
The Power of a Pebble: 
Exploring and Mapping Directed Graphs 

Michael A. Bender* Antonio Fernfindezt Dana Ron* Amit sahai§ Salil Vadhana 

Abotract 

Exploring and mapping an unknown environment is a fun- 
damcntal problem that is studied in a variety of contexts. 
Many works have focused on finding efficient solutions to re- 
atrictcd versions of the problem. In thii paper, we consider 
a model that makes very limited assumptions about the en- 
vironment and solve the mapping problem in this general 
actting, 

WC model the environment by an unknown directed graph 
G, and consider the problem of a robot exploring and map 
ping G, We do not assume that the vertices of G are la- 
beled, and thus the robot has no hope of succeeding unless 
it ia given some means of distinguishing between vertices. 
l?or this reason we provide the robot with a upebble” - a 
device that it can place on a vertex and use to identify the 
vcrtcx later. 

In thin paper we show: (1) If the robot knows an upper 
bound on the number of vertices then it can learn the graph 
afilcicntly with only one pebble. (2) If the robot does not 
know nn upper bound on the number of vertices n, then 
@(log log n) pebbles are both necessary and sufficient. In 
both ~3~3 our algorithms are deterministic. 

1 Introduction. 

The problem of exploring and mapping an unknown envi- 
ronmcnt is a fundamental problem with applications ranging 
from robot navigation to searching the World Wide Web. As 
such, a large body of work has focused on finding efficient 
aolutiona to variants of the problem, with restrictive assump 

‘Divialon of Engineering nnd Applied Sciences, Harvard Univer- 
nlty, Cambridge MA 02139. Email: benderQdeas.harvard.edu. Sup 
ported by NW gmnts CCR9G-04436 and CCR-93-13775. 

lLaboratory for Computer Science, MIT. Current address: 
Dpto do Arqultectura y Tecnologfa de Computadores, Universidad 
PolitCcnlca de Mndrid. Emnil: nntoOeui.upm.es. Supported by the 
Spanlah Ministry of Education, Army grnnt DAAH04-95-1-0607, and 
ARPA contract NDOOlrl-95-l-124& 

*Laboratory for Computer Science, MIT, 545 Technology Square, 
Cambrldgc, MA 02139. Emnil: danarQtheory.lcs.mit.edu. Supported 
by a l3unting fellowship. 

tLnborntory for Computer Science, MIT, 545 Technology Square, 
Qambrldgo, MA 02139. Email: nmitsOtheory,lcs.mit.edu. Supported 
by a DOD NDSEG doctornl fellowship and partially by DARPA grant 
~AD'J233.OO.C-0018. 

5Lnboratory for Computer Science, MIT, 545 Technology Square, 
Cumbridgc, MA 02139. Email: snlilQmath.mit.edu. Supported by 
a DOD NDSEG doctoral fellowship and pnrtinlly by DARPA grant 
DARTO3.DO-C-0018, 

tions on the form of the environment (cJ [13,12, 16,23,14, 
27, 7,4, 11.) In this paper, me consider a model that makes 
very limited assumptions about the environment, and give 
efficient algorithms to solve the mapping problem in this 
general setting. 

A natural way to model the problem is by a robot ex- 
ploring a graph G = (V,E). The case in which the graph 
has both undirected edges and labeled vertices can be solved 
in time linear in the number of edges by depth first search. 
Other search techniques [22] improve on this bound by a 
constant factor. Unfortunately, many exploration and map 
ping problems do not satisfy these constraints. For instance, 
if the graph represents a city (having one-way streets) or 
the Internet, it contains directed edges. This alone does 
not make the problem substantially more difficult, since the 
problem with directed edges and labeled vertices can be 
solved by a greedy search algorithm in time O(lVl - ]Ej). 
More sophisticated techniques [16, 11 yield improved run- 
ning times. 

Regardless of whether there are directed edges, a more 
daunting diiculty arises if vertices are not uniquely labeled. 
This situation could arise from the limited sensory capabii- 
ties of a robot or from the changing appearance of vertices. 
If no assumptions are made on the labeling of the vertices (so 
that all vertices may appear the same), then we need a way 
to mark vertices in order to have any hope of mapping the 
environment. In this paper, we model a marking device by 
a pebble, which can be dropped at a vertex and later identi- 
fied and retrieved. This notion of markiug is basic and can 
be simulated in many situations. It can be shown that a 
robot provided with a pebble can map an undirected graph 
with unlabeled vertices in time O(]V] - ]EI), by repeatedly 
marking nodes and backtracking.’ However, without the as- 
sumptions that the edges are undirected and the vertices are 
labeled, the existence of an efficient algorithm has remained 
open. 

The main contribution of this paper is a general mapping 
algorithm. This algorithm efficiently solves the mapping 
problem without assuming unique labelings of the vertices 
and while allowing directed edges. 

The problem. Let G be a strongly-connected directed graph 
over n vertices, where the vertices have no labels. The out- 
degree of each vertex is d,2 and the outgoing edges at each 
vertex are numbered from ‘1’ to ‘d’.3 The vertices’ indegrees 

IIn addition to undirected edges and labeled vertices, other simpli- 
fying assumptions that can be made about the environment include 
geometric structure (such as planarity) or random access (as on the 
World Wide Web). 

‘In fact, identical outdegrees is the worst case, and with mi- 
nor modifications, our algorithms work for graphs having arbitrary 
degrees. 

sWithout some way of distinguishing edges it is not clear how to 
reach one vertex from another even given a map of the graph. The 
assumption that the edges emanating from a vertex are numbered is 
a local (and weak) assumption, as opposed to a glo&zl assumption 

269 



are not, assumed to be seen. The robot is placed at an arbi- 
trary starting vertes in G, and at each step it traverses one 
of the edges emanating from its current vertes. The robot’s 
task is to esplore and map G efficient,ly. That is, after walk- 
ing a polynomial number of steps (in t.he size of the graph), 
it should output a graph c isomorphic to G. However, un- 
less the robot has a tool to help it distinguish vertices, it 
is condemned to failure as a cartographer. For esample, a 
robot traveling alone cannot decide whet.her G consists of a 
single vertes or many verbices. A basic tool for the robot is 
a pebble. Now, as bhe robot explores G, it can mar!; a Fsrtes 
by dropping the pebble, and it can identify t,he vertex if it 
finds the pebble later. Upon finding the pebble, the robot, 
can pick it. up. However, because the graph is directed, the 
robot cannot. rebrace its steps to retrieve the pebble. 

Bender and Slonim [i’] show that a robot given a pebble 
can esplore and map any graph in exponential time. How- 
ever, they prove that a robot cannot map graphs in poly- 
nomial trme using a constant. number of pebbles, when it 
does not know a bound on n. Thii lower bound motivates 
two questions: (1) How many pebbles are needed to learn 
graphs efficiently if n is known? (2) How many pebbles are 
in fact needed if n is unknown? 
In thii paper we demonstrat,e that surprisingly few pebbles 
are needed in both cases. We show that 

l If the robot knows n (or an upper bound li on n), 
it can learn the graph with only orae pebble in time 
polynomial in n (respecbively, 6). 

l If t,he robot. does not know n (or fi), then O(loglogn) 
pebbles are both necessary and sufficient. 

In both cases our algorithms are deterministic. The lower 
bound of Q(log log n) for the case of unknown n holds even 
for probabilistic algorithms. 

