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Efficient VLSI Layouts
for Homogeneous Product Networks

Antonio Fernández and Kemal Efe, Member, IEEE

Abstract —In this paper, we develop generalized methods to layout homogeneous product networks with any number of
dimensions, and analyze their VLSI complexity by deriving upper and lower bounds on the area and maximum wire length.

In the literature, lower bounds are generally obtained by computing lower bounds on the bisection width or the crossing number
of the network being laid out. In this paper, we define a new measure that we call “maximal congestion,” that can be used to obtain
both the bisection width and the crossing number, thereby unifying the two approaches. Upper bounds are traditionally obtained by
constructing layouts based on separators or bifurcators. Both methods have the basic limitation that they are applicable only for
graphs with bounded vertex degree. The separators approach generally yields good layouts when good separators can be found,
but it is difficult to find a good separator for an arbitrary graph. The bifurcators approach is easier to apply, but it generally yields
larger area and wire lengths. We show how to obtain “strong separators” as well as bifurcators for any homogeneous product
network, as long as the factor graph has bounded vertex degree. We illustrate application of both methods to layout a number of
interesting product networks.

Furthermore, we introduce a new layout method for product networks based on the combination of collinear layouts. This method
is more powerful than the two methods above because it is applicable even when the factor graph has unbounded vertex degree. It
also yields smaller area than the earlier methods. In fact, our method has led to the optimal area for all of the homogeneous product
networks we considered in this paper with one exception, which is very close to optimal. In regards to wire lengths, the results
obtained by our method turned out to be the best of the three methods for all the examples we considered, again subject to one (and
the same) exception. We give an extensive variety of such examples.

Index Terms —Interconnection networks, product networks, VLSI, collinear layout, separator, bifurcator.

——————————   ✦   ——————————

1 INTRODUCTION

HE Cartesian product is a well-known operation de-
fined on graphs.1 When applied to interconnection

networks, the Cartesian product operation combines a set
of “factor” networks into a “product network.” Several
well-known networks are instances of product networks,
including the grid, the torus, the hypercube [15], and the
generalized hypercube [4]. Recently, we have observed a
strong interest in product networks, since a variety of new
networks based on the Cartesian product operation have
been proposed. However, there is no paper which studies
the VLSI layout complexity of product networks as a gen-
eral class. This problem is important since VLSI layout cost
ultimately determines the feasibility of an interconnection
network. This paper makes an attempt to fill this gap by
developing generalized approaches to layout homogeneous
product networks.

We say that a product network is homogeneous if all its
factor networks are isomorphic. Otherwise, the product
network is said to be heterogeneous. All of the above men-

tioned examples of product networks are homogeneous
and others have been recently introduced, like the product
of de Bruijn networks proposed by Rosenberg [19], the
product of shuffle-exchange networks proposed by Panwar
and Patnaik [18], and the products of complete binary trees
networks proposed by Efe and Fernández [7], [8]. Examples
of recently proposed heterogeneous product networks are
the hyper-de Bruijn network proposed by Ganesan and
Pradhan [10], the hyper-Petersen network proposed by Das
and Banerjee [6], and the banyan-hypercube network pro-
posed by Youssef and Narahari [26].

Besides these works, the Cartesian product operation has
been seen as a potential framework to unify the study of
interconnection networks. This allows derivation of general
results applicable to any product network. For example, Efe
and Fernández [7] presented general results on the degree,
distance, diameter, routing, embedding, and partitioning
properties of product networks. Baumslag and Annexstein
[1] developed generalized off-line permutation routing al-
gorithms for product networks. El-Ghazawi and Youssef [9]
developed fault tolerant routing algorithms.

The interest in product networks is due to their elegant
mathematical structures, as well as their increased power
and versatility. It is shown in [7], for example, that homo-
geneous product networks constructed from shuffle-
exchange, de Bruijn, or complete binary tree graphs are
computationally more powerful than their corresponding
factor graphs. That is, they can emulate their like-size factor
graph with a small constant slowdown, but they can also
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1. We use “graph” and “network” interchangeably.
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emulate several other graphs with constant slowdown,
which their like-size factor graphs cannot. These graphs are
ideally suited for sorting, matrix multiplication, and graph
theory problems as they can perform these computations
with the same running time complexity as the hypercube,
but they cost much less. In addition, heterogeneous product
networks appear to combine the advantages of the different
factor graphs they contain.

This paper develops generalized methods to obtain
lower and upper bounds on the area and the wire length
required by VLSI layouts of homogeneous product net-
works. These are the two most important parameters of a
layout, since a large area implies low yield in the fabrica-
tion process and long wires imply large communication
delays (see [24] for the technological details). Our emphasis
on homogeneous product networks is not due to any limi-
tation of the methods presented here. The obtained results
may be easily extended to heterogeneous product net-
works. We comment on how this can be done in the conclu-
sions section of this paper. The emphasis on homogeneous
product networks in this paper is due to the fact that it
simplifies the discussion.

The VLSI layout model assumed in this paper is the
Thompson’s model [23]. In this model, the VLSI layout area
is seen as a two-dimensional grid into which the network
has to be embedded with unit “congestion.” The congestion
of embedding a “guest” graph G into a “host” graph H is
the maximum number of edges of G which must be
mapped to any edge of H. In the study of VLSI complexity,
the host graph is the two-dimensional grid and the graph
representing the network is mapped into it.

The concept of edge congestion is important for the
analyses presented in this paper. In particular, when the
guest graph is the N-node directed complete graph and the
host graph is an arbitrary graph containing N nodes, then
we pay special attention to the corresponding congestion of
the embedding. In [7], we coined the term “maximal con-
gestion” for the first time in the literature to refer to the
congestion of embedding a directed complete graph in an
arbitrary graph. The maximal congestion of a graph meas-
ures the maximum required amount of congestion to map
any graph onto it, because no graph has more edges than
the directed complete graph. Maximal congestion is an in-
trinsic parameter valid for any connected graph, just like
the crossing number, the chromatic number, etc., are intrin-
sic parameters of graphs.

We use upper bounds on the maximal congestion to de-
rive lower bounds on the VLSI layout area and the maxi-
mum wire length for homogeneous product networks. We
initially show how to obtain an upper bound on the maxi-
mal congestion of a homogeneous product graph from an
upper bound on the maximal congestion of its factor graph.
Then we apply Leighton’s methods [14], [15] to obtain
lower bounds on the bisection width and the crossing
number of the product network. Direct application of re-
sults from [23] and [14] yields the desired lower bounds.
The maximal congestion has been previously used as an
intermediate value obtained in order to compute the bisec-
tion width or the crossing number of a graph. Here, we use
it as the basic property to be known about the factor graph,

because the bisection width or the crossing number of a
factor graph do not give enough information to compute
lower bounds on the bisection width or the crossing num-
ber of the product graph.

