Embedding Complete Binary Trees in Product
Graphs

Adrienne Broadwater!, Kemal Efe!, and Antonio Fernandez?

bl

! Center for Advanced Computer Studies, University of Southwestern Louisiana,
Lafayette, LA 70504
2 MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, MA 02139

Abstract. This paper shows how to embed complete binary trees in
products of complete binary trees, products of shuffle-exchange graphs,
and products of de Bruijn graphs. The main emphasis of the embedding
methods presented here is how to emulate arbitrarily large complete bi-
nary trees in these product graphs with low slowdown. For the embedding
methods presented here the size of the host graph can be fixed to an ar-
bitrary size, while we define no bound on the size of the guest graph.
This is motivated by the fact that the host architecture has a fixed num-
ber of processors due to its physical design, while the guest graph can
grow arbitrarily large depending on the application. The results of this
paper widen the class of computations that can be performed on these
product graphs which are often cited as being low-cost alternatives for
hypercubes.

1 Introduction

Let G"(N) denote the r-dimensional product graph obtained from the N-node
graph G(N). Note that G"(N) contains N” nodes. (As a special case, every
graph G(N) is a one-dimensional product of itself, and we omit » when » = 1.)
Let T(N) be the N-node complete binary tree, where N = 2% — 1. We prove the
following results:

1. T(Q’“h_r%]‘l'l—l), where [> 1, can be embedded in the r-dimensional product
of complete binary trees, T"(2" — 1), with dilation 2, congestion 2, and load
2 — 1.
2. Given the r-dimensional product of shuffle-exchange graphs, S"™(N),
(a) T(N72'=1 —1) can be embedded in it with dilation 3, congestion 2, and
load 2 — 1.
(b) T((N2")" — 1) can be embedded in it with dilation 4, congestion 4, and
load 2.
3. T((N2Y)" — 1) can be embedded in the r-dimensional product of de Bruijn
graphs, D"(N), with dilation 2, congestion 2, and load 2"'.

The first problem above, for unit load, was originally addressed in [3], where
it was shown that 7(2"(*=D+! — 1) is a subgraph of 77 (2" — 1). When r = 2 this

method embeds the largest possible tree for the number of nodes in 77 (2% — 1),
but when r > 2 the size of the tree shrinks by a factor of 2" ~1. Thus, as r grows
the method of [3] becomes less and less interesting. To utilize more nodes of the
host, a unit-load embedding was presented in [2] with dilation 3 and congestion
3. Our emphasis here is how to embed arbitrarily-large complete binary trees in
the fixed size host graph. It turns out that the dilation and congestion values
can be reduced from 3 to 2 when the load is increased.

The second and third problems above were addressed in [8] for unit load,
but the methods presented there only apply for two dimensions and use only
about half of the nodes of the product graph. The method in the current paper
utilizes all (but one) of the nodes of the product graph and it is applicable for
any number of dimensions. Also, our methods yield perfectly-balanced loads for
the nodes of the host graphs.

Since a parallel architecture has a fixed size by its physical design, these
results have significant practical importance as they show a way for solving
arbitrarily-large tree computations on fixed-size parallel computers. These im-
portant practical concerns appear to have been omitted in most of the papers
in the literature except by a few researchers [1, 6, 7].

2 Definitions and Notation

The nodes of the N-node complete binary tree are assigned the labels 1,... / N.
Each node u, v < N/2, is connected to nodes 2u and 2u + 1. This labeling
will be referred to as the level-order labeling of T(N) (see Figure 1). The graph
T(2" — 1) will often be also called the h-level complete binary tree.

/ 1 \
2 3
4) 6 7
Fig. 1. Level-order labeling of the complete binary tree.

The N-node shuffle-exzchange graph, denoted S(N), contains N = 2" nodes,
labeled 0,..., N — 1, and 3 x 277! edges connected as follows:

(a) (u,v)is an “exchange” edge if v = u 4+ 1 where u is even or v = u — 1 where
u 1s odd, or

(b) (u,v) is a “shuffle” edge if v = 2u where v < N/2 or v = (2u mod N)+ 1
where u > N/2.