Intuition. To understand the difficulties facing the explor- 
ing robot,, consider the problem of frauersing a graph (i.e., 
visiting all vertices and edges). Certainly, in order to map a 
graph, the robot. must. traverse it. One st,andard technique 
that, comes to mind is random WC&. Unfortunately, for di- 
rected graphs, t,he espected time until a random walk vi&s 
all vertices may be esponemial in a and random malks are 
therefore ineffective for traversing. (For undirected graphs 
the espected time is polynomial in n.) 

Consider, for esample, t.he graph in Figure 1. This graph 
is called a combination lock graph, because in order to reach 
t.he right,most node pin, the robot must diicover the unique 
sequence of edge labels (t.he combination) estending from 
511 to PI*. Notice that. in polynomial time, with very high 
probabiit.y, a random walk only visits a logarithmic number 
of vertices in the combination lock. More generally, for any 
polynomial time (randomized) algorithm t,hat does not mark 
vertices, there esists a combination lock graph t.hat (with 
high probability) the a.lgorit,hm will not fully esplore. 

We now return to t.he problem of learning with a peb- 
ble. Although one (pebbleless) robot cannot traverse com- 
bination locks (efficiently), a robot wivibh a pebble can learn 
them using random walks [7].4 However, consider the graph 
shown in Figure 2. This graph consists of two combination 
locks, where the end of one combination lock leads into the 
beginning of the other. If t,he robot ever drops its pebble 

thot the vertices are labeled. 
‘More generally, graphs having high conductance can be learned 

cffkiently [7]. 

in t,he top lock and travels into t,he bottom lock, t,hen it is 
doomed. The robot will be stuck in the bottom combina- 
tion lock without its pebble, and cannot traverse this lock 
to learn it. Notice that once the robot has lost its pebble, 
knowing the size of the graph trapping it is not helpful. 

This example illustrates the dilemma facing t,he robot as 
it explores the unknown graph G. The robot must drop the 
pebble in order to learn new terrain, but when the robot 
drops the pebble, it runs the risk of losing it. 

Closed paths. To avoid losing its pebble, the robot must 
know how bo return to it. Thus, before dropping the pebble 
at a vertes, the robot should know a closed path containing 
this vertex. However, such a path may be difficult to obtain. 
When n is unknown, the robot can only ident,ify a closed 
path by dropping the pebble and finding it again. Thuo, 
we encounter a chicken-and-egg situation. In order to safely 
drop the pebble, the robot must find a closed pa& But in 
order to find a closed path, the robot must drop its pebble. 

Now we recognize the tangible benefit of knowing n. By 
repeating the same pattern of edges A times, the robot can 
enter a closed path without dropping ibs pebble. For esam- 
ple, if the robot repeatedly follows edges labeled ‘l’, it enters 
a cycle after at most n moves. Once the robot knows a closed 
path, it can map the subgraph visited by t,he path using the 
pebble. However, it is not clear how to harness t.his addi- 
tional power. By repeating one pat,tern of edges, the robot 
enters a closed pat.h and can map one subgraph. Later, t.he 
robot may repeat. a different pattern of edges, enter another 
closed path, and map a second subgraph. Thus, the robot 
can map many subgraphs, but it is not obvious how to piece 
these maps together. Thii is because the robot has little 
information about how the subgraphs overlap and intercon- 
nect. As a result, finding closed paths permits the robot 
to drop the pebble, map a (small) portion of t.he graph and 
retrieve the pebble, but does not solve the mapping problem. 

In order to solve t.he mapping problem, we use an algo- 
rithmic tool that ive caJl an orienting procedure. An ori- 
ent,ing procedure allows our algorithms t,o const,ruct a lim- 
ited number of maps. Instead of t,rying to piece t,hesc maps 
together, bhe algoribhm expands them separately unt,il one 
maps all of G. Thii espansion is possible because by esc- 
cuting the orienting procedure, the robot can recognize par- 
ticular vert,ices in the graph that are associated with the 
maps. 

Orienting procedures. Intuit,ively, an orient,ing procedure 
for a graph G leads the robot around the graph and ulti- 
mately leaves the robot at a vertes it “recognizes”. The 
robot recognizes this vertex by observing the output pro- 
duced by the procedure. More precisely, if the robot ace3 
the same output in two different esecut,ions of the procc- 
dure, then both t,imes it ends up at the same vertes.” The 
notion of orienting procedures is analogous to the not.ion of 
(adaptive) homing sequences in automata theory [26], and it 
is closely related to the notion of two-robot homing se6ucncee 
introduced by Bender and Slonim [7]. In the contest of 
learning, homing sequences were first applied by Hivest and 
Schapire [27, 261; they were used for learning environments 
modeled by finite automata. 

We show that given an orient.ing procedure, the robot 
can build maps of subgraphs containing the ending verticca 
of the procedure. Since the robot is not provided wit,11 

SActually, the robot may be at vertices equivnicnt under nutomor- 
phism, but we avoid this iesue in the introduction. 

270 



99 I 
Figure 1: A combination lock graph. 

. . . 

Figure 2: A Graph consisting of Two Combination Locks. 

nn orienting procedure, it builds maps using a partially- 
constructed orienting procedure, which it gradually improves. 
Each map is associated with a different output of the pro- 
cedure, There is a difllculty, however, in using a partial ori- 
enting procedure, Namely, the underlying graph may look 
different from what the map associated with the procedure’s 
output suggests. As a result, the robot could become dis- 
oriented and lose the pebble. 

A central idea in our algorithms is how to avoid losing the 
pcbblc while using misleading information about the graph. 
The algorithms employ a two-tiered structure of the cycling 
technique mentioned above. At the lower level, the robot 
uacs the cycling technique to verify safely whether the un- 
derlying graph is consistent with its map. If verification 
fnils the robot is able to improve the partial orienting proce- 
durc, At the higher level, the robot uses a generalization of 
the cycling technique to arbitrary deterministic procedures 
(instead of edge-label patterns). This generalized cycling 
tcchniquo allows the robot to find closed paths that visit 
increasingly large portions of G, until all of G is visited and 
mapped. 

Extonslons. Our results generalize to the case in which the 
obaarvcd labeling of the edges at the robot’s current vertex 
lo a function of the robot’s previous vertex. Thii models 
the situation that arises when navigating in a city, where 
the rclntivc location of the streets exiting au intersection is 
detcrmincd by the direction from which the intersection was 

entered. Some intuition is given in Section 5. 

Related work. Our work is most directly related to the 
work of Bender and Slonim [7]. Bender and Slonim show 
that two cooperating robots can explore and map unknown 
directed graphs with unlabeled vertices in polynomial time. 
The robots do not require any prior knowledge of the size of 
the graph. Bender and Slonim demonstrate that two robots 
are strictly more powerful than one robot with O(1) peb- 
bles. They prove that one robot with a constant number of 
pebbles cannot (efficiently) learn arbitrary directed graphs 
without knowing an upper bound on the number n of ver- 
tices. They conjecture that the same holds when n is known; 
our results disprove this conjecture. Our O(log log n)-pebble 
algorithm (for unknown n) can be simulated by two robots. 
Thii yields a deterministic alternative to Bender and Slonim’s 
randomized two-robot algorithm.6 

Most early work on graph exploration assumed that the 
robot is a finite automaton. Rabin [24] first proposed the 
idea of providing the automaton with pebbles to help it ex- 
plore. This led to a body of work examining the number 
of pebbles needed to explore various environments [29, 13, 
12, 3, 251. For a survey on automata exploring labyrinths, 
see [21]. Deng and Papadiitriou [16] propose and study 
the problem of exploring an unknown directed graph having 
labeled vertices. Albers and Henzinger [l] give improved al- 

% light of our results and those of Bender and Slonim, we Bee 
that a friend is only worth loglogn pebbles. 