Subsequently, we obtain upper bounds on the VLSI lay-
out complexity for product networks with bounded num-
ber of dimensions constructed from bounded-degree factor
graphs. This is done by using two traditional frameworks:
separators and bifurcators. We initially use a special kind of
separators that we call bisectors (because they bisect the
graph) and show that bisectors for a product network are
easily obtained from bisectors of its factor graph. The direct
application of results compiled in [24] and [14] allows us to
obtain upper bounds on the area and the length of the
wires.

Since it is not easy to obtain small separators for an ar-
bitrary graph, we present a similar result for bifurcators.
We show how to obtain a bifurcator for a product network,
given a bifurcator for its factor network. We also consider
some special cases which improve the upper bounds for
some special graphs. These results allow us to derive the
desired bounds from the results in [2].

Finally, we present a universally applicable method to
obtain efficient layouts for product networks based on col-
linear layouts (layouts with all the nodes along a line) of the
factor network. Briefly, we combine collinear layouts for the
factor network to obtain a layout for their product. We first
show how to obtain efficient collinear layouts for the factor
networks and then we present an algorithm to combine
them to obtain layouts for product networks with any
number of dimensions.

We applied all of these approaches to several well-
known networks, as well as others not previously intro-
duced in the literature. The results show that the method
based on collinear layouts yields optimal area in most cases
(there was just one nonoptimal case among all the cases
that we considered, but it was also very close to optimal).
The separator approach has yielded optimal area layouts in
more cases than the bifurcator, but it turned out to be appli-
cable for only about half of the cases we considered. The
bifurcator approach does not generate optimal area layouts
as often as the others, but its layouts are larger only by a
logarithmic factor of the size of the factor graph. For the
maximum wire lengths, the method based on collinear lay-
outs generates optimal upper bounds that match the lower
bounds if the number of dimensions is considered bounded.
In all cases but one, the wire lengths obtained by this
method were shorter than the wire length obtained by us-
ing bisectors or bifurcators.

2 DEFINITIONS

We start by defining the class of product graphs considered
in this paper.

DEFINITION 1. The r-dimensional product graph, denoted as PGr,
of a graph G is the graph whose vertices comprise all the r-
tuples x = xr xr-1 ... x2x1, such that every xi, 1£ i £ r, is a
vertex of G, and whose edges comprise all pairs of vertices
(x, y), such that x and y differ in exactly one index position
i and (xi, yi) is an edge of G.
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In this paper, the number of nodes of the factor graph G
is denoted as N. Therefore, the number of nodes of the
product graph PGr is Nr. The diameter of G is denoted as d
and its maximum vertex degree is denoted as D. The vertex
degree of a node u of G is denoted as Du.

We say that an edge (x, y) belongs to dimension i if the
nodes incident to it differ only in the ith index position. A G-
subgraph of PGr is said to be a dimension-i subgraph if any
two nodes in the subgraph differ only in the ith index position.

Next, we define several properties of networks used in
this paper. We start by formally defining the maximal con-
gestion of a network. An embedding of a guest graph G onto
a host graph H is a one-to-one mapping of the vertices of G
onto the vertices of H and a mapping of the edges of G into
paths in H. The congestion of an embedding is the maximum
number of paths (images of the edges of G) that traverse
any edge of H.

DEFINITION 2. The maximal congestion of a graph G is the small-
est congestion of any embedding of the N-node directed
complete graph onto G.

In this paper, we are mainly interested in an upper
bound on the maximal congestion of a graph. This can be
easily obtained as long as there is a routing algorithm for
the graph. Just send packets from every node to every other
node in the graph and count the maximum number of
packets that trace any edge according to the routing algo-
rithm. For the purpose of upper bounds, the routing algo-
rithm does not even need to be optimal, although better
routing algorithms may yield better (smaller) upper
bounds.

Previously, upper bounds on maximal congestion have
been used to obtain lower bounds on the bisection width and
crossing number of graphs. For instance, in [14], Leighton
introduced a technique that uses upper bounds on the
maximal congestion to obtain lower bounds on the crossing
number of a graph. A similar technique has been used in [15]
to compute lower bounds on the bisection width of a few
well-known networks. However, to our knowledge, it was
never explicitly defined as being a fundamental property of a
graph. In this paper, we use “maximal congestion” as the
fundamental property to be known about a factor graph in
order to derive lower bounds on the VLSI complexity of its r-
dimensional product.

DEFINITION 3. The bisection width of a graph G is the minimum
number of edges that have to be removed from G to obtain
two disjoint subgraphs with the same number of nodes
(within one).

DEFINITION 4. The crossing number of a graph G is the minimum
number of edge crossings of any drawing of G in the plane.

These last two properties of a graph have been tradition-
ally used to obtain lower bounds on the area required by
any layout of the graph. We continue by defining the class
of separators used in this paper.

DEFINITION 5. Let f(x) be a monotonically nondecreasing func-
tion. A graph G has an f(x)-bisector either if it has only one
node or if, by removing at most f(N) of its edges, it can be
divided into two subgraphs with the same number of nodes
(within one), both with f(x)-bisectors.

In general, separators need not bisect the graph at each
stage. Our definition is more restrictive, for instance, than
the definition of separator used by Leiserson [17]. However,
Ullman [24] shows how to obtain a bisector (he calls it
strong separator) from separators as defined by Leiserson.
We will now define the concept of bifurcator.

DEFINITION 6. A graph G has an F-bifurcator either if it has only
one node or if, by removing at most F of its edges, it can be
divided into two subgraphs, both with F 2 -bifurcators.

The definition of bifurcator implies a way to iteratively
partition G so that in the ith step of this partition process

(with i = 0 initially) no more than F
i2  edges are cut in

each partition. Special cases of graphs will be considered
based on additional restrictions imposed in this partition
process.

DEFINITION 7. A graph G has an a-special bifurcator, 0 £ a £ 1,

if it has an O N Nmax , ao te j -bifurcator such that no

more than O((N/2i)a) edges are cut in each partition at the
ith step of the partition process, where i = 0 initially.

Note that, when a = 1/2, we have the definition of N -

bifurcator, but, for a π 1/2, the partition process defined is
more restrictive than the one implied in Definition 6. We
now define a subclass of graphs with a-special bifurcators.
This subclass was originally considered in [2].

DEFINITION 8. A graph G has an a-type B bifurcator if it has an
a-special bifurcator, where a > 1/2.

2.1 The Thompson’s Grid Model
In this paper, we use the VLSI layout model defined by
Thompson in [23]. In this model, the layout area is divided
into square “tiles” of unit area, placed in a grid fashion.
Each tile can hold either a section of wire, a node, or a wire
crossing. The wires of the layout run either horizontally or
vertically on this grid. If two wires enter the same tile they
must have different directions and they cannot change di-
rection in the tile.