The N-node de Bruijn graph, denoted D(N), contains N = 2" nodes, labeled
0,...,N —1, and 2"*! edges connected as follows: (u,v) is an edge of D(N) if
v =2umod N or v=_2u mod N)+ 1.

Let G = (Vg, Eg) and H = (Vi, Eg) be two arbitrary graphs. Their carte-
stan product is the graph P = (G @ H whose vertex set is Vg x Vg and whose
edge set contains all edges of the form (z120, y1y0) such that either #; = 3 and
(zo,90) € Eg, or kg = yo and (x1,y1) € Eg.

The r-dimensional homogeneous product of an N-node graph G(N), denoted
G"(N) is:

1. a single vertex with no labels and no edges if » =0

2. G(N)® G""Y(N) when r > 0.

Figure 2 illustrates this definition by presenting the construction of the two-
dimensional product S%(8).

Fig.2. Construction of the two-dimensional product of the shuffle-exchange graph
S(8). Both rows and columns are connected in the pattern of the basic shuffle-exchange
graph.

An embedding of a “guest” graph GG in a “host” graph H is a mapping of the
vertices of GG into the vertices of H and the edges of G into paths in H. The
main cost measures used in embedding efficiency are [3]:

— Load of an embedding is the maximum number of vertices of G mapped to
any vertex of H.

— Dilation of an embedding i1s the maximum path length in H representing an
edge of G.

— Congestion of an embedding is the maximum number of paths (that corre-
spond to the edges of () that share any edge of H.

The level-order labeling of a complete binary tree as in Figure 1 defines an
embedding of T(N — 1) in S(N) with dilation 2, congestion 2, and load 1 [5].
This labeling also shows that T(N — 1) is a subgraph of D(N) [8].

3 Embedding in the Product of Complete Binary Trees

In this paper we use the embedding method of [3] as part of the improved
embedding method presented here. For easy reference this result is included
here.

Theorem 1. T(2""=1+Y — 1) is a subgraph of T" (2" — 1).

As an example, Figure 3 shows the embedding for r = 2.

Fig. 3. Embedding the complete binary tree T(31) in 7%(7) by Theorem 1. The
complete binary tree subgraph is highlighted by heavy dark lines.

The main result of this section is the following:

Theorem 2. T(2""= 13141 1) where { > 1, can be embedded in T (2" — 1) with
dilation 2, congestion 2, and load 2' — 1.

Before proving the theorem, we will first distinguish a particular node in the
T7(N) graph as follows:

— Root of T"(N): The node v = v,_1...v10g is the root of T"(N) if and only if
v; = 1 (that is, v; is the root of T(N)), for all 0 <i < r — 1.

First we show that a 63-node complete binary tree can be embedded in T2(7)
with dilation 2, congestion 2, and load 3. A simple modification of this gives an
embedding for T'(2'+° — 1) in T%(7) with the same dilation and congestion, but
the load is increased to 2! — 1, where [> 1. Next, we use induction on r to show
that T(QLS_;J‘H — 1) can be embedded in T7(7) with dilation 2, congestion 2,
and load 3. Finally, by combining these results and Theorem 1 the claim of the
theorem is obtained.

Lemma 3. T(63) can be embedded in T*(7) with dilation 2 and congestion 2,
such that 10 nodes have load 3 and 33 nodes have load 1. The remaining 6 nodes
of T?(7) are unused. In this embedding the root of the embedded tree coincides
with the root of T*(T).

e

Fig. 4. Embedding the ({4 5)-level complete binary tree in a subgraph of 7%(7).

