
Generalized Algorithm for Parallel Sorting on Product Networks

Antonio Fern�andez� Nancy Eleser� and Kemal Efe

MIT Laboratory for Computer Science Center for Advanced Computer Studies

��� Technology Square University of Southwestern Louisiana

Cambridge� MA ����� Lafayette� LA 	����

Abstract
If G is a connected graph with N nodes� its r di�

mensional product contains N r nodes� We present
an algorithm which sorts N r keys stored in the r�
dimensional product of any graph G in O�r�S�N ��
time where S�N � depends on G� We show that for
any graph G� S�N � is bounded above by O�N �� estab�
lishing an upper bound of O�r�N � for the time com�
plexity of sorting N r keys on any product network�
When r is �xed� this leads to the asymptotic complex�
ity O�N � to sort N r keys� which is optimal for several
instances of product networks� There are graphs for
which S�N � � O�Log�N � which leads to the asymp�
totic running time of O�Log�N ��

Keywords� sorting� interconnection networks� product
networks� algorithms� odd�even merge�

� Introduction
In ��	� Batcher presented two e
cient sorting net�

works� Algorithms derived from these networks have
been presented for a number of di�erent parallel ar�
chitectures� like the shu�e�exchange network ��	� the
grid ���� �	� the cube�connected cycles ��	� and the
mesh of trees ��	�

In this paper we generalize Batcher�s algorithm to
merge N sorted sequences into a single sorted se�
quence� From this multiway�merge operation we de�
rive a sorting algorithm� and we show how to use this
approach to obtain an e
cient sorting algorithm for
any homogeneous product network� Among the main
results of this paper� we show that the time complex�
ity of sorting N r keys for any r dimensional N r�node
product graph is bounded above as O�r�N �� We also
illustrate special cases of product networks with run�
ning times of O�r��� or O�N �� or O�Log�N ��

� De�nitions and Notations
Let G be a N �node connected graph� We de�ne its

r�dimensional homogeneous product as follows�

De�nition � Given a graph G with vertex set VG �
f� �� � � � � �N � ��g and arbitrary edge set EG� the r�
dimensional product of G� denoted PGr� is the graph
whose vertex set is VPG � f� �� � � �� �N � ��gr and
whose edge set is EPG� de�ned as follows� two vertices
x � xrxr�� � � �x�� and y � yryr�� � � �y� are adjacent

in PGr if and only if both of the following conditions
are true�

�� x and y di�er in exactly one symbol position�

�� if i is the di�ering symbol index� then �xi� yi� �
EG�

Note that we can split the r�dimensional product
network into N copies of r � � dimensional product
networks by erasing all the edges at an arbitrary di�
mension� When we do so� the uth copy obtained is
denoted as �u	PGi

r�� where i is the dimension being
erased� For example� if i � r �i�e� the highest di�
mension� then we obtain N copies of �u	PGr

r��� each
isomorphic to PGr��� Similarly� we can split the PGr

into N� copies of smaller product networks� each iso�
morphic to PGr�� by erasing all the edges in two of
the dimensions� In this case we extend the notation as
�u� v	PGi�j

r��� where i and j denote the dimensions of
edges being erased� and the pair �u� v	 uniquely identi�
�es a copy obtained� This notation can be extended to
erasing multiple dimensions in the obvious way� with
the order of terms in square brackets corresponding to
the order in superscripts�

When we focus on a k�dimensional subgraph of the
r�dimensional product network� where k � r� it some�
times gets too long to write all the dimensions being
erased� and it may be easier to just specify the dimen�
sions of edges not erased� In particular� we will have
occasion to refer to subgraphs obtained by erasing all
dimensions but one� and thus the remaining subgraph
will be isomorphic to the factor graph G� We will use

PG
fig
� to denote such a subgraph� where i denotes the

dimension of edges not erased� We also extend this

notation similarly to above case� and use PG
fi�jg
� to

denote a two�dimensional subgraph with i and j indi�
cating the dimension of edges not erased�

For an arbitrary factor graph G� vertex labels
 � � �N�� can de�ne the ascending order of data when
sorted� However we need to de�ne an order for the
nodes of PGr� which will determine the �nal location
of the sorted keys� The order de�ned is known as
�snake� order�

De�nition � �Snake Order	 for the r�dimensional
product graph�

�� If r � �� snake order corresponds to the order
de�ned for G�

�� If r � �� suppose that snake order has been already
de�ned for PGr��� Then�

�a	 �u	PGr
r�� has the same order as PGr�� if u

is even� and reverse order if u is odd�
�b	 if u � v then any value in �u	PGr

r�� precedes
any value in �v	PGr

r���

The hamming weight of a vertex s is de�ned as
W �s� �

Pr

i�� si� where si is the symbol value at po�
sition i of the vertex label s� If the symbol at ith
index position is the don�t care symbol ��� then this
symbol position is omitted when computing the Ham�
ming weight� Depending on the parity of its Hamming
weight� we say that a vertex is even or odd�

Similarly� we can de�ne a Hamming weight for the

PG
f�g
� subgraphs of the product graph� by simply

starting the summation from � when computing the

Hamming weight� If the Hamming weight of a PG
f�g
�

is even� we say that it is an even subgraph� Otherwise
it is an odd subgraph� We can also compute the Ham�

ming weight for a PG
f���g
� subgraph and say that it is

even or odd�
Just like the de�nition of snake order for vertices�

we can also de�ne snake order for subgraphs PGf�g
� or

PG
f���g
� in the obvious way� This will be useful later�
Suppose that a sorted sequence is stored in some

r�dimensional product network in snake order� The
following lemma shows how to split the sequence into
N subsequences such that the subsequence u contains
every N th term beginning with uth term�

Lemma � Let S be a sorted sequence stored in some
r�dimensional product network in snake order� By re�

versing the values at odd PG
f�g
� subgraphs and then

erasing the lowest�dimension edges from the product
network� we obtain N copies of the product network
with r � � dimensions� The uth copy �where u �
f � � �N ��g	 will contain every N th term of the orig�
inal sequence beginning with the uth value�

Proof is omited due to space limitations� The in�
terested reader can refer to ��	�

� Sorting Algorithm
The heart of the proposed sorting algorithm

is the multiway�merge operation� The multiway�
merge algorithm combines N sorted sequences Ai �
�ai��� ai��� � � � � ai�n���� for i � � � � � � N��� into a single
sorted sequence J � �j�� j�� � � � � jnN���� For simplic�
ity� we assume n to be a power of N � N r� where r � ��

To merge N sequences of N r keys each� we initially
assume the existence of an algorithm which can sort
N� keys� We make no assumption about the e
ciency
of this algorithm as yet� In Section � we discuss sev�
eral possible ways to obtain e
cient algorithms for
this purpose� The purpose of this assumption is to
maintain the generality of discussions� independent of
the factor network used to build the product network�

��� Multiway�Merge Algorithm
Here we consider how to merge N sorted sequences�

Ai � �ai��� ai��� � � � � ai�n���� for i � � � � � � N � �� into
a single large sorted sequence�

The merge operation consists of the following steps�

�� Distribute the keys of each sorted sequence
Ai among N sorted subsequences Bi�j � for
i � � � � � � N � � and j � � � � � � N �
�� The subsequence Bi�j will have the form
�ai�j� ai�j�N � ai�j��N � � � � � ai�j��n�N��� for i �
� � � � � N � � and j � � � � � � N � �� This is equiv�
alent to picking every N th element of Ai starting
with the jth element and putting them in Bi�j�
Note that each subsequence Bi�j is sorted since
we put the elements in the same order as they
appeared in Ai�

�� Merge the N subsequences Bi�j into a single
sorted sequence Cj � for j � � � � � � N � �� This is
done with a recursive call to the multiway�merge
process if the total number of keys in Bi�j is at
least N�� If the number of keys in Bi�j is N � a
sorting algorithm for sequences of length N� is
used to obtain a single sequence� because a re�
cursive call to the merge process would not make
much progress in this case �this point will be clear
by the end of this subsection��

�� Interleave the sequences Cj into a single sequence
D � �d�� d�� � � � � dNr������ The �rst N terms of
the sequence D is obtained by reading the �rst
element from each Cj� j � � � � �N � The next
set of N terms in D are obtained by reading the
second value from each Cj � j � � � � �N � and so
on�

We prove below that D is now �almost� sorted�
the potential dirty area �window of keys not
sorted� has length no larger than N��

�� Clean the dirty area� To do so we start by di�
viding the sequence D into N r�� subsequences of
N� consecutive keys each� That is� the �rst N�

terms of D are labeled as E�� the next N
� terms

are labeled as E�� and so on�

We then independently sort the Ei subsequences
in alternate orders by using the algorithm which
we assumed available for sorting N� keys� Ei is
transformed into a sequence Fi where Fi contains
the keys of Ei sorted in non�decreasing order if i
is even or in non�increasing order if i is odd� for
i � � � � � � N r�� � ��

Now� we apply two steps of odd�even trans�
position between the sequences Fi� for i �
� � � � � N r�� � �� In the �rst step of odd�even
transposition� each pair of sequences Fi and Fi���
for i even� are compared element by element� Two
sequences Gi and Gi�� are formed where gi�k �
min�fi�k� fi���k� and gi���k � max�fi�k� fi���k��
In the second step of the odd�even transposition�
Gi and Gi�� for i odd are compared in a similar
manner to form the sequences Hi and Hi���

Finally� we sort each sequence Hi in non�
decreasing order� generating sequences Ii� for i �
� � � � � N r�� � �� The �nal sorted sequence J is
the concatenation of the sequences Ii�

We need to show that the process described actually
merges the sequences� To do so we use the well�known
zero�one principle�

Lemma � When sorting an input sequence of zeroes
and ones� the sequence D obtained after the comple�
tion of step
 is sorted except for a dirty area which is
never larger than N��

Proof� Assume that we are merging sequences of ze�
roes and ones� Let zi be the number of zeroes in se�
quence Ai� for i � � � � � � N � �� The rest of elements
in Ai are ones� Step � breaks each sequence Ai into
N subsequences Bi�j � j � � � � � � N � �� The number
of zeroes in a subsequence Bi�j is bzi�Nc� qij� where
qij � � if j � zi mod N and qij � otherwise� Ob�
serve that� for a given i� the sequences Bi�j can di�er
from each other in their number of zeroes by at most
one�

At the start of step �� each column j is composed
of the subsequences Bi�j for i � � � � � � N � �� At
the end of step �� all the zeroes are at the beginning
of each sequence Cj� The number of zeroes in each
sequence Cj is the sum of the number of zeroes in Bi�j

for �xed j and i � � � � � � N � �� Thus� two sequences
Cj can di�er from each other by at most N zeroes�
In step � we interleave the N sorted sequences into
the sequence D by taking one key at a time from each
sequence Cj� Since any two sequences Cj can di�er in
their number of zeroes by at most N � and since there
are N sequences being interleaved� the length of the
window of keys where there is a mixture of ones and
zeroes is at most N��

Lemma � Step � cleans the dirty area�

Proof� We know that the dirty area of the sequence
D� obtained in step �� has at most length N�� If we
divide the sequence D into consecutive subsequences�
Ei� of N

� keys each� the dirty area can either �t in
exactly one of these subsequences or be distributed
between two adjacent subsequences�

If the dirty area �ts in one subsequence Ei then�
after the initial sorting and the odd�even transposi�
tions� the sequences Hi contain exactly the same keys
as the sequences Ei� for j � � � � � � N r��� Then� the
last sorting in each sequence Hi and the �nal concate�
nation yield a sorted sequence J �

However� if the dirty area is distributed between
two adjacent subsequences� Ei and Ei��� we have two
subsequences containing both zeroes and ones� After
the �rst sorting� the zeroes are located at one side of
Fi and at the other side of Fi���

One of the two odd�even transposition steps will
not a�ect this distribution� while the other step is go�
ing to move zeroes from the second sequence to the
�rst and ones from the �rst to the second� After these
two steps� Hi is �lled with zeroes or Hi�� is �lled

with ones� Therefore� only one sequence contains ze�
roes and ones combined� The last step of sorting will
sort this sequence� Then� the entire sequence J will
be sorted�

The reader can observe that� at the end of Step
�� the dirty area will still have length N� even when
we are merging N sequences of length N each� Thus�
we do not make much progress when we apply the
multiway�merge process in this case� Here we assume
the availability of a special sorting algorithm designed
for the two�dimensional version of the product net�
work� In subsequent sections we discuss several meth�
ods to obtain such algorithms as we consider more
speci�c product networks�

��� Application of Merging Algorithm to
Sort

Using the above algorithm� and an algorithm to sort
sequences of length N�� it is easy to obtain a sorting
algorithm to sort a sequence of length N r� for r � ��

First divide the sequence into subsequences of
length N� and sort each subsequence independently�
Then� apply the following process until only one se�
quence remains�

�� Group all the sorted sequences obtained into sets
ofN sequences each� �If we are sortingN r�� keys�
then initially there will be N r�� groups� each con�
taining N sequences of length N���

�� Merge the sequences in each group into a single
sorted sequence using the algorithm shown in the
previous section� If now there is only one sorted
sequence then terminate� Otherwise go to Step ��

� Implementation in Homogeneous
Product Networks

Here we mainly focus on the implementation of the
multiway�merge algorithm in PGr in detail� The sort�
ing algorithm trivially follows from the merge oper�
ation as described above� The initial scenario is N
sorted sequences� of N r�� keys each� stored in the N
subgraphs �u	PGr

r�� in snake order� Before the sort�
ing algorithm starts� each processor holds one of the
keys to be sorted� During the sorting algorithm� each
processor needs enough memory to hold at most two
values being compared�

Step �� To explain how this step can be imple�
mented� we refer to Lemma �� By Lemma �� if we

reverse the order in �odd� PG
f�g
� subgraphs� then we

obtain the sequence Bu�v in the subgraph �u� v	PGr��
r��

sorted in snake order�
Reversing the order in a G subgraph can be per�

formed by a permutation routing algorithm available
for G�

Step � This step is implemented by merging to�
gether the sequences in subgraphs �u� v	PGr��

r�� with
the same u value into one sequence in �v	PG�

r��� If

r�� � �� the merging is done by directly sorting with
an algorithm for PG�� If r � � � �� this step is done
by a recursive call to the multiway�merge algorithm�

Step � No movement of data is involved in this step�
and we obtain a sequence sorted almost completely
except for a small dirty area� as shown�

Step � This step cleans the dirty area� The PGf���g
�

subgraphs are ordered by the snake order� In this step

we independently sort the keys in PGf���g
� subgraphs�

where the sorted order alternates in �consecutive� sub�
graphs� We now perform two steps of odd�even trans�
position between these subgraphs� In the �rst step�

the nodes in the �odd� PG
f���g
� subgraphs are com�

pared with corresponding nodes in their �predecessor�
subgraphs� The values are exchanged if the value in
the predecessor subgraph is larger� In the second step
of odd�even transposition� the values in the nodes of

the �even� PGf���g
� subgraphs are compared �and pos�

sibly exchanged � with those of their predecessor sub�

graphs� A �nal sorting within each of the PG
f���g
�

subgraphs ends the merge process�
One point which needs to be examined in more de�

tail here is that� depending on the factor graph G� the
two elements that need to be compared and possibly
exchanged with each other may or may not be adja�
cent in PGr� If G has a hamiltonian path� then the
nodes of G can be labeled in the order they appear
on the hamiltonian path to de�ne the sorted order for
G� Then� the two steps of odd�even transposition sort
is easy to implement since it involves communication
between adjacent nodes in PGr� If however G is not
Hamiltonian �e�g� a complete binary tree�� the two ele�
ments that need to be compared may not be adjacent�
but they will always be in a common G subgraph� In
this case permutation routing within G may be used
to perform the compare�exchange step as follows� two
nodes that need to compare their values send their
values to each other� Then� depending on the result
of comparison� each node can either keep its original
value if the values were already in correct order� or
they drop the original value and keep the new value if
they were out of order�

��� Analysis of Time Complexity
To analyze the time taken by the sorting algorithm

we will initially study the time taken by the merge
process in a k�dimensional network� This time will be
denoted as Mk�N �� Also let S��N � denote the time
required for sorting in PG� and R�N � denote the time
required for permutation routing in G�

Lemma � Merging N sorted sequences of Nk�� keys
in PGk takesMk�N � � ��k���S��N ����k���R�N ��
S��N � time steps�

Proof� The time taken by step � of the merge process
is just the time to reverse the order of the keys in

PG
f�g
� �subgraphs� This process can be done with a

permutation routing algorithm for G� that takes time
R�N �� Step � is a recursive call to the merge procedure

for k � � dimensions� and hence will take Mk���N �
time� Step � does not take any computation time�
Finally� step � takes the time of one sorting in PG��
two permutation routings in G �for the steps of odd�
even transposition�� and one more sorting in PG��

Therefore� the value of Mk�N � can be recursively
expressed as�

Mk�N � �Mk���N � � �S��N � � �R�N �

with initial condition

M��N � � S��N �

that yields

Mk�N � � ��k � ��S��N � � ��k � ��R�N � � S��N �

Theorem � For any factor graph G� the time com�
plexity of sorting N r keys in PGr is O�r�S��N ���

Proof� By the algorithm of Section ��� the time taken
to sort N r keys in PGr is the time taken to sort in
a ��dimensional subgraph and then merge blocks of
N sorted sequences into increasing number of dimen�
sions� The expression of this time is as follows�

Sr�N � � S��N ��M��N ��M��N ��� � ��Mr���N ��Mr�N �

� �r � ��S��N � � ��S��N � � �R�N ��
rX

i��

�i � ��

� �r � ���S��N � � ����r � ���r � ��R�N ��

Since S��N � is never smaller than R�N �� the time
obtained is Sr�N � � O�r�S��N ���

The following corollary presents the asymptotic
complexity of the algorithm and one of the main re�
sults of this paper�

Corollary � If G is a connected graph� the time com�
plexity of sorting N r keys in PGr is at most O�r�N ��

Proof� The basic observation is that� if G is a con�
nected graph� it is always possible to obtain an algo�
rithm for PG� with complexity S��N � � O�N �� To do
so we simply emulate the ��dimensional grid in PG�
with constant dilation and congestion ��	� Then� the
O�N � algorithm presented by Schnorr and Shamir ��	
for sorting N� keys on two�dimensional N � N grid
can be emulated by PG� with complexity O�N �� lead�
ing to S��N � � O�N �� Hence� any arbitrary N r�node
r�dimensional product network can sort with complex�
ity O�r�N ��

� Application to Speci�c Networks
In this section we obtain the time complexity of

sorting for several product networks in the literature�
To do so� we obtain upper bounds for the value of
S��N � for each network� Using this value in Theorem
� will yield the desired running time�

Grid� Schnorr and Shamir ��	 have shown that it is
possible to sort N� keys in a N��node ��dimensional
grid in O�N � time steps� This value of S��N � im�
plies that our algorithm will take O�r�N � time steps
to sort N r keys in a N r�node r�dimensional grid� If
the number of dimensions r is bounded� this expres�
sion simpli�es to O�N �� This algorithm is asymptot�
ically optimal when r is �xed since the diameter of
the grid with bounded number of dimensions is O�N ��
and a value may need to travel as far as the diameter
of the network�

Mesh connected trees �MCT�� This network was
introduced in ��	 and extensively studied in ��	� It
is obtained as the product of complete binary trees�
Due to Corollary � we can sort in the N r�node r�
dimensional mesh connected trees in O�r�N � time
steps� If r is bounded� we again have O�N � as the
running time� This running time is optimal when r
is �xed� because the bisection width of r�dimensional
MCT is O�N r��� as shown in ��	� and in the worst
case we may need to move O�N r� values across the
bisection of the network�

Hypercube� From the above analysis given for
grids and the fact that the hypercube is a special case
of grid with N � � �xed� it follows that the time to
sort in the hypercube with our algorithm is O�r���
This running time is same as the running time of the
well�known Batcher�s algorithm for hypercubes� In
fact� Batcher�s algorithm is a special case of the pro�
posed algorithm�

Petersen Cube� Petersen cube is the r�dimensional
product of Petersen graphs� Product graphs obtained
from the Petersen graph are studied in ��	� Like the
hypercube� the product of Petersen graphs has �xed
N � and therefore the only way the graph grows is by
increasing the number of dimensions� Since the Pe�
tersen graph is hamiltonian� its two�dimensional prod�
uct contains the �� � grid as a subgraph� Thus� we
can use any grid algorithm for sorting � keys on the
two�dimensional product of Petersen graphs in con�
stant time� Consequently the r�dimensional product
of Petersen graphs can sort �r keys in O�r�� time�

Product of de Bruijn and shu�e	exchange net	
works� To sort in their two�dimensional instances
we can use the embeddings of their factor networks
presented in ��	 which have small constant dilation and
congestion� In particular� N��node shu�e�exchange
network can be embedded onto the two dimensional
N � N product of shu�e�exchange networks with di�
lation � and congestion �� AlsoN��node de Bruijn net�
work can be embedded onto the two dimensional N �
N product of de Bruijn networks with dilation � and
congestion �� Sorting n � N� keys in shu�e�exchange
or de Bruijn networks requires inO�log� n� time by the
Batcher�s algorithm� Thus� we can sort on the two�
dimensional product of shu�e�exchange or de Bruijn
networks by emulation of N��node shu�e�exchange

or de Bruijn networks in S��N � � O�log�N�� �
O�log�N � time steps� Using this in Theorem �� our
algorithm will take O�r� log�N � time steps to sort N r

keys� Again� if r is bounded the expression simpli�es
to O�log�N ��

References
��	 K� Batcher� �Sorting Networks and their Ap�

plications�� in Proceedings of the AFIPS Spring
Joint Computing Conference� vol� ��� pp� ���
���� �����

��	 K� Efe and A� Fern�andez� �Computational Prop�
erties of Mesh Connected Trees� Versatile Archi�
tecture for Parallel Computation�� in Proceedings
of the ���� International Conference on Parallel
Processing� vol� I� �St� Charles� IL�� pp� ������
CRC Press Inc�� Aug� �����

��	 K� Efe and A� Fern�andez� �Products of Networks
with Logarithmic Diameter and Fixed Degree��
IEEE Transactions on Parallel and Distributed
Systems� ����� Accepted for publication� Also
available as Technical Report ������� CACS� Uni�
versity of SW� Louisiana� Lafayette� LA� Feb�
�����

��	 A� Fern�andez� N� Eleser� and K� Efe� �General�
ized Algorithm for Parallel Sorting on Product
Networks�� Tech� Rep� ������� CACS� University
of SW� Louisiana� Lafayette� LA� Sept� �����

��	 D� Nassimi and S� Sahni� �Bitonic Sort on
a Mesh�Connected Parallel Computer�� IEEE
Transactions on Computers� vol� C���� pp� ����
Jan� �����

��	 D� Nath� S� N� Maheshwari� and P� C� P� Bhatt�
�E
cient VLSI Networks for Parallel Processing
Based on Orthogonal Trees�� IEEE Transactions
on Computers� vol� C���� pp� �������� June �����

��	 S� R� �Ohring and S� K� Das� �The Folded Petersen
Cube Networks� New Competitors for the Hyper�
cube�� in Proceedings of the th IEEE Symposium
on Parallel and Distributed Computing� pp� ����
���� Dec� �����

��	 F� Preparata and J� Vuillemin� �The Cube�
Connected Cycles� A Versatile Network for
Parallel Computation�� Communications ACM�
vol� ��� pp� ����� May �����

��	 C� P� Schnorr and A� Shamir� �An Optimal Sort�
ing Algorithm for Mesh Connected Computers��
in Proceedings of the ��th Annual ACM Sympo�
sium on Theory of Computing� �Berkeley� CA��
pp� �������� May �����

��	 H� Stone� �Parallel Processing with the Per�
fect Shu�e�� IEEE Transactions on Computers�
vol� C��� pp� �������� Feb� �����

���	 C� D� Thompson and H� T� Kung� �Sorting on a
Mesh�Connected Parallel Computer�� Communi�
cations ACM� vol� �� pp� �������� Apr� �����

