
of these networks.

We note that the question of whether the torus or
the grid can be embedded in the M OT with constant
dilation and constant congestion have yet to be an-
swered. It seems plausible, therefore, that such em-
beddings will probably be complex, should they exist.
The simple embeddings that we have obtained seem




Figure 2: Embedding MOT in MCT5(7).

to indicate that the MCT does, in fact, have some
advantages over the M OT network.

Combined with the above result, the next theorem
establishes that the MCT is computationally more
powerful than the grid.

Theorem 1 The optimal dilation of embedding
MCT,(N) in the N"-node r-dimensional grid is
N-1

[z |-

Proof: Section 3 in [5] presents an embedding of the
N-node complete binary tree, T'(h), in the N-node

linear array with dilation cost [é\;b—__lz] The dilation
of this embedding is optimal as it matches the triv-
1al lower bound obtained by comparing the respective
diameters of both networks. We can use this embed-
ding to construct the desired embedding of the M CT
in the grid by just embedding a complete binary tree
onto each line of the grid.

Optimality of the dilation follows from the trivial
lower bound obtained by comparing the diameters of
the networks. ]

Embedding the MOT

It was shown in [2] that MCT,(N) has the r-
dimensional mesh of &L leaf trees as subgraph, for
i = 1...h—1 (see Figure 2). This allows us to view the
MCT as a hierarchy of nested interconnected meshes
of trees of different sizes, so that it may be adapted
to solve multiple problems, or tailored to a particular
size. When this is seen in conjunction with the facility
that the embedding of the torus suggests (given the
large number of algorithms developed for the guest
networks considered above), we see a wide range of
possible applications for the MCT.

We can show that any embedding of the mesh of
N-leaf trees in the grid requires dilation Q(%) by

comparing the respective diameters of both networks.
As this dilation is large even for reasonably small val-
ues of N, The above result presents the MCT as a
much better candidate than the grid for the purposes
of simulating the MOT.

Embedding the complete binary tree

In [2], it is shown that the (r(h — 1)+ 1)-level com-
plete binary tree is a subgraph of MCT,(N), while

any embedding of MCT,.(N) in the complete binary
tree requires logarithmic dilation. The combination
of these two results shows that the M CT network is
more powerful than the complete binary tree.

The complete binary tree subgraph of the MCT
obtained in [2] is the largest possible when » = 2 but,
in general, for bigger values of r, larger trees can be
embedded with constant dilation and constant conges-
tion. The following theorem presents this fact.

Theorem 2 T(rh — [5]|) can be embedded in

MCT,(N), where N > 3, with dilation 3 and con-
gestion 3.

Proof:(Sketch) It can be shown that 7'(3r — | 5]) can

be embedded in MCT,(7) with dilation 3 and con-
gestion 3 such that the root of the embedded tree
1s the root of MCT,(7). Note that if we remove
the 2 lowest levels from every tree along each dimen-
sion in MCT,(N) we obtain a graph isomorphic to

MCT,(2"=2—1). Similarly, if we remove the h—3 top
levels from every tree along each dimension we obtain
a graph formed by 27*=3) disjoint copies of MCT.(T).
Both graphs have exactly 2""=3) common nodes, that
are the leaves of the MCT,(2"~2? — 1) graph and the
roots of the copies of MCT,(7) in the other graph.
In [2] was shown that MCT,.(N) has a subgraph
isomorphic to T(r(h — 1) + 1). By construction,
the leaves of this tree are also leaves of MCT,.(N).
Then, MCT,(2"~2? — 1) has a subgraph isomorphic
to T(r(h — 3) + 1) whose leaves are the leaves of
MCT,(2"=2 — 1). At the same time, we can embed

T(3r — |5]) with congestion 3 and dilation 3 in each

copy of MCT,(7) so that the root of the tree is the
root of the copy. Combining these two embeddings we
obtain the desired embedding. ]

The complete binary tree that the above theorem
embeds in MCT,(N) is the largest possible for r < 3
and very close to the largest (when not the largest) for
small values of r. For instance, M CTy(7) has enough
nodes to contain a 25-level complete binary tree and
the above theorem embeds a 23-level tree.