Proof. Figure 4.(a) presents a subgraph of T%(7) extended with some new nodes
(the small empty nodes). We emphasize that the small empty nodes in Fig-
ure 4.(a) do not exist in T%(7) itself; we just added these nodes for convenience
in the presentation of proof (we will eventually erase these nodes). Figure 4.(b)
presents a 63-node complete binary tree drawn in a form suitable for the follow-
ing discussion.

Consider embedding the graph of Figure 4.(b) in the graph of Figure 4.(a)
by super-imposing the nodes of the two graphs on top of each other. It can be
easily checked that any edge in Figure 4.(b) corresponds to a path of length no
more than 3 in Figure 4.(a). Dilation-3 edges are those that connect the large
dark nodes to small empty nodes in Figure 4.(b). It can be also easily seen that
the maximum congestion of 3 is found in some of the edges connecting large
empty nodes with small empty nodes in Figure 4.(a). (The reader can trace the
connections sharing the edge from the large empty node to the small empty node
at the rightmost column of Figure 4.(a).)

Finally, by contracting the edges between the large empty nodes and small
empty nodes in Figure 4.(a) we obtain a real subgraph of 72(7), while we increase
the load in the large empty nodes to 3. This process also reduces both the dilation
and congestion values to 2. Since the tree of Figure 4.(b) has 6 levels we have
obtained an embedding of 7(63) in T?%(7) with dilation and congestion values of
2, and load 3. From the figure it is easily verified that the root of the embedded
tree coincides with the root of T%(7).

Corollary4. T(2'*5 — 1), where { > 1, can be embedded in T*(7), such that 32
nodes of T?(7) have load 2' — 1, 10 nodes have load 3, and the root has load 1.

This is obtained by simply replacing the dark nodes of Figure 4.(b) (the
leaves of the embedded tree) by I-level complete binary trees, and then using the
embedding method above.

The properties of the embedding highlighted in the statement of Lemma 3
are needed in Lemma 5 below. This lemma uses induction on r to increase the
number of dimensions.

Lemma 5. T(QL%J‘H — 1) can be embedded in T (7) with dilation 2, congestion
2, and load 3. In this embedding the root of the embedded tree is the root of T"(7)
and the leaves are in unit-load nodes.

Proof. We prove the claim by induction on the number of dimensions, . We will
have two initial base cases (cases of » = 1 and » = 2) and an induction step that
increases the number of dimensions by two. This allows to prove the claim for
any number of dimensions, since depending on whether = is odd or even, we can
use either » = 1 or r = 2 as the basis case, respectively.

The base cases are trivially verified. For » = 1, T(7) is isomorphic to
T(2L3+1 — 1), For » = 2, Lemma 3 above shows the embedding.

In the induction step, given an embedding of T(QL%J‘I'1 — 1) in T%(7) with
dilation 2, congestion 2, and load 3, we show that it is possible to embed
T(2L5(1€2—+2)J+1 — 1) in T*+2(7) with the same dilation, congestion, and load. In
this embedding the root of the embedded tree is the oot of T*+2(7).

By removing all the edges along dimensions k and k + 1 from T*+%(7) we
obtain 49 disjoint copies of T%(7). From the induction hypothesis, we can embed
a disjoint copy of T(QL%J‘H — 1) in each of these copies.

Now consider only the roots of the embedded trees and reconnect them along
dimensions k£ and k 4+ 1. Considering only the dimensions k£ and &k + 1, we have
a graph isomorphic to T?(7). From Lemma 3, we know that a 6-level complete
binary tree can be embedded in this graph. The leaves of this tree (the dark
nodes of Figure Figure 4.(a)) correspond to the roots of embedded T(QL%J‘H -1)
graphs. (The trees whose roots fall in the large empty nodes are not considered.)

By this procedure, we have obtained an embedding of the (QL%J‘H"'E’ -1)=
(2L5(1€2—+2)J+1 —1)-node complete binary tree in T#+%(7) with dilation 2, congestion
2, and load 3, as claimed.