271 



gorithms for this problem. These works study esploration 
from t,he perspective of competitive analysis. The rzsult~s 
are stated in terms of t,he deficiency of the graph (i.e., the 
minimum number of edges to be added to make the graph 
Eulerian). Betke, Ftivest, and Smgh [9] and together wivith 
Awerbuch [4] st,udy t,he problem of piecemeal learning undi- 
rected labeled graphs. In t.he piecemeal learning problem 
the robot is required to ret.urn to its starting position peri- 
odically. 

Rivest and Schapire [27, 261 study t.he problem of bearn- 
ing environments modeled by finite automata. Here, an 
environment is represented by a directed graph, in which 
each vertex has one of two (or const,ant.) possible labelings. 
The robot has learned t.he environment (automaton) when 
it can predict. the label of any vertes (state) reached on 
an arbitrary walk. Hence, if the automaton is irreducible, 
then the robot, actually learns the topology of the underly- 
ing graph. Their algonthms (wit,h the esception of one, for 
permutation automata) rely on a teacher. The teacher sup- 
plies counteresamples to the robot’s hypot.heses. Variants 
of this problem t,hat do not rely on a teacher are studied 
in the following works [14, 13, 28, 171. We note that Dean 
et. al. [14] apply a cycling technique related to ours, but for 
different purposes. 

Esploring and navigating in geomet,ric environments is 
studied extensively. A sample of papers includes [5, 23, 15, 
11, 6, 10, 6, 19, 21. 

2 Preliminaries 

Let G = (V,E) be th e unknown directed graph the robot 
has to explore and map. Suppose that the graph is Ytronglgr 
connected and that, all the vertices of G are unlabeled and 
have (the same) outdegree (a. Let the edges emanating from 
each vertes be labeled by diitinct indices in (1,. . . , d} and 
denote an edge from 21 to B wit.h label u by (z,cT,u). Let 
n = IV1 and let. 5 be an upper bound on n. 

The exploring robot. starts at an arbitrary vertex of G. 
The robot has a single pebble.7 At each time step, the robot 
mav traverse any outgoing edge from the vertex it is at. In 
addition, the robot. may drop the pebble at the vertex. or pick 
up the pebble that it has previously dropped at the vertex. 

We say t.hat. a graph hl = (Vhf, Ehf) is isomorphic to G 
(denoted, hl g G) if t.here esists an isomorphiim between 
the bmo graphs that, preserves edge labels. Namely, there 
exists a one-to-one and onto mapping f : Vhf + V, such 
that the following holds: For every two vertices w and z 
in V~J, t,here is an edge labeled u from w to z in hl, if 
and only if there is an edge labeled cr from f(zu) to f(z) 
in G. Let WJO and ~0 be dist,inguished vertices in r/I and 
G, respectively. We use t,he notation (M,wo) E (G,vo) to 
say that. t,here esists an bomorphism f between M and G 
such that, f(wo) = vg. We say that (M,wo) is consistent 
with (G,plg) if there exists a subgraph G’ of G containing 
~10, such that (hi, 200) Z (G’, ~0). 

We say that the robot at verte? 2, in G has learned the 
graph G when it out,puts a graph G together with a vertes 
li in c such that (8,;) Z+ (G, v). Since in each time step 
the robot traverses a single edge, the running time of the 
algorithm is the number of moves the robot makes. Though 
computation time is ignored in t,his definition, we note that 
the total computat.ion time of our algorit,hms is polynomial 
in the size of the graph. 

‘In Section 4 w consider 3 robot having a source of pebbles. 

3 learning with a Single Pebble 

In thii section we present our algorithm for learning effi- 
ciently any graph using a single pebble and knowledge of 2. 
We start (in Section 3.1) by describing an important oubrou- 
tine of our algorithm, which we c;Lu path compression. The 
robot executes this subroutine (using the pebble) to map 
subgraphs of G that are visited by closed paths known to 
the robot. In SecCon 3.2 we show t,hat the robot can learn 
G if we assume the robot has access to in return-path oracle 
for G. The robot can query this oracle from any vcrtes in 
the graph and receive a sequence of edges t,hat leads it back 
to its start vertex. In the following sections we progressively 
weaken thii assumption. In SecCon 3.3 we formally define 
an orienting procedure and describe how to devise 5uch n 

procedure based on procedures for distinguishing between 
vertices. In Section 3.4 we replace t,he assumpt,ion that the 
robot has access to a return-pat$h oracle 1vit.h the assump- 
tion that it knows an orienting procedure for G. Finally, in 
Section 3.5 we show how the robot can use knowledge of ?a 
to esplore and learn the graph while building an orient,ing 
procedure on it,s own. 

3.1 Compressing Closed Paths 
Here me present an essential building block of our algo- 
rithms. Let the robot be at vertex 21 in G, and assume the 
robot, knows a closed path in G t,hat starts (and enda) at D. 
The path visit,s a subgraph Gpath of G. Namely, Gpnth con- 
sists of all vertices and edges traversed along the path. Since 
the path may visit the same vertices several times, Gpnth ~CJ 
not necessarily a simple cycle. In the path compression pro- 
cedure the robot uses the pebble to identify repeated vertices 
on the path and construct a graph M isomorphic to Gpath. 

More precisely, let path = ~1,. . . , 0;: be a sequence of 
edge labels corresponding to a closed path st,arting (and end- 
ing) at 0. Let 00,261 , . . . , UI: be the vert,ices in G visited along 
the path, where uo = UI: = vu. The robot maintain5 a list of 
length k + 1 where ultimately Bhe Cth entry in the list will 
identify the i-th vertes occurring on the pat,h in G. IniCally 
thelist is (wo,A,... , A, ‘wo), where A means ‘unident,ifcd.” 
The goal of the robot is to replace all “unidentified” entries 
wivith vertes names. 

The algorithm proceeds in at most n stages, each st,art- 
ing and ending with the robot and the pebble at o. In t,he 
first stage, the robot drops the pebble at vertes 2, and fol- 
lows the entire closed path; for each i such that the robot 
observes the pebble after i steps (i.e., at the vertes reached 
by Braversing ~1,. . . , ui), the robot replaces t,he i-th ent.ry 
in the list with WO. In the j-th st,age, let S be t.he smallest 
indes such t,hat the t-eh entry in the list is A. The robot 
t,raverses ~1,. . . , ut, and after the &th step drops the peb- 
ble at the vertes reached. Then it replaces the &th cnt.rg 
wivith w,-1 (i.e., a new vertex name). A5 in the first &age, it 
traverses the rest of the closed path (and returns to tt). For 
each i such that t,he robot observes the pebble after i otaps 
(counting steps from when it left ZJ), the robot replace0 t,he 
Gth entry in the list (which must be a A) with wj-1. After 
returning to v,, the robot follows path once more to pick up 
the pebble. 

The algorithm maintains the property that the wme la- 
bel wj appears in places L and 1’ in the list if and only if 
the L-th and k’-th vertices on the closed path in G are the 
same. When the list is completed, the robot constructs a 
map hi in accordance wivith the list and the edge labels in 
path. Namely, the vertices of ?vI are the vert,ices in the liot, 

272 



nnd if ~3 and zUj/ appear in places i and i + 1 in the list, 
then there is an edge (Uj, c,+, tUj/) in M. 

Lemma 1 Let v be u vertex in G and path be a sequence of 
edge labels that corresponds to a closedpath in G starting and 
ondfng at v, Let Gpnth be Ihe aubgruph of G visited by path. 
The pallr compression procedure runs in time O(n . Ipathl) 
and outputs a graph M such that (M, wg) Z (Gpath, v). 