The case N = 3 1s not considered in Theorem 2
although it is specially interesting because MCT,(3)
is isomorphic to the r-dimensional 3"-node grid. The
result in [2] allows to obtain a complete binary tree
subgraph of M CT,(3) that is the largest possible for
r < 3. For larger values of r it is possible to apply an
approach similar to the one used above.

Routing Properties

Shortest Path Routing:

In [10] algorithms to obtain a shortest path in a
product network from the shortest path algorithms of
the factor networks are given. This section studies the
specific algorithm for the M CT.

The algorithm to find a shortest path in a complete
binary tree can be found in [7]. The algorithm to find
the shortest path in M CT,(N) is a simple extension of
this algorithm for T'(h). The shortest path from any




node z to any node y in MCT,(N) is obtained by sim-
ply applying the shortest path routing algorithm de-
scribed for the tree T'(h) along each dimension where
the labels of x and y differ.

Several shortest paths may be found if we apply the
above algorithm to the dimensions in different orders.
The algorithm can be implemented either in a central-
1zed or in a distributed way. In either case, the number
of time steps taken by the algorithm is proportional to
the number of edges traversed by the path, since the
decision process in each vertex along the path takes
a constant time. Therefore any execution of the algo-
rithm takes at most time O(2r(h — 1)).

Broadcasting:

The broadcasting of a message is the process of
sending a message from a given node to every node
in the network. In [10], an algorithm is presented to
broadcast a message in a product network under the
multiport model. The algorithm uses the broadcast al-
gorithms of the factor networks. The process takes at
most 2r(h — 1) steps and the algorithm can be imple-
mented centralized or distributed. If the root of the
MCT 18 the source of the broadcast operation then
the algorithm can be completed in half the time.

Parallel Paths:

The next result establishes the number of disjoint
paths that exist between any two nodes in the network.
This result improves the result obtained by the direct
application to our network of Theorem 2 in [3].

Theorem 3 FEvery pair of wvertices in MCT.(N),
where v > 1, is connected by exactly m vertez-disjoint
paths, where m is the minimum vertex degree of the
vertices in the pair.

Proof:(Sketch) We proceed by induction on the num-
ber of dimensions. For two dimensions the claim can
be verified from Figure 1.a. Suppose the claim is true
for » —1 dimensions. The case for r dimensions follows
by observing that each additional dimension increases
the vertex degrees by at least one and at most 3. More-
over, there 1s a new parallel path for each increment
of the vertex degree. ]

Corollary 1 Every pair of vertices in MCT,(N) is
connected by at least v and at most 3r edge-disjoint
and verter-disjoint paths.

Corollary 2 If MCT,(N) contains less than r faulty
vertices and less than v faulty edges, it is possible to
find a path between any two fault-free vertices.

In a vertex-faulty environment the adaptive routing
algorithm presented in [3] may be used with simple
changes in the MCT.

Layout Properties

We now focus on the layout area bounds for the
MCT network.

Theorem 4 MCT,.(N) can be laid out in an area of
O(N2U=1D) for r > 2 and O(N?log® N) for r = 2.

oo

Figure 3: Extending the complete binary tree by con-
necting the leaves.

Proof:(Sketch) The lower bounds are implied by the
fact that the largest MOT subgraph of MCT,.(N)
has ©(N") nodes. To prove the upper bounds we

show that MCT,(N) is strongly O(x%)—separable
and then apply Theorem 3.5 in [9]. A n-node graph
is said to be strongly f(«)-separable either if 1t has
only one node or if by removing at most f(n) edges
it 1s divided into two graphs with the same number
of nodes (within one), both strongly f(x)-separable.
MCT,(N) can be separated into 2" subgraphs, each
composed by a MC’TA%) graph and several iso-
lated nodes in 7 steps that respect the strong separa-
bility definition. Each step removes the edges incident
to the roots of a given dimension tree and distribute
those roots evenly between the obtained isolated sub-
graphs. ]

If we denote the number of nodes of MCT,(N) as
n, the above bounds can be rewritten as @(n>"=1/),

forr > 2, and O(n log? n), for r = 2. These bounds are
the same as those obtained for the M OT and for the
grid with more than two dimensions [9], which reflects
that there is no additional asymptotical complexity
cost incurred for the increased power of the MCT.