Proof of Theorem 2: If we remove the 2 lowest levels from every tree along
each dimension in 77 (2" —1) we obtain a graph isomorphic to 77 (2*~2—1). From
Theorem 1 we can embed a (#(h —3)4 1)-level tree in this subgraph of 77 (2" —1)
such that the leaves of the tree are mapped to the leaves of 77 (2"~2 — 1).

Similarly, if we remove the h — 3 top levels from every tree along each dimen-
sion we obtain a disconnected graph formed by 2""=3) disjoint copies of T7 (7).
Then, by using Lemma 2, we embed a (L‘%J + 1)-level tree in each copy of T7(7),
where the roots of the embedded trees coincide with the roots of 77(7) graphs.
The combination of both embeddings in 77 (2" — 1) yields an embedding of the
(L%TJ + 14 7r(h—3)) = (rh — [5] 4 1)-level complete binary tree in Tr(2h —1)
with dilation 2, congestion 2, and load 3. Note that in this tree the leaves are
embedded with unit load.

Finally, by replacing the leaves of embedded tree with [-level trees (as in
Corollary 1) we obtain a dilation 2 and congestion 2 embedding where the load
is 20 — 1.]

This proves the first result claimed in the introduction and completes this
section.

4 Embedding in the Product of Shuffle-Exchange Graphs

In this section we focus our attention on embeddings of complete binary trees of
arbitrary size in S"(N). We start by presenting a method to embed T(N" — 1)
in S”(N) with dilation 3, congestion 2, and unit load. We continue by showing
how to extend this method for arbitrarily large trees with the same dilation and
congestion values, thus proving the result 2.(a) claimed in the introduction.
However, in this embedding half of the nodes (minus one) of S™(N) have
unit load, while the other half are collectively mapped most of the nodes of
the embedded tree. In the next section we comment on a method to embed
arbitrarily large trees with perfectly-balanced load distribution (result 2.(b)).

Theorem 6. T(N" — 1) can be embedded in S™(N) with dilation 3, congestion
2, and unit load.

Proof. We prove the theorem by induction on the number of dimensions. We
already mentioned that T(N — 1) can be embedded in S(N) with dilation 2 and
congestion 2, which proves the base case » = 1. We now illustrate the induction
step by presenting the construction of the embedding of T(N? — 1) in S?(N).
The generalization of this process for arbitrary number of dimensions is similar
and will be briefly described.

We begin by embedding T(N — 1) in each of the subgraphs isomorphic to
S(N) that form the dimension-1 connections in S?(N). Since each node has a
label of the form vivg, we can do this by using the level-order embedding of
T(N — 1) in S(N) using the vy part of the label. Note that the roots of these
N trees all have the form v;1 and that the nodes v;0 are all unused. See Figure
5 (looking at row connections only). We can now embed another N — 1 node
complete binary tree using the level-order labeling in the nodes of the form v10
using dimension-2 connections. This tree forms the “top” of the N? — 1 node
complete binary tree. The root of this tree is at 10. The leaves of this tree are
found in the nodes k0 where N/2 < k < N —1. Each of these leaves now becomes
the root of two subtrees as described next.

Let k' = 2k — N and k" = 2k — N 4 1. The left child of k0 is k'l and the
right child of k0 is k"1 (see Figure 5). The connection between k0 and k"1 is
realized by a path of length 2 in S?(N). The path from k0 to k"1 is formed by
the following edges:

1. k0 is connected to k1 by an exchange edge in dimension-1.

2. k1 is connected to k"1 by a shuffle edge in dimension-2. Since the binary
form of k& has a ‘1’ in the most significant position, the shuffle of k results in
the label value 2k — N + 1.

The connection between k0 and k'1 is realized by a path of length 3. That path
is formed by the following edges:

1. Traverse the two edges as described above, k0 to k1 to £"1.
2. k"1 is connected to k'l by an exchange edge in dimension-2.

The dilation of this embedding is clearly 3. The congestion is 2 because the paths
to the left and right child of k0 coincide with each other but do not coincide
with any other path between adjacent nodes in the tree. This completes the case
for r = 2.