Observe that, since a node is assigned to a tile, the nodes
are not allowed to have more than four incident wires.
When a node has a degree larger than four, Thompson pro-
posed to model it with a set of adjacent tiles whose pe-
rimeter is at least the desired degree. Although the smallest
area required to have a perimeter of Du for a node u has
O(Du) tiles, it is much more realistic to assume that a node
with vertex degree Du will require area of at least W(Du) ¥
W(Du). In this paper, we shall assume that any node u with
vertex degree Du is laid out as a rectangle with sides of
length at least W(Du).

Under this model, the wire area of a layout is the number
of tiles that hold either a section of a wire or a wire cross-
ing. The length of a wire is the number of tiles traversed by
the wire from its source node to its destination node. For
technological reasons [24], the layout area is defined as the
area of the smallest rectangle that contains all the allocated
tiles of the layout. This value is fully described with the
length and the width of this rectangle. In this paper, the
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width of a layout is assumed to be the length of the shorter
side of the rectangle and the length of the layout is the
length of the longer side. We also assume that the rectangle
is oriented in the grid with the longer side horizontally
placed.

Fig. 1 shows an example of layout for K5, the five-node
complete graph, where all the nodes are placed in a hori-
zontal line. This kind of layout is called a collinear layout.
This layout has width 7, length 11, wire area 55, layout area
77, and maximum wire length 15.

Fig. 1. Collinear layout for K5.

2.2 Collinear Layouts
A VLSI layout is called collinear if all the nodes are placed
along a straight line. We will use collinear layouts of the
factor graph to generate layouts for the product graph. To
be able to use them, we impose several restrictions to the
collinear layouts. We assume that the nodes are aligned
horizontally.

DEFINITION 9. A collinear layout is seminormal if all the nodes
in the layout are placed at the bottom rows of the layout, a
node u occupies D rows and Du columns, and all the wires
are laid down above the row D.

DEFINITION 10. A collinear layout is normal if it is seminormal,
all the nodes are adjacent, and all the wires are laid down as
two vertical sections connected by a horizontal section.

For these two classes of layouts we can define two new
parameters.

DEFINITION 11. The wiring width of a collinear layout is the
number of rows used to route the wires in the layout.

The value of the wiring width is always the width of the
layout minus the maximum vertex degree D.

DEFINITION 12. The bandwidth of a collinear layout is the
maximum distance, in number of nodes, between any two
connected nodes.

The maximum wire length is closely related to the
bandwidth of a layout as we discuss later. Fig. 2 presents a
normal collinear layout for K5 with wiring width 6 and
bandwidth 4.

3 LOWER BOUNDS

In this section, we obtain lower bounds on the layout area
and maximum wire length required by any layout of PGr.

We initially present the following two lemmas, which allow
us to obtain bounds on the bisection width and the crossing
number of product networks. Both of these lemmas easily
follow from Theorem 4 in [7], but we include their proofs
here for convenience to the reader, since they were not
stated in [7] in exactly the same form that they appear here.

LEMMA 1. If the maximal congestion of G is k, then the maximal

congestion of PGr is, at most, kNr-1.

PROOF. We show a mapping of the edges of the Nr-node
directed complete graph into paths of PGr. We first
map the nodes of the directed complete graph onto
the nodes of PGr one-to-one. Then, we map the di-
rected edge from x = xr � x1 to node y = yr � y1 to the
path

x Æ yr xr-1 � x1 Æ � Æ yr � y2 x1 Æ y.

The ith arrow represents the path in the corre-
sponding G-subgraph from xi to yi for i = 1, �, r. By
definition of maximal congestion, these paths imply
at most congestion k in the G-subgraph.

Let ( , )z z z z z zr i r iL L L L1 1¢  be a dimension-i

edge of PGr. If this edge is traversed by a path from x
to y as described, then the edge ( , )z zi i¢  can be trav-
ersed by, at most, k paths between two nodes of G. If
this dimension-i edge is used for routing an edge of
the directed complete graph, say from x to y, then y

can differ from x in, at most, r - 1 symbol positions
other than dimension i. Moreover, each differing
symbol position can have N possible values. There-

fore, an edge of G can be traversed by at most kNr-1

paths. �

LEMMA 2. If the maximal congestion of G is k, then the bisection

width of PGr is at least N
kN

r

r

2

1
1

2
-
- .

PROOF. The bisection width of the Nr-node directed com-

plete graph is N2r/2 if N is even and (N2r - 1)/2 if N is

odd. Since, from Lemma 1, we can embed it onto PGr

with congestion at most kNr-1, the bisection width of

PGr has to be at least N

kN

r
r

r N k
2

1

2 1 2- = +  if N is even, or

(N2r - 1)/2kNr-1 if N is odd, because, otherwise, we

Fig. 2. Normal collinear layout for K5.
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could bisect the embedded directed complete graph
by removing fewer edges than its bisection width,
which is a contradiction. Whether N is even or odd,
the claimed value holds as a lower bound on the bi-
section width of PGr. �

We note that it is not possible to obtain a result similar to
Lemma 2 by just knowing the bisection width of G. In other
words, we cannot say that “if G has bisection width B1, then
PGr has bisection width at least B2,” because bisection of a
product graph does not have to use individual bisections of
its factor networks. In this sense, the maximal congestion
carries more information than the bisection width.

LEMMA 3. If G has E edges and its maximal congestion is k, then
the crossing number of PGr is at least

N N N

k N

rEN
r r r

r

r- - -
--

-1 2 3

20 22 2

1e je je j
.

PROOF. Extending the results in [11], [12], [13], it was shown
in [22] that, if an N-node graph G has E edges and the
N-node complete graph can be embedded onto G
with no edge having congestion more than k, then its
crossing number is at least N N N N

k
E( )( )( )- - - -1 2 3

20 22 . The

condition on edge congestion specified here directly
corresponds to the maximal congestion of G, thus we
conclude that any N-node graph with E edges and
maximal congestion of k has crossing number at least
N N N N

k
E( )( )( )- - - -1 2 3

20 22 .

We know from Lemma 1 that the maximal conges-
tion of PGr is at most kNr-1. We also know from [7]
that, if G has E edges, then PGr has rENr-1 edges. Us-
ing these, we obtain the claimed lower bound on the
crossing number of PGr. �

In [23], Thompson showed that the square of the bisection
width is a lower bound (within a constant factor) on the wire
area required by any layout of a graph. Similarly, Leighton
[14] presented the crossing number as a lower bound on the
wire area of any layout of a graph. Then, we can use any of
the last two lemmas to prove the following theorem, which is
one of the two main results of this section.

THEOREM 1. If the maximal congestion of G is k, then the layout

area of PGr is at least W N
k

r2 1

2

( )+e j.
The second result of this section gives a lower bound on

the length of the longest wire in any layout of a product
graph.

THEOREM 2. If the maximal congestion of G is k and its diameter
is d, then the length of the longest wire in any layout of

PGr is at least W N
krd

r +1e j .