32 Learning with a Return-Path Oracle 
In thio section, WC assume that the robot is given access to 
n return-path oracle. Namely, at any time step it can query 
the orncle and rcceivc a sequence of edge labels that returns 
the robot to a particular vertex VO. 

WC ahow how the robot can learn G by querying the 
orde and using repeated applications of the path compres- 
oion procedure, The return-path algorithm proceeds in at 
mont ned = IEI stages, In each stage the robot learns at 
lcoot one new edge in G. In the i-th stage, the robot con- 
ntrncts n stron&ly connected map Mi having a designated 
vertex ~0, The initial map, MO, consists only of the ver- 
tex vs (and no cd&es). The final map is the output, c, of 
the nl&orithm. The ai&orithm maintains the invariant that 

1 
Ml, we) is consistent with (G, vo) (where consistency is de- 
ned in Section 2). The algorithm associates a closed path 

path(M:c) with each map Mi. This path starts and ends at 
IUO and passes through all vertices and edges in Mf. Since 
Ml is strongly connected, the robot can easily compute such 
a path of length O(a*d). 

WC say that a vertex w in a map Mi is finished if it has 
d ont&oin& cd&es in Ml. Otherlvise it is unfinished. In the 
(i + 1)411 stage ti K. algorithm augments the map Mi Jvith 
n new cd&c emanating from an unfinished vertex in Mi and 
perhaps other vertices and edges. Thii is done as follorvs. 
Let w be an unfinished vertex in Mi and let LT be the label 
of n missing cd&c from w. Let explore(M;) be a sequence of 
edge lnbels connecting wg to w, concatenated lvith u. The 
robot performs the walk corresponding to explore(Mi) in G 
atnrting from VO. It then queries the return-path oracle. Let 
the rctnrn path that the oracle provides be called reti. The 
robot returns to vo using the path ret{. Then it compresses 
th0 ClOSCd pllth pathi+~ = path(Mi) o explore(Mi) o ret;. 
The ai&orithm lets Mr.+1 be the resulting map. By Lemma 1, 
WC ltnolv that (Mf1.1, ~0) r (Gpathi+l,vo). Since path;.+,~ 
contnins path(Mi), Mr.+.~ contains Mi as a subgraph; by the 
choice of w and u, Mil.1 also contains at least one neiv edge 
(the edge labeled u going out of w). 

Note that the time complexity of this algorithm can be 
improved. However, the above formulation serves as a basis 
for anbseqnent algorithms (that do not rely on a return-path 
oracle), From ail the above, we obtain the following lemma. 

Lomma 2 Let L be the length of the longest return path pro- 
vided by the oracle, The return-path algorithm runa in time 
O(n*d 4 (n*d + 4)) and outputs a map a isomorphic to G. 

3.3 Orlcntlng Procedures 
Intuitively, an orienting procedure for a graph G guides the 
robot around the graph and ultimately leaves the robot at a 
vertex it “recognizes.” We note that an orienting procedure 
does not lead the robot back to a particular vertex. Hence, 
anarminp, nn orienting procedure is lveaker than assuming 
a return-path oracle. Before tve define an orienting proce- 
dnrc formally, we explain the notion of equivalence betlveen 

vertices. We say that two vertices u and v in G are equiva- 
lent, denoted u E v, if (G,u) Z (G,v), i.e., there exists an 
antomorphiim of G mapping u to v. 

Definition 1 An orienting procedure op for a gruph G has 
the following properties. 
1. 

6 

3. 

4. 

5. 

It determines the robot’s actions (i.e., what edge labels 
it traverses and when it drops and picks up the pebble). 

The robots starts and ends with its pebble, regardless of 
the starting vertex. 

The procedure is deterministic. 

The procedure returns an output. The output is a func- 
tion of when the robot sees the pebble. 

Notice that because the procedure is deterministic, every 
time the robot ezecutes the orienting procedure starting 
from anyfied verkxv in G, it returns the same output 
andfinishes at the same final vertex. Thus, an orienting 
procedure has at most n outputs. 

Let output(op, v) be the output of the procedure op when 
started at vertex v, and let final(op, v) be the final ver- 
tex reached. An orienting procedure guarantees that for 
every u and v in G output(op, u) = output(op, v) a 
final(op, u) 3 final(op, v). 

Note that the converse is not guaranteed. Namely, the 
procedure may end at the same vertex with fwo different 
outputs. 

We show horn to build an orienting procedure using distin- 
guishing procedures for ineqnivalent vertices in G. 

Definition 2 Let u and v be two inequivalent vertices in 
G. A distinguishing procedure dpU,” for u and v has the 
following properties. 

l-4. As in Definition 1. 

5. ow4bu,v, 4 # ouw@p,,,, 4. 

Notice that a distinguishing procedure differentiates between 
starting vertices whereas an orienting procedure differenti- 
ates between ending vertices. In addition, a distinguishing 
procedure differentiates bet{veen a single pair of starting ver- 
tices whereas an orienting procedure differentiates among all 
possible ending vertices. 

Every orienting procedure op that we consider can be 
viewed as a tree Top in the folloJving sense: Each leaf in 
Top corresponds to a different output of op. The internal 
nodes of Top are distinguishing procedures. The branches 
emitting from a node are labeled by the possible outputs 
of the distinguishing procedure. Leaves are labeled by the 
sequence of outputs on the branches leading from the root to 
the leaf. Consider all vertices in G that the robot may end 
at when op terminates v3,h output A at a ieaf CA; denote 
thii set of vertices by reach(A). Property 5 dictates that all 
vertices in reach(A) are equivalent. 

We can build an orienting procedure of the above type in 
stages, extending the tree in each stage. Initially \ve let our 
candidate orienting procedure cop be the empty procedure, 
i.e. the robot makes no actions, and the tree Tcop has a 
single leaf. Assume inductively that cop preserves proper- 
ties l-4 and has k possible outputs (so that Tcop has k 
leaves). If cop is not yet a complete orienting procedure, 
then for some output A corresponding to leaf CA there e.xist 
ineqnivalent vertices u and v in reach(A). Let dp”,” be a 
distinguishing procedure for u and v. We replace the leaf CA 

273 



with dp, “. Since output(dp, “, u) # output(dp, v, w), the 
ne\v tree has at least L + 1 leaves. Therefore, the’ modified 
cop has at least k + 1 outputs. Since an orienting proce- 
dure has at most n different outputs, Fve obtain an orienting 
procedure after at most n - 1 stages.’ It can be shown 
t,hat for every pair of inequivalent vertices there exists a dis- 
tinguishing procedure 1vit.h running time O(n3d). Hence, 
every graph has an orienting procedure lvith running, time 
O(n4d). In Section 3.5, \ve exhibit an algorithm in which 
the robot devises diitinguishing procedures and builds an 
orienting procedure while exploring the graph.” 

3.4 learning with an Orienting Procedure 
In this section we assume that the robot has a prespeci- 
fied orienting procedure op for the graph G. For ease of 
t,he presentation, me assume throughout this section that 
the graph has no automorphisms (and hence no vertices are 
equivalent). Thii assumpt,ion can easily be removed here 
and is not used in later sections. 