00 01——=02 03 04 05 06 o7
10 11——=12 13 14 15 16 17
20 21—=22 23 24 25 26 27
30 31 32 33 34 35 36 37
e
40 41 42 43 44 45 46 47
e
50 51——=52 53 54 55 56 57
T
60/ 61— 62 63 64 65 66 67
M0——=71—-=72 73 74 75 76 77

Fig.5. Embedding of 63-node complete binary tree in the two-dimensional product of
shuffle-exchange graphs.

Given that there is an embedding of an (N"~! —1)-node complete binary tree
in S"71(N), with the root at node 10...0 and with congestion 2, and dilation
3, we can construct an embedding of the N — 1 node complete binary tree in
S™(N) with these same properties. We do this by first embedding the (N"=* —1)-
node complete binary tree in the N subgraphs isomorphic to S™~1(N) formed
if the highest dimension connections are not considered. All nodes within each
subgraph have the same value v,_; in their labels. We now embed an (N — 1)-
node complete binary tree in the new dimension in the subgraph isomorphic
to S(IV) formed by the nodes of the form v,_10---0. The root of this tree is
at 10---0. We form the connections between the N/2 leaves of this tree and
the roots of the NV subtrees in the same manner as in the 2-dimensional case.
This time only v,_1 and v,_» will be considered when connecting &0 - - -0 to its
descendents.

Corollary 7. T(N72'=1 —1) can be embedded in S™(N) with dilation 3, conges-
tion 2, and load 2' — 1.

This embedding is obtained by simply replacing the leaves of the embedded

tree by an [-level complete binary tree, as in Corollary 4. This proves the result
2.(a) claimed in the introduction.

Note that if { > 1, the load of the embedding described in the above corollary
is not fully balanced. Half the nodes of S”(N) will have load 2 — 1, while the
other half (except one unused) has unit load. It is possible to obtain a better
load balance by increasing the dilation and congestion slightly. It will be easier
to explain how to do this once we see the embedding method in products of de
Bruijn Graphs.

5 Embedding in the Product of de Bruijn Graphs

All the results presented in the previous sections are also applicable to products
of de Bruijn graphs. The reason is that T"(N — 1) is a subgraph of D"(N) (from
Theorem 13 in [3]) and that S™(N) is a subgraph of D"(N) (combining Theorem
2 in [4] and Theorem 3 in [3]). However, we are able to obtain better embeddings
in D"(N) if we consider this network directly.

Again here we initially focus our attention on embeddings with unit load.
Then we comment on how to extend this method for embedding arbitrarily
large trees with perfectly balanced load distribution, thereby proving the result
3 claimed in the introduction.

Theorem 8. T(N" — 1) can be embedded in D"(N) with dilation 2, congestion
2, and unit load.

Proof. This proof is similar to that of Theorem 6. In the interest of brevity, we
only sketch the basic idea pointing out the differences from the above case.

It was shown in [8] that D(N) contains the (N — 1)-node tree as a subgraph.
This result can be used for the first dimension connections of Figure 5. The
connections in the second dimension require congestion 2, just as for S™(N), but
a dilation of 2 instead of 3. This is because the connection between k0 and k"1
is realized by a path of length 2 in D"(N). This path is formed by the following
edges:

1. k0 is connected to k1 by an edge in dimension-1.
2. k1 is connected to k"1 by an edge in dimension-2. Since the binary form of %
has a ‘1’ in the most significant position, the shuffle of k results in the value

2k— N +1.

The connection between k0 and k'1 is realized by a path also of length 2. That
path is formed by the following edges:

1. k0 is connected to k1 by an edge in dimension-1.
2. k1 is connected to k'l by the edge connecting k to label value 2k — N in
dimension 2.

This completes the proof for the case of »r = 2. For » > 2, similar arguments as
in Theorem 6 apply.