PROOF. Theorem 5-2 in [14] shows that any layout of a
graph with diameter D and minimum layout area A

has some wire of length at least A1/2/3D. The diame-

ter of PGr is D = rd [7] and, from Theorem 1, its layout

area is at least W N
k

r2 1

2

( )+e j. Therefore, we can conclude

that any layout of PGr has some wire of length at least
W

W
N k

rd
N
krd

r
r

+
+

=
1

1

3
e j e j . �

4 UPPER BOUNDS

In this section, we first present upper bounds obtained by
traditional frameworks, namely bisectors and bifurcators.
We show that, given a bisector or a bifurcator for the factor
graph, we can obtain a bisector or a bifurcator for the prod-
uct graph. Since these frameworks are only applicable to
networks with bounded vertex degree, we will assume that
the factor graph has bounded vertex degree and that the
number of dimensions of the product network is also
bounded. These assumptions are not very restrictive be-
cause all product networks obtained from fixed degree
networks can grow without increasing the vertex degree.

Sherlekar and JáJá [20], [21] have investigated the use of
separators and bifurcators to obtain efficient layouts for
unbounded vertex degree graphs. However, the kinds of
separators and bifurcators they use are so restrictive that it
does not seem possible to obtain simple general results for
product graphs by using them.

Subsequently, we present another approach that is uni-
versally applicable and does not have any restriction on the
vertex degree or on the number of dimensions. As we men-
tioned, this method of obtaining efficient layouts for prod-
uct networks is based on the existence of efficient collinear
layouts for the factor networks. We show that it is always
possible to find reasonably efficient collinear layouts for
any network and present several techniques to do so.

4.1 Upper Bounds Based on Bisectors
The following theorem presents the basic result of this section.

THEOREM 3. If G has an f(x)-bisector, then PGr has an
O(x(r-1)/rf(x1/r))-bisector.

PROOF. We initially present the following lemma that shall
be used in the proof.

LEMMA 4. If G has an f(x)-bisector, then it has at most O(Nf(N))
edges.

PROOF. Assume, for simplicity, that N is a power of two. By
the definition of bisector, G can be divided into two
subgraphs by removing no more than f(N) edges.
Then, we obtain two subgraphs with N/2 nodes each,
which can be bisected by removing no more that
f(N/2) edges from each. After i bisections of this kind,
we obtain 2i subgraphs with N/2i nodes each, which,
in turn, can be bisected by removing no more that
f(N/2i) edges from each. After applying the bisection
process log N times2 we obtain N isolated nodes. The
maximum number of edges cut in the whole process
can be easily computed as,

f N f N f N f N

f N O Nf N

N N

i i

i

N

a f c h e j e j

e j a fc h

+ + + +

= =

- -

=

-

Â

2 2 2 2 2 2

2 2

2 2 1 1

0

1

L log log

log

.

�

2. All logarithms are to the base two.
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The proof of the theorem shows how to divide PGr

into isolated nodes by repeatedly applying bisections

that respect the definition of O(x(r-1)/rf(x1/r))-bisector.

Initially, we show how to divide PGr into 2r dis-
joint subgraphs and, possibly, some isolated nodes.
This process is done in r bisection steps, each of which

cuts O(Nr-1f(N)) edges from its corresponding graph.
Each of the obtained subgraphs is the r-dimensional
(possibly heterogeneous) product of factor graphs
with ÎN/2˚ nodes and f(x)-bisectors.

A partition process similar to the one applied to PGr
can then be applied to each of the subgraphs, to the sub-
graphs obtained from them, and so on, until all the
nodes are isolated.

The basic partition process considers two cases,
when N is even and when N is odd.

Case N even: By definition of bisector, each of the G-
subgraphs in each dimension can be bisected by re-
moving no more than f(N) edges. We can initially
consider only the G-subgraphs in dimension one. PGr
can be divided into two subgraphs with the same
number of nodes in each by bisecting each of the di-
mension-one G-subgraphs. As there are Nr-1 such
subgraphs, we have cut no more than Nr-1f(N) edges
from the Nr-node graph.

Now we can take one of the two subgraphs of PGr
obtained and divide it into two subgraphs with same
number of nodes by bisecting each of its dimension-
two G-subgraphs. The number of edges cut this time is
no more than Nr-1f(N)/2 from a graph with Nr/2 nodes.

We can continue this process, bisecting the ob-
tained subgraphs along each dimension. When bi-
secting the subgraphs by dimension i, we are remov-
ing no more than Nr-1f(N)/2i-1 = O(Nr-1f(N)) edges
from Nr/2i-1 = Q(Nr)-node graphs.

After bisecting the subgraphs by dimension r, we
obtain 2r disjoint subgraphs, each being the r-
dimensional product of N/2-node graphs with f(x)-
bisectors (because they are bisections of graphs with
f(x)-bisectors).

Case N odd: The logic in this case is similar to the logic in
the above case, but we must be careful because, by
simply bisecting each subgraph along a dimension,
we are not bisecting the whole graph. What we do in
this case is breaking each G-subgraph in a given di-
mension into two subgraphs, with (N - 1)/2 nodes
each, and one isolated node. As the isolated nodes are
connected between themselves by the other dimen-
sions, we also cut these connections and distribute the
so obtained isolated nodes evenly between the two
large subgraphs.

We can initially take dimension one. By bisecting
each dimension-one G-subgraph, we cut no more than
Nr-1f(N) edges and we obtain two subgraphs with
Nr-1(N-1)/2 and Nr-1(N+1)/2 nodes, respectively.
Clearly, PGr has not been bisected. Now we can take
the subgraph with the larger number of nodes and

isolate one node along dimension one from each of
the dimension-one subgraphs, the same node in each
subgraph. Since we are assuming that G has bounded
vertex degree, we can do so by cutting a bounded
number of edges from each dimension-one subgraph.
This leads to a total of O(Nr-1) edges cut.

Now we have two subgraphs with Nr-1(N-1)/2
nodes each, and an (r - 1)-dimensional subgraph,
isomorphic to PGr-1. From Lemma 4, the factor graph
G that generates the (r - 1)-dimensional subgraph has
no more than O(Nf(N)) edges. Therefore, we can iso-
late the nodes of this subgraph by removing, at most,
(r - 1)Nr-2O(Nf(N)) = O(Nr-1f(N)) edges.

As a result of the above process, we have two sub-
graphs with the same number of nodes and some
isolated nodes. If we distribute the isolated nodes
evenly between the two subgraphs, our bisection
is done. The total number of edges cut has been
Nr-1f(N)+O(Nr-1) + O(Nr-1f(N)) = O(Nr-1f(N)) from the
initial Nr-node graph.