By t.he above assumption, for each possible output A, 
the set reach(A) (defined in the Section 3.3) contains a sin- 
gle vertes, which \ve denote VA. With each output A, the 
algorit,hm associates a map M(A), which is const,ructed as 
t,he algorithm proceeds. The map M(A) contains a desig- 
nated vertes we(A). The algorithm ensures that each M(A) 
is strongly connected and maintains t.he folloxving invariant: 
INVARIANT 1 (orienting procedure): For eerery output A of 
OP, (AI(A), we(A)) is consistent with (G, *,A). 

Learning proceeds in at, most n*d phases. In each phase, 
some map M(A) is augmented lvith at least one new edge. 
?t7e say t,hat a map is finished if all its vertices are fin- 
ished. The algorithm terminates when some map M(A) is 
finished, in rvhich case it outputs M(A). We use the short- 
hand path(A) to represent path(hl(A)) and explore(A) to 
represent. explore(M(A)), where path(.) and explore(*) were 
defined in Section 3.2. Let Gpa.b(~) be the subgraph of G 
visited by path(A) when starting from VA. In each phase 
the algorithm uses the orienting procedure to find a closed 
path satisfying the follolving: 
1. For some output A, t,he path starts and ends at VA. 
2. The path visits all of Gpath(~) and at. least one addi- 

tional edge. 
The robot compresses thii closed path and replaces M(A) 
tvisith bhe resulting map. 

To find a closed pat,h satisfying the above properties the 
robot does the following. Starting from its current vertex, 
it esecutes the orienting procedure, observes its output &, 
and follows path(&) o explore(&). It then esecutes the 
orienting procedure again, observes its output A2, and fol- 
lows path(Ap) o explore(A2). The robot repeats the above 
until it observes an out.put AJ that it has previously seen 
(i.e., A, = A, for i < j). Note that some output must 
reappear after at most n + 1 repetitions (though the robot 
need not, know n). At this point the robot has discovered a 
closed pat,h that starts and ends at vAj. Furthermore, this 
closed path starts with path(Ai) o explore(Ai), and hence 

sFor the purposes of this construction, it actually suffices to 
reins the definition of B distinguishing procedure to allow ei- 
thcr autput(dp,,,,u) f output(dp,,,,u) or final(dp,,,,u) q 

final(dp,,,, ~1. 
‘However, our dsorithm may terminate (correctly) before the ori- 

enting procedure is complete. 

visits all of Gpath(~,) and at least one additional edge. In- 
formally, since the robot does not know to which vertes it 
v~ill return, it ‘prepares’ all vertices v& for the possibility. 
It does so by following path(Ai) o explore(Ai) from each 
VA;* 

Let T(op) be the running time of op. Since for cv- 
ery map M(A), Ipath(A)j = O(n*d), and 
/explore(A)1 5 n - 1, the length of the closed path found is 
O(n * (T(op) f n*d)). By L emma 1, the closed path can be 
compressed in time O(n” . (T(op) + n*d)). We obtain the 
follolving lemma. 
Lemma 3 A robot with a single pebble can learn anv s&on& 
connectedgraph G using an orienting procedure op for G in 
time O(n’d. (T(op) + n2d)). 

3.5 Learning the Graph while Building an Orienting Pro- 
cedure 

In this section we show that a robot having a single pcb- 
ble can efficiently explore and map any strongly-connected 
directed graph if it knows an upper bound A on the oize 
of the graph. Recall that if the robot does not know oi 
then this task is impossible. The st,ructure of the algorit.hm 
presented here is similar to the structure of the algorithm 
described in Section 3.4. Since the robot does not have a 
real orienting procedure it uses a candidate orienting pro- 
cedure cop. In each phase, for some output A of cop the 
algorithm either (1) replaces M(A) with a new, larger M(A) 
or (2) discovers a distinguishing procedure dp,,, for some 
inequivalent vertices u and v in reach(A). In the latter case 
it improves cop using dp,,” (as described in Sect.ion 3.3). 
Since the improved cop lvill never again output A, the algo- 
rithm discards M(A). The algorithm terminates when some 
M(A) is finished, in which case it outputs M(A). We sholv 
that the algorithm maintains the following invariant, lvhich 
is a relaxation of Invariant 1. 
INVARIANT 2 (candidate orienting procedure): For every out- 
put A of cop there exists a vertex u E reach(A) such that 
(M(A), we(A)) is consistent with (G, u). 

In particular thii invariant ensures that the finished map is 
isomorphic to G. 

In Section 3.4 we had the property that reach(A) con- 
sisted of a single vertex WA. Thii provided a method for the 
robot to identify closed paths that start and end at some 
VA. Here, this method does not work since reach(A) may 
contain several vertices (equivalent or inequivalent). Thcrc- 
fore, the robot could observe oubput A tlvice without being 
on a closed path. The robot’s knowledge of A combined rvith 
the follolving observation suggest,s a remedy for t,hia problem 
- that is, holv to find a closed path t.hat starts and ends at 
a vertex u in some reach(A). 

Observation 1 Let f : V + V be ang determinislic 
function. Then for every vertex w E V, the sequence v, f(zf), 
;tm,, * * * becomes cyclic within the first n applications of 

. 

Suppose the robot repeats the follo!ving: it esecutes cop, 
observes its output A, and follolvs path(A) o explora(A), 
Then after at most A repetitions it ha entered a cycle. WC 
later show hoIv after another 28 repetitions it can find a 
closed path that starts and ends at a vertes u in rcnch(A), 
for some output A. 

Suppose the robot runs the algorithm from the previouo 
section lvith the enhancement above. The robot can noiv 

274 



find closed paths, but the algorithm still has a serious flaw. 
Consider a map M(A) that results from compressing a closed 
path that starts and ends at u E reach(A), Assume that in a 
subsequent stage in the algorithm, the robot obtains a new 
M(A) by compressing a closed path that starts and ends at 
u’ E reach(A), If u’ E u then the argument that the new 
M(A) is larger than the old M(A) holds as before. However, 
if u’ $ u then we can claim nothing about the size or struc- 
ture of the new M(A). This is because (old M(A), ws(A)) 
may not be consistent with (G,u’). Hence, the argument 
that the new M(A) is bigger than the old M(A) is no longer 
valid, This motivates the need for a map uerijicationproce- 
f-lure, 

Map Verification. Suppose the robot is at a vertex v in 
nomc reach(A). We would like a procedure to verify that 
(M(A),we(A)) is consistent with (G,u). This is not diffi- 
cult if wc allow the robot to lose its pebble. In particular 
the robot hypothesizes that path(A) corresponds to a closed 
path in G starting at V. Then the robot attempts to com- 
prcsa path(A), If path(A) is not a closed path starting from 
u and the robot loses the pebble, then clearly (M(A), we(A)) 
is not consistent with (G, v), Otherwise, the robot compares 
M(A) to the map resulting from compressing the closed 
pnth, 

Since we cannot allow the robot to lose the pebble (or 
clot it will not be able to learn the graph), we must modify 
the above procedure. The new procedure, described below, 
performs a weaker form of verification. We later shorn that 
it nonetheless meets the needs of the algorithm. 

1, 

2, 

Wo 

The robot starts from v and follows path(A) ii times. 
Clearly, if (M(A), we(A)) is consistent with 

t 
G,v), then 

the robot ends at u. However, even if (M A),we(A)) 
io not consistent with (G,v) then by Observation 1 we 
know that the robot has entered a cycle. 
Next the robot drops the pebble at its current vertex V’ 
and follows path(A) once. 

If the pebble is not at the vertex reached, then veri- 
flcation fails, To retrieve the pebble, the robot con- 
tinues repeating path(A) until it finds the pebble. 
Otherwise, the robot compresses path(A), which it 
has now identified as a closed path, starting from v’. 
If the resulting map differs from M(A) then verifi- 
cation fails. Otherwise verification passes. 

rcfcr to this procedure as ver(A). 