We could use now this result to embed larger trees using the same technique
used in Corollaries 4 and 7. Like in these results, the embedding obtained would
not fully balance the load among the nodes of the host graph.

However, it is possible to map arbitrarily large complete binary trees to a
fixed-size product D"(N) with perfectly-uniform load distribution. That is, if
the product graph contains N” nodes, we can embed T((N2')" — 1) in it with
uniform load of 2" for all nodes of the product graph, with the exception of one
node that will be mapped 2! — 1 nodes.

The new embedding can be done in two steps. In the first step, we embed
T((N2")"—1) in D" (N2') with dilation 2, congestion 2, and load 1 by the method
of Theorem 8. In the second step, we embed D"(N2') in D"(N) with dilation
1, congestion 1, and load 2" by the method given in Corollary 8 of [3]. This
induces an embedding for T((N2')" — 1) in D"(N) with dilation 2, congestion 2,
and load 27| as claimed in the introduction (result 3).

This result can also be used to obtain an embedding of T((N2')" — 1) in
ST(N) with perfectly-balanced load of 27" (result 2.(b)). To do so, we simply
combine it with an embedding of D"(N) in S™(N) with dilation 2, congestion 2,
and unit load [3, 5]. This leads to the dilation and congestion values of 4.

6 Remarks

The embedding methods in this paper can also be extended to product graphs
made from graphs containing different numbers of nodes for different dimensions.

Theorem 2 implies that for any graph G, if G contains the complete binary
tree as a subgraph, then its r-dimensional product can embed the complete
binary tree with dilation 2 and congestion 2. Basically, the G"(N) contains the
r-dimensional product of complete binary trees as a subgraph, so the embedding
method of Theorem 2 can be applied to this subgraph.

Acknowledgments

The authors wish to thank Darren Broussard and Nancy Eleser for discussions on
some of the ideas in this paper. K. Efe’s research has been supported by a grant
from the Louisiana Board of Regent, contract no: LEQSF(1995-97)-RD-A-33.
A. Fernandez is on leave from the Departamento de Arquitectura y Tecnologia
de Computadores, U. Politécnica de Madrid. His research has been partialy
supported by the Spanish Ministry of Education under grant PF94 04166960.

References

1. K. Efe, “Embedding Large Complete Binary Trees in Hypercubes with Load Bal-
ancing,” Journal of Parallel and Distributed Computing, vol. 35, no. 1, May 1996,
pp. 104-109.

2. K. Efe and A. Fernidndez, “Mesh Connected Trees: A Bridge between Grids and
Meshes of Trees,” IFEE Transactions on Parallel and Distributed Systems. To
appear in 1996.

3. K. Efe and A. Fernandez, “Products of Networks with Logarithmic Diameter and
Fixed Degree,” IFEFE Transactions on Parallel and Distributed Systems, vol. 6,
pp. 963-975, Sept. 1995.

4. R. Feldmann and W. Unger, “The Cube-Connected Cycles Network is a Subgraph
of the Butterfly Network,” Parallel Processing Letters, vol. 2, no. 1, pp. 13-19, 1992.

5. A. Fernandez, Homogeneous Product Networks for Processor Interconnection. PhD
thesis, U. of Southwestern Louisiana, Lafayette, LA, Oct. 1994.

6. J. P. Fishburn and R. A. Finkel, “Quotient Networks,” IEFE Transactions on Com-
puters, vol. 31, pp. 288-295, Apr. 1982.

7. R. Koch, T. Leighton, B. Maggs, S. Rao, and A. L.. Rosenberg, “Work-Preserving
Emulations of Fixed-Connection Networks,” in Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, (Seattle), pp. 227-240, May 1989.

8. A. L. Rosenberg, “Product-Shuffle Networks: Toward Reconciling Shuffles and But-
terflies,” Discrete Applied Mathematics, vol. 37/38, pp. 465-488, July 1992.

This article was processed using the #TEX macro package with LLNCS style