This process can be applied to each dimension, as
in the case of N even. In each application, O(Nr-1f(N))
edges are cut from an Q(Nr)-node graph. After the
graph has been bisected in this way along each di-
mension, we have 2r disjoint r-dimensional sub-
graphs, each being the product of (N - 1)/2-node
graphs with f(x)-bisector, plus several isolated nodes
distributed evenly between them.

We now have 2r subgraphs of PGr, each being the
r-dimensional product of factor graphs, with ÎN/2˚
nodes and f(x)-bisectors. Note that, in the above de-
scribed process, we only use the fact of PGr having the
same number of nodes along each dimension and the
fact of each factor graph having an f(x)-bisector. Since
the obtained subgraphs fulfill these requirements, the
described process can be applied again to each of
them. Subsequently, the subgraphs obtained from
them will also fulfill the requirements, and the proc-
ess can be applied to each of them, and so on, until all
the nodes are isolated.

Since, in each bisection of the whole process, the
number of edges cut does not exceed the limits im-
posed by the definition of f(x)-bisector for f(x) =
O(x(r-1)/rf(x1/r)), the proof is complete. �

Once we obtain a bisector for the product network, we
are ready to apply it to obtain bounds on the layout pa-
rameters. We can use Theorem 3.5 in [24], which derives
upper bounds on the layout area of networks with a given
bisector, to directly obtain the following result.

THEOREM 4. If G has an f(x)-bisector, then PGr can be laid out in a
square of side O(Nf(N)log N) when r = 2, or side O(Nr-1f(N))
when r > 2.

PROOF. Theorem 3.5 in [24] states that any m-node graph
with a g(x)-bisector and bounded degree can be laid
out in an area of side

O m g mi i

i

m

max ,
log
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From Theorem 3, we have obtained that PGr has an
O(x(r-1)/rf(x1/r))-bisector. PGr has Nr nodes and we can
obtain the value of the summation as

2 4 4

2
4

1

0

1

0

4

4

i r i r r i r

i

r N

i
r

i

r r

i

r N

O N f N

O f N
N

e j e j

a f

a f

a f

-

=

-

=

F
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I
KJ =

F
HG

I
KJ

F

H
GG

I

K
JJ

Â

Â

log

log

,

since f(x) is a monotonically nondecreasing function.
The value of this last summation is O(Nlog N) when
r = 2, or O(Nr-1) when r > 2 [24]. Therefore, the value
of the first summation is O(Nf(N)log N) when r = 2, or
O(Nr-1f(N)) when r > 2, and the claim follows. �

The most studied kind of bisectors has been O(xa)-
bisectors, for bounded a. The results of Leiserson [16], [17]
and Valiant [25] imply that any m-node graph with an

O(xa)-bisector can be laid out in area O(m) when a < 1/2, in

area O(m log2 m) when a = 1/2, or in area O(m2a) when a >
1/2. Bhatt and Leiserson [3] have also shown that these
upper bounds can be reached with maximum wire lengths

of O m mlogd i , O m m mlog log logd i , or O(ma), respec-

tively. These results can be directly applied to product net-
works to obtain the next corollary (note, m is Nr here).

COROLLARY 1. If G has an O(xa)-bisector, for bounded a, then

PGr can be laid out in an area of O(N2 log2 N) with maxi-

mum wire length O(N log N/log log N) when a = 0 and

r = 2, or in an area of O(N2(r+a-1)) with maximum wire

length O(Nr+a-1) otherwise.

4.2 Upper Bounds Based on Bifurcators
The following theorem and its corollary present the initial
general results of this section. After these, we present addi-
tional results applicable to graphs with a-special bifurca-
tors, which yield tighter bounds.

THEOREM 5. If G has an F-bifurcator, then PGr has an

N Fr- +16 2 2d i -bifurcator.

PROOF. From Theorem 6 in [2], we know that, if G has an F-
bifurcator, then it has an H F= +6 2 2d i -bifurcator

(balanced bifurcator) that bisects the graph at each
partition. Then, after, at most, log N + 1 partitions, G
is transformed into N isolated nodes. Throughout the
rest of the proof, we will denote 6 2 2+d iF  as H for

brevity.
The proof is very similar to the proof of Theorem 3.

We show that, given PGr, we can obtain 2r subgraphs,
each being the r-dimensional (possibly heterogene-
ous) product of factor graphs with H 2 -bifurcators

and, at most, ÈN/2˘ nodes.

We initially consider dimension one. To partition
PGr, we can bisect each G-subgraph in this dimension,

cutting no more than HNr-1 edges in total. Each di-

mension-one G-subgraph is so divided into an ÎN/2˚-
node and an ÈN/2˘-node subgraphs. To follow the
worst case, we take the larger of the two obtained
subgraphs. We can partition this subgraph by dimen-

sion two by cutting at most HÈN/2˘ Nr-2 edges. This

value is smaller than HNr-1 2 .
We can continue in this way, partitioning the sub-

graphs by each dimension. When dividing the largest

subgraph by dimension i, we cut, at most, HÈN/2˘i-1Nr-i

edges, that is, smaller than HNr i- -1 1
2 . After divid-

ing by dimension r, each subgraph obtained has, at
most, ÈN/2˘ nodes along each dimension.

If we start the process again, the next division will

cut, at most, H N
r

2 2
1-

 edges, that is smaller

than HNr r-1 2 . Therefore, the process can be re-
peated without exceeding the number of edges al-
lowed by the definition of bifurcator.

As in the proof of Theorem 3, we can apply the
partition process just described to each of the 2r sub-
graphs of PGr obtained, to the subgraphs obtained
from them, and so on, until all the nodes are isolated.
By repeating this process, at most, log N + 1 times, all
the nodes in PGr will be isolated, and the theorem
follows. �

We recall here that Bhatt and Leighton [2] showed that,
if G can be laid out in an area A, it has a A -bifurcator.

Thus, if G can be laid out in an area A, then PGr has an

N Ar- +16 2 2d i -bifurcator. From Theorem 5, we can ob-

tain bifurcator-based bounds for the area and maximum
wire length by using the results from [2].

COROLLARY 2. If G has an F-bifurcator, then PGr can be laid out

in an area of O(N2(r-1)F2log2(N/F)) with maximum wire

length O N Fr N F

N F

-
+

F
HG

I
KJ

1

6 2 2

log

log log

b g
c he j

.

The above theorem and corollary are universally appli-
cable. However, as Bhatt and Leighton [2] noted, there are
graphs with special characteristics which allow to improve
the above bounds. This fact is reflected in the following
results.

THEOREM 6. If G has an a-special bifurcator, then PGr has an
O(Nr+a-1)-bifurcator. This is an (r + a - 1)-type B bifurca-
tor if either r > 2 or r = 2 and a > 0.