Noto 2 There are two situations in which ver(A) passes: 

1. (WA), WOW) is consistent with (G, u), or 

Ri ~~~~~~~~~~~~ 
is not consistent with (G,v), but 

is consistent with (G, d). 

If verification fails, then because of Invariant 2 ver(A) 
ia a distinguishing procedure. This procedure distin- 
f@ohea bohveen o and the vertex u in reach(A) such that 
(M(A), we(A)) is consistent with (G,u). Since for every map 
M(A), the length of path(M(A)) is O(n’d), the running time 
of vor(A) is O(fi . n2d). We are now ready to describe the 
algorithm, 

The Algorithm. The algorithm proceeds in at most 2n2d 
ph~eo, Initially, its candidate orienting procedure cop is 
the empty procedure (as described in Section 3.3). In each 
phase: 

1. 

2. 

3. 

4. 

To enter a closed path, the robot repeats the following 
ii times. 
(*) The robot executes cop and obtains an output A. 

If this is the first appearance of output A then the 
algorithm creates a new map M(A) consisting of a 
single vertex ws(A). Next the robot executes ver(A) 

verify the map M(A). 
. . 

If ver(A) fails, then ver(A) is a distinguishing 
procedure between a pair of vertices in reach(A). 
The robot uses this distinguishing procedure, 
Which OUtpUtS PASS or FAIL, to imprOVe cop (as 
described in Section 3.3). Thus, the output of 
cop is in (PASS,FAIL}*. Because of the exten- 
sion to cop, cop 1viU never again output A, so 
the robot discards M(A). The robot stops re- 
peating (*), skips Stages 2-4, and goes to the 
next phase with the improved cop. 
Otherwise (ver(A) passes), the robot follows 
explore(A). Note that by definition of ver(A), 
the robot follows explore(A) starting from a 
vertex u such that (M(A),we(A)) is consistent 
with (G, u). 

The subroutine (*) can be viewed as a function taking 
the vertex at which the robot starts to the vertex at 
which it finishes. By Observation 1, me know that af- 
ter ii repetitions of (*), the robot enters a closed path 
consisting of some number of executions of (*). 
The aim of this sta%e is to determine the closed path the 
robot has entered.’ To determine this closed path, the 
robot repeats (*) another 2fi times. Let the sequence 
S of outputs observed be Al,. . . , AZA. The robot finds 
the smallest p such that S is composed entirely of pe- 
riodic repetitions of the last p outputs of S. More pre- 
cisely, for all i, Ash-; = AZ+,- <m&p). Let seq be the 
sequence of edge labels traverse CL 
explore(A2n-p+l) 0 

m copover(Ap,l-,+l)o 
. . . o copover(Azh)oexplore(Azn). 

By the miniiality of p, the closed path consists of one or 
more repetitions of seq. To determine the closed path, 
the robot drops the pebble and repeatedly traverses seq 
until it finds the pebble at the end of one of its traversals 
of seq. It then retrieves the pebble for future use. 
The robot proceeds along the closed path found above 
until it reaches the end of any execution of cop, say with 
output A. The robot then compresses the closed path 
and replaces M(A) with the resulting map. 
If the new M(A) is finished then the algorithm outputs 
(the new) M(A) and terminates. 

As noted above, if ver ever fails in Stage 1, the robot 
can improve cop. If all verifications pass, by Lemma 1 we 
know that in each phase (new M(A),we(A)) is consistent 
with (G,u) for some u E reach(A), and thus Invariant 2 is 
preserved. Because ver(A) is part of the closed path and 
by Note 2, the new M(A) contains the old M(A) as a sub- 
graph. Because explore(A) is part of the closed path (and 
is followed from u) the new M(A) also contains at least one 
new edge. 

The algorithm terminates after at most 2n2d phases be- 
cause in each phase the algorithm can either improve the 

“Note that the robot cannot simply drop the pebble and repeat 
(a) until it sees the pebble again because the robot needs the pebble 
to execute (*). 

275 



candidate orienting procedure or enlarge a map. More pre- 
cisely, since the candidate orienting procedure can b.2 im- 
proved at most n - 1 times, at most n-l maps are discarded. 
At any time the algorithm maint,ains at most n maps, and 
so the algorithm builds at most 2a - 1 maps. Since each 
map contains at, most n-d edges, the bound on the number 
of phases follovls. Note t,hat the algorit.hm may terminate 
before completing the orienting procedure.” 

The running time of each phase is the sum of (1) the 
time to find a closed pat,h, and (2) t,he running time of the 
compression procedure. Item (1) is O(6) times the sum of 
(a) the running time of the candidate oriending procedure, 
(b) the running time of t,he verification procedure, and (c) 
the length of the esploration sequence (lvhich is at most n). 
Recall that. 6he running time of the verificat,ion procedures is 
O(Pi-n2d). Also recall that verification procedures (that fail) 
are distinguishing procedures for improving the candidate 
orienting procedure. Therefore, Jse can bound the running 
time of any candidate orienting procedure by O(ii - n3d). 
Thus, Item (1) amounts to O(A2n3d). By Lemma 1, Item 
(2) is bounded by O(iizn’d). Since there are at most 27.~~8 
phzes, tve obtain bhe follokving Theorem. 

Theorem 1 A robot having a single pebble can learn any 
strongly connectedgraph iven an upper bound 6 on the size 
of the graph in time O(A 9 ned’). 

4 learning without an Upper Bound on n 

In bhis section \ve state our results concerning the number 
of pebbles needed to learn graphs efficient.ly if the graph 
size is unknown. We use t,he algorithm of Section 3.5 as a 
subroutine to shoW t,hat for any c > 0, [cloglognl pebbles 
are sufficient,. The resulting algorithm is deterministic. In 
addition, ive prove a matching lolver bound demonst,rating 
that, Q(loglog c) pebbles are necessary. The lolver bound 
applies to any randomized algorithm that uses an expected 
polynomial number of moves. We not,e that in our upper 
bound the total computation time to decide on moves is 
polynomial, lvhereas t.he louver bound applies even when the 
robot, is computationally unbounded. Furt.hermore, our up 
per bound holds even when the pebbles used by the robot 
are indiitinguishable from each ot,her, mhile the 1ovJer bound 
holds for distinguishable pebbles. 

We avant to study how bhe number of pebbles needed 
groivs ivith the size of the unkno\vn graph. We denote t.he 
expected number ofpebbles a (probabilistic) robot A uses on 
graphs of size n, by PA(~). Namely, 

PA (9a) d2 Fey E[# of pebbles that A uses on G], 
n 

lvhere &, is the set. of all graphs on n vertices. The expected 
running time of A is defined analogously. (Recall thab in 
each time step t,he robot, makes a single move, and hence 
the running time of the algorithm is t.he number of moves 
the robot. makes.) 

Theorem 2 For every constant c > 0, there exists a 
(deterministic) algorithm that learns graphs of size n in 
polynomial-time using at most [clog log n1 pebbles, without 
knowledge of n. 

“In fact, our algorithm as 3 whole can be viewed as an orienting 
procedure that outputs a completed map and 8 designated vertex. 

Theorem 3 Consider any algorithm A that, with proba- 
bility greater than l/2, learns any graph in expected poly- 
nomial time without knowing the size of the graph. T/hen 
PA (92) = Q(log log n)? 

The algorithm for Theorem 2 uses the one-pebble algo- 
rithm of Section 3.5 combined with a variant of the standard 
“guess and double” technique; namely, instead of doubling, 
it takes the 6’th power for a suitably chosen L. In particular, 
setting H = [2’/“], ‘t 1 runs the one-pebble algorithm trying 
2 = 2”, fi = $5 fi = 25 until one of these csccutiono 
succeeds. The algorithm succeeds after at most rclog log 911 

iterations, and each iteration uses at most one pebble. The 
details of the proof ~vill appear in the full version of this 
paper. We note that this algorithm can be determinis8ically 
simulated by two robots, giving a determinist,ic alternat,ivc 
to Bender and Slonim’s randomized algorithm [7]. 
Proof (of Theorem 3): In order to prove t,he theorem, 
we analyze the behavior of any algorithm on two types of 
graphs of outdegree 2: cycles and combination loclzs with 
tails. Formally, the cycle of n nodes is the labeled, directed 
graph C, on vertex set {zvo, + -. , w+l}, where there are tv:o 
directed edges labeled 0 and 1 going from plti to ‘~~(i+~)~~d~. 
A combination lock ivith tail has t,he follolving st,ructurc (ccc 
Figure 3). Let (Y = (YICY~ . . -(me E {O,l}e be any string 
and let m 2 0 be an integer. The combinat,ion lock with 
combinat,ion cy and tail m is the graph La,m on vcrtes set 
(211,962, *. . I wn,9Jl, . . . ,ve+l} 1vit.h the following edges: For 
each 1 5 i 5 m - 1, there are two edges labeled 0 and 1 from 
ui to ui+.l; there are two edges labeled 0 and 1 from u,,, to 
~1; for each 1 5 a’ 5 1, there is an edge labeled (Y{ from Zli 
to vi+1 and an edge labeled &i from 8; to ~1; there are two 
edges labeled 0 and 1 from ve.t.1 to ~1. It is important to 
note that a robot starting at vertes ~1 (i.e., the start of t,he 
combination lock) does not reach vertes ~~~:+.1 unless it es- 
ecutes the consecutive sequence of moves CY~*. * (~1: at some 
point. We start by giving the intuition behind the proof. 

We analyze any algorithm based on the times it drops 
pebbles in Qhe case that it does not see previously-dropped 
pebbles. We sholv that there must be huge gaps in thenc 
pebble-dropping times or else the algorithm uses a(1o.g log n) 
pebbles on sufficiently large cycles of length n. The quan- 
tity Q(log log n) is esacct.ly the threshold below &ch the 
gaps betlveen pebble drops become superpolynomial. That 
is, for any polynomial f there are infinitely many time steps 
t such that no pebble is dropped between time t and t,ime 
f(t) Ivith high probability. Then, for one of these big gaps, 
lve can construct a combination lock with tail for &ich the 
follolving holds. With high probability, the algorit.hm drops 
no pebble lvithin the combination lock and fails to reach 
the last few vertices of the lock in its allot,ted running time. 
Thus the robot fails to learn the graph. The idea of uo- 
ing combination locks with tails to foil a robot come8 from 
Bender and Slonim’s argument t,hat a constant number of 
pebbles is insufficient [7]. The novel aspect of our proof io 
the analysis of pebble-dropping times to determine on which 
sizes of combinat.ion locks the algorithm fails. 

We now turn to the details of the proof. Suppose, in 
contradiction to the claim in the t,heorem, that tve have 
an espected polynomial-time algorit,hm A which ouccccdn 
in learning graphs with probability greater than l/2, but 
does not use S2(loglogn) pebbles. Let q(n) = O(9r”) be a 

“It is easy to see from the proof thot the GUCC~LW probability of l/2 
is arbitrary and can be replaced by nny conetnnt. 

276 



Figure 3: A Combination Lock with a Tail. 

polynomial upper bound on the expected running time of 
the algorithm, In this proof, we use the standard technique 
of trcnting the randomized algorithm A as a distribution 
on deterministic algorithms Ar, i.e. for every infinite string 
r E (0, l}N, Ar is the deterministic algorithm given by A 
wing random coins r. All probabilities and expectations in 
this proof arc taken over the choice of r. 

We wioh to study how the robot behaves when it doesn’t 
aec the pebbles it has dropped previously. To formalize this, 
we look at the infinite graph I on vertex set {w1,2u2,. . .} 
where there arc two edges labeled 0 and 1 from wi to wi+l 
for cvcry i 2 1. Now consider the behavior of the robot 
when it is placed nt vertex ~1. Notice that when the robot 
drops n pebble at vertex wi and moves, it never sees its 
pebble again, For 1 2 s 2 1, let P(s,t) be the probability 
thnt the robot drops at least one pebble between vertices w6 
and ZU~,1, inclusive, and let E(s, t) be the expected number 
of pebbles dropped by the robot between vertices ws and 
wlcI, oo E(s, i) 1 P(s,t). Notice that E&t) is a lower 
bound on the expected number of pebbles the robot uses on 
a cycle Ct of 2 vertices, because for every r, Ar’s behavior 
in itn first $ - 1 moves is the same in CI as in I. We now 
use this to show that that there are superpqlynomial gaps 
in the pebble-dropping times. 
Claim: For every fixed c > 0, there are infinitely many t such 
that P(1, i”) < l/8. 
Proof of Claim: Suppose not, i.e. there is some to such 
that for all 2 2 lo, 
E(2o, 2i) = & 

P 2,P) 
5 

1 l/8. Then for every e 1 0, 
E($ -I, t;') > & P($-‘, t$) 2 t//8. 

For n > 20, 

thnt n < Yg’. 
let 1, be the smallest value of e such 

Then log log n < log log20 + &logc, so 
4, z 62(log log n), We also have 

-1 
E(l, 9t) 2 E(20,n) 2 E(to, $"--') 2 + = sl(loglog 7a). 

But E(l, n) is a lower bound on the expected number of 
pebblco the robot uses on a cycle of length n, so we have a 
contradiction, =#= 0 

Recall that the expected running time of A is q(n) = 
O(n”), Using the above claim with c = L + 1, we can find a 
t with the following properties: 
0 P($ Pi) < j$* 

0 V<$. 

. t"'+'l 2 8g(21+ 4). 
Consider the random variable W which is a string con- 

niating of the robot’s first 8q(22 -I- 4) moves in I. There are 
less thnn 8q(22+4) contiguous subsequences of length tin W, 
ao there is Borne string (Y E (0, l}’ which occurs in W with 
probability less than 8q(2t + 4)/2’ < l/8. In other words 

there is a sequence of moves (Y of length t which the robot 
performs with probability less than l/8 in its first 8q(2t + 4) 
steps in I. 

Let /3 by any binary string of length 4, and consider 
the behavior of the robot when placed at vertex tl in a 
combination lock GB with tail t - 1 and combination cr/3 
(and vertex set {zll,. . . , ut-1,211,. . . ,vr+s} as above). Since 
A runs in expected time q(n) and G has 2t + 4 vertices, the 
probability that A makes more than 8q(2t + 4) moves in G” 
is at most l/8. 