Extensions of the Basic Network

Consider connecting the leaves of the complete bi-
nary tree as shown in Figure 3. We denote the result-
ing graph as XT'(h) which is a subgraph of the X-tree
graph [6]. In a modular implementation, all the nodes
could be designed with the same number of I/O chan-
nels, and the unused channels at the leaves could be
used to connect the leaves in this fashion. Moreover,
the extra channels at the roots can be used for 1/0
with the external world. The next result shows that
if we construct the product of these trees, denoted
MCXT,(N), the resulting network has all the prop-
erties of the MCT and also contains the torus (and
hence the grid) as a subgraph. This is a much better
result than the one in Theorem 3.

Theorem 5 MCXT,(N) contains the N"-node r-
dimenstonal torus as a subgraph.

Proof: We show first that X7T'(h) contains a Hamil-
tonian cycle. The claim then follows from a result in
[2] which states that r-dimensional product of G is a
subgraph of r-dimensional product of G5 if and only
if 1 is a subgraph of G.

We first show that XT'(h) contains the following
Hamiltonian paths



LL-path: A path from the leftmost leaf to the right-
most leaf.

LR-path: A path from the leftmost leaf to the root.

Note that XT'(h) is symmetric and a LR-path can be
converted into a path from the rightmost leaf to the
root (symmetric LR-path).

We proceed by induction on h. For h = 2, XT'(2) is
just a triangle and the above paths are contained 1n it.
Therefore assume that these paths exist in XT'(h—1),
where i > 1.

The LL-path for XT'(h) is obtained as: the LR-
path in the left subtree of the root, followed by the
root, followed by the symmetric LR-path in the right
subtree.

The LR-path for XT'(h) is obtained as: the LL-
path in the left subtree of the root, followed by the
LR-path in the right subtree, followed by the root.

The Hamiltonian cycle for XT'(h) is, then, obtained
as: LR-path in the right subtree of the root, followed
by the root, followed by the symmetric LR-path in the
left subtree. ]

Conclusions

In this paper we have analyzed many important
properties of a new network called the mesh connected
trees (MCT). We have shown that the mesh con-
nected trees network has several interesting structural
characteristics, including simplicity of growth, loga-
rithmic diameter, a practically fixed vertex degree,
and a large bisection width. The fixed vertex degree
in particular is advantageous when compared to the
hypercube, whose vertex degree grows logarithmically
with increasing size. Although the MCT network
is not more powerful than the hypercube, its easier
implementation and significant computational power
make it more desirable for certain applications.

We have shown that the M CT network is capable of
hosting the torus, the grid, the mesh of trees, and the
complete binary tree with small constant dilation and
small constant congestion. This has considerable value
because of the large number of algorithms that have
been developed for these networks [6]. This capability
also favors the mesh connected trees in comparison to
many of the other well known networks like the shuffle-
exchange, de Bruijn, butterfly, cube connected cycles,
and the Bénes networks which cannot host the grid
with constant dilation [1, 6].

Additional desirable properties of the M CT include
efficient routing algorithms, large bandwidth, and low
diameter. Finally these advantages are obtained with-
out any increase in the asymptotical complexity of the
layout area bounds over the grid (with at least 3 di-
mensions) or the MOT (with any number of dimen-
sions), and with significantly less area complexity than
the shuffle-exchange and de Bruijn graphs.

When we extend the basic tree topology by con-
necting the leaves with a straight line, we were able
to show that the resulting tree contains a Hamiltonian
cycle. This implies that product networks of extended
trees contain tori as a subgraph, further improving the
computational power of the basic architecture.

There are several features of the network that have
not yet been explored. Embedding of other networks
in the MCT should be considered. The relationship
between the MCT and other families of networks,
such as butterflies or shuffle-exchange networks has
to be studied. Finally, development of algorithms for
the M C'T" that make use of its specific topology may
be investigated.
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