PROOF. Let N be a power of two for simplicity. From Theo-
rem 5 in [2], we know that G has a partition process
where each partition in the ith partition step bisects
the corresponding graph without cutting more than

6 2O N s

s i

p e j
aF

H
I
K=Â  edges, where 0 £ i £ log N and p is
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the number of steps of the original partition process.
This summation is a decreasing geometric series, that
is, essentially on the order of its first term. Then, G
has a partition process such that each partition in the
ith partition step bisects the corresponding graph

without cutting more than 6O((N/2i)a) = O((N/2i)a)
edges.

The partition process is similar to the one pre-
sented in the proof of Theorem 5. We apply a basic
process log N times, partitioning the graphs r times in
each application. We will use i to count the applica-
tions of the basic process, i varying from 0 to log N - 1,
and j to count the partitions within an application of
the basic process, varying j from 0 to r - 1. The abso-
lute count of partition steps for the complete graph is
then k = ir + j.

In the ith application of the basic process, the size
of the factor subgraphs that we are considering is
m = N/2i and we cut at most O((N/2i)a) edges to par-
tition this subgraph. Then, the kth absolute partition
step cuts at most O((N/2i)a (N/2i)r-j-1(N/2i+1)j) edges.
We can write

N N N
Ni i r j i j

r

k i
2 2 2

2

1 1
1

1e j e j e j a f
a

a

a

- - +
+ -

- -= .

Since k - i(1 - a) ≥ k/2 for r ≥ 2, we can conclude
that PGr has an O(Nr+a-1)-bifurcator. We still need to
show in which cases this is an (r + a - 1)-type B bifur-
cator. Note that

N Nr

k i

r r

k i k

+ -

- -

- -

- -=
a

a

a

a

1

1

1 1

1 12 2
a f
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.

Since (1 - a)/r ≥ i(1 - a)/k, then 1 - i(1 - a)/k ≥ 1 -
(1 - a)/r and, therefore,

N
O N

r r
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where 1 - (1 - a)/r > 1/2 (i.e., we have a type B bifur-
cator) if either r > 2 or r = 2 and a > 0. �

We can now apply the results of [2] combined with this
theorem to obtain the following corollary.

COROLLARY 3. If G has an a-special bifurcator, then PGr can be

laid out in an area of O(N2log2 N), with maximum wire

length O N N
N

log
log loge j , if r = 2 and a = 0, or in an area of

O(N2(r+a-1)) with maximum wire length O(Nr+a-1) otherwise.

4.3 Upper Bounds Based on Collinear Layouts
In this section, we present the collinear approach to obtain
layouts for product networks. The collinear approach has
several advantages:

1) It gives the optimal area layouts for all the cases we
considered in Section 5 of this paper (with one excep-
tion), and wire lengths were quite close to optimal.

2) It depends on obtaining a collinear layout for the fac-
tor graph, which is much easier than obtaining good
bisectors or bifurcators. The area of the layout only
depends on the wiring width of the collinear layout.
The maximum wire length depends also on the
bandwidth of the collinear layout. Below, we present
several ways to obtain normal collinear layouts with
small wiring width for arbitrary graphs.

3) It is applicable for any graph regardless of the vertex
degree, while the applicability of bisector or bifurca-
tor–based approaches are limited to graphs with
bounded degree.

4) The aspect ratio of layouts are always O(1), which is a
desirable characteristic for fabrication.

4.3.1 Methods for Obtaining Normal Collinear Layouts
In this section, we are interested in obtaining normal collin-
ear layouts with small wiring width and small bandwidth for
the factor graph G, because these are the properties that in-
fluence the cost/performance characteristics of the layout of
the product graph that we will obtain. We can devise several
methods to obtain normal collinear layouts for any graph.

First, observe that any graph G has a normal collinear
layout of wiring width at most 1

2 Duu VŒÂ , where V is the

set of nodes of G, since this is the number of wires in the
layout and each wire requires no more than one row.

Second, the problem of finding an efficient collinear lay-
out is closely related to the class of problems known as
“graph labeling” [5]. Given a way of labeling the nodes of
an N-node graph with integer labels 1, �, N (or, equiva-
lently, given a way of placing the nodes of the graph on a
line), the maximum distance between two connected nodes
is the bandwidth of the labeling, while the maximum num-
ber of edges that cross a vertical line placed between any
two nodes is the cutwidth of the labeling. Thus, if there is an
embedding of a graph G onto the N-node linear array with
bandwidth b and cutwidth c, it is trivial to obtain a normal
collinear layout for G with wiring width c and longest edge
of length O(bD + c). For an arbitrary graph, we can obtain a
labeling which minimizes the bandwidth and the cutwidth
by using dynamic programming algorithms or heuristics.

Third, it is shown in [17] how to construct normal collin-
ear layouts for a graph G with an f(x)-separator. The layout
has wiring width O(f(N)log N) in general, but, if f(x) = W(xa)
for a > 0, then the wiring width is O(f(N)). For graphs with
F-bifurcators, we obtain a similar result in the following
lemma.

LEMMA 5. If G has an F-bifurcator, then it has a normal collinear
layout with wiring width O(F).

PROOF. The construction of the layout is similar to the con-
struction shown in [17] for separators. We use a divide-
and-conquer process that divides the graph into two
subgraphs, obtains a collinear layout for each, and re-
connects the two layouts by adding, at most, as many
new rows as the edges which were cut in the partition
step. From the definition of bifurcator, the division
process is applied at most 2 log F times before we ob-

tain isolated nodes, and at step i at most F i2  edges
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are cut to divide the graph, for 0 £ i £ 2 log F. Then,
the number of rows needed to route the edges of G

are at most F O Fi

i

F
2

0

2

=Â =
log

( ) . �

Finally, we present a general method to obtain a normal
collinear layout from an arbitrary layout. The following
result shows that there is always a seminormal collinear
layout with small wiring width.

LEMMA 6. If G has a layout of length l and with w, G also has a
seminormal collinear layout of length O(l + ND) and wir-
ing width O(w).

PROOF. We prove the lemma by showing how to transform
the given layout into a seminormal collinear layout
with the claimed dimensions. The transformation is
illustrated in Fig. 3, where we show only the process
for one node of the layout. The appearance of this
node in the original layout is shown in Fig. 3a.

We first transform the nodes of the given layout by
adding enough rows so that each node uses at least Du
rows where Du is the vertex degree of the node u
which is being transformed. The width of the result-
ing layout is at most O(w). Fig. 3b shows the result of
enlarging our example node to use two rows.

We subsequently create D new rows at the bottom
of the layout. We will eventually move all the nodes
in the layout to these new rows. No other rows are
added in the rest of the transformation process, there-
fore, the wiring width of the new layout will be O(w).
At the bottom of Fig. 3c, the three new rows intro-
duced for our example can be observed. We assumed,
then, D = 3.

Then, the following step is applied iteratively until
all the nodes are in the created bottom rows and we
have a seminormal collinear layout. The step searches
from left to right for the first column with tiles assigned
to nodes not yet moved. This column can have tiles
from several nodes, if so we take one node arbitrarily.