Let Rx be the set of random coins r for which A, would 
drop a pebble between vertex wt and wtk+lel in I. Let R2 be 
the set of random coins r for which A, executes the sequence 
of moves (Y at some point during its first 21-l-4 moves in I. 
Let Rs be the set of random coins r for which A, makes 
more than 8q(2t + 4) movesinGB. Let R=RlURzURs. 
We have shown that Pr [r E R] < 3/8. Notice that for any 
r 6 R, the output of Ar on GB is the same as its output on 
G7 for any string y of length 4 because the robot never sees 
a pebble that it has dropped and never reaches vertex vtgi. 
Let S7 be the set of r 6 R on which A, outputs G7 when 
placed in G7 (equivalently, Gp). Then since A has overall 
success probability at least l/2, A must succeed on at least 
l/8 of the r $! R. So Pr [r E S] > l/8. But there are 16 
S7’s and they are disjoint. =++ q 

5 Extensions 

We have generalized our result to the case when the local 
labelling of the edges at a vertex is a function of the previous 
vertex in the robot’s path. (We assume there is at most one 
edge between two vertices.) We give only the intuition for 
the proof here. First, suppose that the robot could drop 
its pebbles on edges. In this case, one can simply execute 
our algorithm on the edge-adjacency graph of the original 
graph. In this new graph, edges of the old graph correspond 
to vertices, and there is an edge between vertices el and ez 
if there exists vertices in the old graph 2)1, ~2, vs such that 
el = (VI, ~2) and e2 = (~2, ~3). The edge (el, e2) in the new 
graph is given the label that e2 has in the original graph 
when arriving at 212 by way of el. Thus, in this new graph, 
edges will have unique local labellings. One can execute 
any of our algorithms on this graph, and then reconstruct 
the actual graph once the algorithm has terminated. With 
some care, one can remove the need to allow dropping of 
pebbles on edges without increasing the number of pebbles 
needed. 

References 

[l] S. Albers and M. R. Henzinger. Exploring unknown en- 
vironments. In Proceedings of the Twenty Ninth Annual 

277 



PI 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

[a 

Pll 

PI 

P31 

ml 

ACX Symposium on the Theory of Computing, 1997. 

D. Angluin, J. Westbrook, and W. Zhu. Robot, naviga- 
tion with range queries. In Proceedings of the Twenty 
Eighth Annual ACM Symposium on the Theory of Com- 
puting, pages 469-478, 1996. 

V. Anjan. Doctoral Thesis. PhD thesis, hfathematical 
Instit,ute of the Academy of Sciences, Minsk, 1987. 

B. Alverbuch, hl. Betke, R. L. Rives& and M. Singh. 
Piecemeal graph esplorat.ion by a mobile robot. In 
Proceedings of the Eighth Annual ACM Conference on 
Computational Learning Theory, pages 321-328, 1995. 

R. Baeza-Yates, J. Culberson, and G. Ralvlins. Search- 
ing in t,he plane. Information and Computation, pages 
234-252, 1993. 

E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. On-line 
navigation in a room. In Proceedings of the Third An- 
nual AC&!?IAM Symposium on Discrete Algorithms, 
pages 8-15, 1992. 

hf. A. Bender and D. Slonim. The power of team 
exploration: Tlvo robots can learn unlabeled directed 
graphs. In Proceedings of the Thirty Fijth Annual Sym- 
posium on Foundations of Computer Science, pages 75- 
55, 1994. 

P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen, and 
hi. Saks. Randomized robot navigation algorithms. In 
Proceedings of the Seventh Annual ACM-SIAM Sympo- 
sium on Discrete Algorithms, pages 74-84, 1996. 

hf. Bet,ke, R. L. Rives& and hi. Smgh. Piecemeal learn- 
ing of an unknolvn environment. In Proceedings of 
the Sixth Annual ACM Conference on Computational 
Learning Theory, pages 277-286, 1993. 

A. Blum and P. Chalasani. An on-line algorithm for 
improving performance in navigation. In Proceedings of 
the Thirty Fourth Annual Symposium on Foundations 
of Computer Science, pages 2-11, 1993. 

A. Blum, P. Raghavan, and B. Schieber. Navigating 
in unfamiliar geomet,ric terrain. In Proceedings of the 
Twenty Third Annual ACM Symposium on Theory of 
Computing, pages 494-504, hlay 1991. 

hf. Blum and D. Kozen. On the pomer of the com- 
pass (or, lvhy mazes are easier to search than graphs. 
In Proceedings of the Nineteenth Annual Symposium on 
Foundations of Computer Science, pages 132-142, Oc- 
tober 1978. 

hf. Blum and W. J. Sakoda. On the capability of finite 
automat,a in 2 and 3 dimensional space. In Proceedings 
of the Eighteenth Annual Symposium on Foundations 
oj Computer Science, pages 147-161, 1977. 

T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kael- 
bling, E. Kokkevis, and 0. Maron. Inferring finite au- 
tomata xvibh stochastic out.put functions and an appli- 
cation to map learning. iliachine Learning, 18(1):81- 
108, January 1995. 

[15] X. Deng, T. Kameda, and C. H. Papadimt,riou. How 
to Iearn an unknolvn environment. In Proceedings oj 
the Thirty Second Annual Symposium on Foundations 
of Computer Science, pages 298-303, 1991. 

[16] X. Deng and C. H. Papadimt,riou. Exploring an un- 
knolvn graph. In Proceedings of the Thirty First An- 
nual Symposium on Foundations of Computer Science, 
pages 356-361, 1990. 

[17] Y. Freund, M. Kearns, Y. Mansour, D. Ron, R. RU- 
bmfeld, and R. E. Schapire. Efficient algorithms for 
learning to play repeated games against computation- 
ally bounded adversaries. In Proceedings of the Thirty 
Sixth Annual Symposium on Foundations of Computer 
Science, pages 332-341, 1995. 

F31 

WI 

PO1 

Pll 

P21 

[231 

E241 

t251 

[261 

[271 

[=I 

P91 

[301 

Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, 
R. Schapire, and L. Sellie. Efficient learning of typical 
finite automatsa from random ivalks. In Proceedings of 
the &th Annual ACM Symposium on Theory of Com- 
puting, pages 315-324, 1993. 

F. Hoffman, C. Icking, R. Klein, and I<. Kriegel. A 
competitive strategy for learning a polygon. In Pro- 
ceedings of the Eighth Annual AGM-SIAM Symposium 
on Discrete Algorithms, pages 166-174, 1997. 

Z. Kohavi. Switching and Finite Automata Theory, 
McGrav+HilI, second edition, 1978. 

V. B. Kudryavtsev, Sh. Ushchumlich, and G. Kilibarda. 
On the behavior of automat,a in labyrinths. Discrete 
Math. and Applications, 3:1-28, 1993. 

Pet&or Panaite and Andrzej Pelt. Exploring unknown 
undirected graphs. In Proceedings of the Ninth Annual 
ACM-SIAM Symposium on Discrete Algorithma, 1998. 

C.H. Papadimitriou and M. Yannakakis. Shortest pathn 
lvithout a map, Theoretical Computer Science, 84:127- 
150, 1991. 

M. 0. Rabin. Maze threading automata. Seminar Talk 
presented at the University of California at Berkeley, 
October 1967. 

L. Reyzin. Traversal problems for certain types of deter- 
ministic and non-deterministic automata. Unpublished 
manuscript, 1992. 

R. Rivest and R. Schapire. Inference of finite automata 
using homing sequences. Information and Computa- 
tion, 103(2):299-347, 1993. 

R. Rivest and R. Schapire. Diversity-based inference of 
finite automata. Journal of the Association for Com- 
puting Machinery, 43(3):555-589, 1994. 

D. Ron and R. Rubinfeld. Exactl: learning automata of 
small cover time. Machine Learnnng, 27(1):69-g& 1997. 

A.N. Shah. Pebble automata on arrays. Computer 
Graphics and Image Processing, pages 236-246, 1974. 

L. Zhang. A survey of the problem of learning an un- 
knolvn environment. Unpublished manuscript, 1994. 

275 