Let u be the node we have chosen. Create Du new
columns on the left side of u. When creating these
columns, do not stretch the wires incident to u across
the columns just created. Fig. 3c presents the two new
columns created in this step. Then, move u to the
bottom rows, after resizing it to Du ¥ D. Finally, use the
newly created columns, as well as the rows originally
allocated to u, to reroute the edges from the bottom
rows. Since u had at least Du rows and we have Du
columns, this rerouting can be done. Fig. 3d presents
the final result for our example.

This ends the transformation. Note that the total
number of added columns is Duu VŒÂ , where V is the

set of nodes of G, and, therefore, the length of the lay-
out is O(l + ND). �

The above lemma shows that any layout can be trans-
formed into a seminormal collinear layout with wiring
width of the same order as the width of the original layout.
While the transformation increases the length of the collin-
ear layout, we will see that it is the width of the normal col-
linear layout which dominates the layout area complexity for

the product graph. The collinear layout obtained can now
be compressed to obtain a normal collinear layout with, at
most, same wiring width. This is shown in the following
lemma.

LEMMA 7. If G has a seminormal collinear layout with wiring
width w and bandwidth b, it also has a normal collinear
layout with wiring width, at most, w and bandwidth b.

PROOF. The original layout gives us a possible labeling (i.e.,
the order in which the nodes of G can be placed) to
obtain the desired wiring width w. This is all we need
for the purpose of obtaining the desired normal lay-
out. We start by placing the N nodes touching each
other along a straight line. The ith node in this line
corresponds to the ith node in the seminormal collin-
ear layout. We then connect these nodes by three-
segment wires (two vertical and one horizontal), as
required by the original layout.

Since there is a seminormal collinear layout of
width w that uses the same node order, we can obtain
a layout which has at most w rows used for wires. The
bandwidth of the layout remains the same. �

Note that, in the above obtained layout, the length of the
longest wire is at most 2w + bD, where b is the bandwidth of
the layout.

We finish this section by presenting a lower bound on
the wiring width of any normal collinear layout for arbi-
trary graphs.

THEOREM 7. If the maximal congestion of G is k, then the wiring
width for any normal collinear layout of G is at least
N2/2k.

PROOF. Note first that any embedding of the N-node di-
rected complete graph onto the N-node linear array
requires congestion at least N2/2. Since the N-node
directed complete graph can be embedded onto the
graph G with congestion k, it follows that any embed-
ding of G onto the N-node linear array requires con-
gestion at least N2/2k, since, otherwise, we can obtain
an embedding of the directed complete graph with
congestion smaller than N2/2.

Since the congestion of any embedding of G
onto the linear array is a lower bound on the
number of rows needed to route the edges of G,
the result follows. �

4.3.2 The Layout Method for Product Graphs
The following theorem represents the main result of this
section. The proof gives an algorithm to obtain the layout
for a product graph from a normal collinear layout of its
factor graph.

Fig. 3. Transformation of a compact layout into a collinear layout.
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THEOREM 8. If G has a normal collinear layout with wiring
width w, then PGr has a layout with square nodes of side

DÈr/2˘ placed regularly in NÈr/2˘ columns of NÎr/2˚ nodes
each, where two adjacent columns of nodes are at distance

w Ni

i

r

=

-Â 0

2 1
 and two adjacent rows of nodes are at dis-

tance w Ni

i

r

=

-Â 0

2 1
.

PROOF. We show the iterative process that can be used to
obtain the desired layout. The proof is illustrated in
Fig. 4, which presents the construction of a layout for
the three-dimensional product of two-node linear ar-
rays, which is isomorphic to the three-dimensional
hypercube. Fig. 4a presents a normal collinear layout
for the two-node linear array.

Initially, we place the Nr nodes of PGr in the layout

as squares of side DÈr/2˘ in a grid fashion with NÈr/2˘

columns of nodes and NÎr/2˚ rows of nodes. Each node
touches its neighbor nodes in the layout. The size of the
nodes will guarantee that there are enough connection
points in each side of the node when needed. Fig. 4b
presents this initial situation for our example graph.

For each row of nodes we apply the following it-
erative process. We start by creating w new rows
above the row of nodes. The nodes in the row are di-

vided in NÈr/2˘-1 groups of N adjacent nodes each, and
the nodes in each group are connected using the cre-
ated rows with the wires laid down as specified by
the normal collinear layout of G. This completes the
connections for the first dimension of the product
graph. We subsequently create wN new rows, divide

the nodes in a row into NÈr/2˘-2 groups of N2 adjacent
nodes each, and use the wN new rows in groups of w
each to connect N nodes of the second dimension.
These nodes are N nodes apart from one another.

In the ith iteration, we create wNi-1 new rows, di-

vide the nodes in NÈr/2˘-i groups of Ni nodes each, and

connect sets of N nodes in the ith dimension, each Ni-1

nodes apart from one another.
This process is applied Èr/2˘ times for each row of

nodes. The total number of wiring rows created is

w Ni

i

r

=

-Â 0

2 1
. This is the distance between two rows

of processors. Two adjacent processors in the same
row are still touching each other. Fig. 4c presents the
example layout after completion of the above process.
To obtain this layout, we applied the iterative step
twice.

The same iterative process can be applied to con-
nect the columns. As a result, we find that the col-

umns of processors are at distance w Ni

i

r

=

-Â 0

2 1
. This

completes the proof. Fig. 4d shows the final layout
obtained for our example graph. �

Fig. 4. Layout for the three-dimensional hypercube.

From this theorem, we can obtain bounds on the area
and maximum wire length for the layout.

COROLLARY 4. If G has a normal collinear layout with wiring
width w and bandwidth b, then PGr can be laid out in an
area of dimensions Q(w Nr-1) ¥ Q(w Nr-1) with maximum
wire length Q(bwNr-2).

PROOF. The length of the layout obtained from the above
theorem along the horizontal dimension is
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≥ Èr/2˘ for N ≥ 2 and r ≥ 2, then this length is Q(wNr-1).
The length along the vertical dimension is
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5 APPLICATION OF THE BOUNDS TO VARIOUS
NETWORKS

In Tables 1 and 2, we have compiled the bounds obtained
by applying the presented results to several networks. Ta-
ble 1 presents the bounds on layout area, while Table 2 pre-
sents the bounds on maximum wire length. In this section,
we will present how these bounds have been obtained.

The second column in both tables presents the lower
bounds obtained by direct application of Theorems 1 and 2.
We first obtain an upper bound on the maximal congestion
for each factor network. The maximal congestions of the
linear array and the complete binary tree are easily found to
be O(N2). The analysis of lower bounds on the bisection
width in [15] implied that the maximal congestions of the
shuffle-exchange, de Bruijn, butterfly, and cube-connected
cycles (CCC) networks are O(N log N). The bounds for the
hypercube are obtained from the fact of being the product
of the two-node linear array. It can be also seen that the
maximal congestion of KN is O(1) (actually, two).
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The third and fourth columns of the tables present upper
bounds obtained from bisectors of the factor graphs. Again,
it is easy to observe that the linear array and the complete
binary tree have O(1)-bisectors. By applying Corollary 1
directly, the presented bounds are obtained. There are not,
as far as we know, tight bisectors for the shuffle-exchange
and the de Bruijn graphs. Thus, we present the corre-
sponding bounds as unknown. We can easily show that the
n log n-node butterfly can be bisected by removing O(n)
edges, resulting in two butterflies with one less rank and
several isolated nodes. Therefore, we conclude that the
butterfly has an O(x/log x)-bisector. Similarly, it can be
shown that the cube-connected cycles has an O(x/log x)-
bisector. To obtain the bounds on wire length we use x/log x
= xa for some a > 0 and, therefore, a > 0 in Corollary 1 for
both networks. Since the hypercube can only grow by in-
creasing the number of dimensions, it is considered as a
network with unbounded number of dimensions, and the
bisector approach cannot be applied to it. Similarly, this
approach cannot be applied to the product of complete
graphs, since KN has not bounded vertex degree.

The fifth and sixth columns contain the bounds obtained
from bifurcators of the factor networks. The linear array
and the complete binary tree have zero-special bifurcators.
The value of the bifurcators for the shuffle-exchange and de
Bruijn networks are obtained from known layouts of area
O(N2/log2 N) [14] that implies the existence of O(N/log N)-
bifurcators for these networks [2]. It is easy to see that the
butterfly and the cube-connected cycles have one-special
bifurcators. We then apply Corollaries 2 and 3 to obtain the
bounds on layout area and maximum wire length for all

these networks. Again, the hypercube and the product of
complete graphs are not considered.

The last column of the tables present the upper bounds
obtained from collinear layouts for the factor networks. If
the nodes of the linear array are laid down in a line, we
obtain a collinear layout with wiring width one and band-
width one. The complete binary tree has a collinear layout
with wiring width O(log N) and bandwidth O(N), which
can be obtained by just labeling the nodes in in-order. To
obtain normal collinear layouts for the shuffle-exchange
and de Bruijn graphs, we can apply Lemmas 6 and 7 to their
optimal O(N/log N) ¥ O(N/log N) area layouts [14] to obtain
normal collinear layouts with wiring width O(N/log N),
hence, the bounds on the layout area in Table 1. We do not
know the bandwidth of these layouts to obtain a bound on
the wire length. But, we use the wiring width and band-
width of a collinear layout presented in [23] for the shuffle-
exchange graph, which has wiring width O(N/log1/2N) and
bandwidth O(N/log1/2N). Note, then, that the maximum
wire length bounds presented in Table 2 for these networks
may not be achievable with the optimal area layout pre-
sented in Table 1.

The normal collinear layout obtained by placing the
ranks of the butterfly in order, one after the other, has wir-
ing width O(N/log N) and bandwidth O(N/log N). A
similar approach can be used for the cube-connected cycles
to obtain the same bounds. The hypercube has, as factor
network, the two-node linear array, which is laid out with
wiring width one and bandwidth one (see Fig. 4a). Also, it
is possible to obtain a normal collinear layout for KN with
wiring width O(N2).

TABLE 1
BOUNDS ON THE LAYOUT AREA OBTAINED BY APPLICATION OF THE PRESENTED METHODS

UN stands for “unknown,” N.A. stands for “not applicable.” The upper bounds marked with “*” are optimal.

TABLE 2
BOUNDS ON THE WIRE LENGTH OBTAINED BY APPLICATION OF THE PRESENTED METHODS

UN stands for “unknown,” N.A. stands for “not applicable.” The upper bounds marked with “*” are optimal if r is bounded.
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6 CONCLUSIONS AND COMPARISON OF RESULTS

In this paper, we have investigated bounds on the area and
maximum wire length of layouts for homogeneous product
networks. We have obtained lower bounds, based on the
maximal congestion of the factor network, and upper
bounds, based on the existence of bisectors, bifurcators, or
an efficient normal collinear layout for the factor graph. A
comparison of the area bounds for some product networks
is given in Table 1.

The proposed method based on collinear layouts seems
to generate layouts with optimum area in most of the cases.
Only for products of complete binary trees, the layout area
is not minimum, and it is not possible to reach an optimal
area layout for this network using this method, since we
would need a normal collinear layout for the complete bi-
nary tree, with O(1) wiring width. In fact, the layout ob-
tained for the product of complete binary trees is also area
optimal for two dimensions, since this network has the
mesh of trees as a subgraph, which requires area W(N2 log2 N)
for two dimensions [8]. The layouts obtained by using bi-
sectors (when applicable) are also quite area efficient, since
they have optimal area for more than two dimensions in the
studied cases. The layouts obtained by using bifurcators are
not always area optimal, but are off by only a polyloga-
rithmic factor of N.

In Table 2, we compare the results of maximum wire
length. If the number of dimensions r is constant, the collin-
ear method obtains bounds that match the lower bounds. In
most cases, it gave better bounds than the other two ap-
proaches. The only exception we have is the product of
complete binary trees. When applicable, the use of bisectors
seems to give the same maximum wire lengths as the use of
bifurcators.

The above analyses suggest the method based on collin-
ear layouts as a very useful and powerful approach to the
layout problem for homogeneous product networks. More
research may help in finding normal collinear layouts with
small wiring width and small bandwidth for a variety of
other factor graphs.

If the product network is heterogeneous and all the fac-
tor graphs have equal number of nodes, it is not difficult to
derive bounds similar to those presented by using the main
results of this paper, without referring to the detailed dis-
cussion in their proofs. One way is to just consider the
worst case. For instance, the lower bounds presented in
Theorems 1 and 2 are still valid if we define k as the maxi-
mum of the maximal congestions of the factor graphs.
Similarly, if f(x) is the largest asymptotic complexity bisec-
tor of all the factor graphs, then the product graph has an

O(x(r-1)/rf(x1/r))-bisector. The results for bifurcators and col-
linear layouts can be generalized in a similar way.

Additional detail may arise when different factor graphs
have different numbers of nodes for different dimensions,
or when they have different maximal congestions. Being
more careful and giving exact bounds (upper or lower) in
such cases is not more difficult, but discussion gets rather
tedious. In fact, we had to deal with such cases during the
proofs of Theorems 3 and 5. Even though we started with a
homogeneous product network, after the first bisection, the

product graphs obtained are neither homogeneous nor do
they contain the same number of nodes at each dimension.
Focusing on homogeneous product networks allowed the
tedious part of discussion to be limited within the proofs
and not in the mainstream discussions of the paper. The
key point to realize is that we should consider the smallest
bisection that can be found at each step of bisecting the
product network.
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