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Abstract. Unreliable failure detectors, proposed by Chandra and
Toueg [2], are mechanisms that provide information about process fail-
ures. In [2], eight classes of failure detectors were defined, depending on
how accurate this information is, and an algorithm implementing a fail-
ure detector of one of these classes in a partially synchronous system was
presented. This algorithm is based on all-to-all communication, and peri-
odically exchanges a number of messages that is quadratic on the number
of processes. To our knowledge, no other algorithm implementing these
classes of unreliable failure detectors has been proposed.
In this paper, we present a family of distributed algorithms that imple-
ment four classes of unreliable failure detectors in partially synchronous
systems. Our algorithms are based on a logical ring arrangement of the
processes, which defines the monitoring and failure information propa-
gation pattern. The resulting algorithms periodically exchange at most
a linear number of messages.

1 Introduction

The concept of unreliable failure detector was introduced by Chandra and Toueg
in [2]. These authors showed how unreliable failure detectors can be used to
solve the Consensus problem [10] in asynchronous systems. (This was shown to
be impossible in a pure asynchronous system by Fischer et al. [7].) Since then, a
considerable amount of work has been devoted to study properties of the failure
detection abstraction [1,6,9].

From the results of Fischer et al. and those of Chandra and Toueg, it can
be derived the impossibility of, in asynchronous systems, implementing failure
detectors precise enough to solve Consensus. Chandra and Toueg presented an al-
gorithm that implements an unreliable failure detector in a partially synchronous
system. To our knowledge, this is the only proposed algorithm implementing any
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of the classes of unreliable failure detectors defined in [2]. In this paper we present
more efficient alternatives to that first algorithm.

1.1 Partial Synchrony

Distributed algorithms can be designed under different assumptions of system
behaviors, i.e., system models. One of the main assumptions in which system
models can differ is related to the timing aspects. Most models focus on two
timing attributes: the time taken for message delivery across a communication
channel, and the time taken by a processor to execute a piece of code. Depending
on whether these attributes are bounded or not, and on the knowledge of these
bounds, they can be classified as synchronous, asynchronous, or partially syn-
chronous [5]. A timing attribute is synchronous if there is a known fixed upper
bound on it. On the other hand, it is asynchronous if there is no bound on it.
Finally, a timing attribute is partially synchronous if it is neither synchronous
nor asynchronous. Dwork et al. [5] consider two kinds of partial synchrony. In
the first one, the timing attribute is bounded, but the bound is unknown. In the
second one, the timing attribute is bounded and the bound is known, but it holds
only after an unknown stabilization interval. Chandra and Toueg [2] propose an-
other kind of partial synchrony, in which the timing attribute is bounded, but
the bound is unknown and holds only after an unknown stabilization interval.
This will be the model of partial synchrony used in this paper.

Although the asynchronous model (in which at least one of the timing at-
tributes is asynchronous) is attractive for designing distributed algorithms, it
is well known that a number of synchronization distributed problems cannot be
solved deterministically in asynchronous systems in which processes can fail. For
instance, as we mentioned above, Consensus cannot be solved deterministically in
an asynchronous system that is subject to even a single process failure [7], while
it can be solved in both synchronous and partially synchronous systems [2,4,5].
In fact, the ability to solve these synchronization distributed problems closely
depends on the ability to detect failures. In a synchronous system, reliable failure
detection is possible. One can reliably detect failures using timeouts. (The time-
outs can be derived from the known upper bounds on message delivery time and
processing time.) In an asynchronous system, it is impossible to distinguish a
failed process from a very slow one. Thus, reliable failure detection is impossible.

However, even if it is sufficient, reliable failure detection is not necessary to
solve most of these problems. As we already mentioned, Chandra and Toueg [2]
introduced unreliable failure detectors (failure detectors that can make mis-
takes), and showed how they can be used to solve Consensus and Atomic Broad-
cast. Guerraoui et al. [8] showed how unreliable failure detectors can be used to
solve the Non-Blocking Atomic Commitment problem.

1.2 Unreliable Failure Detectors

An unreliable failure detector is a mechanism that provides (possibly incorrect)
information about process failures. When it is queried, the failure detector re-
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Eventual strong accuracy Eventual weak accuracy

Eventually Perfect Eventually Strong
Strong completeness ✸P ✸S

Eventually Quasi-Perfect Eventually Weak
Weak completeness ✸Q ✸W

Fig. 1. Four classes of failure detectors defined in terms of completeness and
accuracy.

turns a list of processes believed to have crashed (suspected processes). In [2],
failure detectors were characterized in terms of two properties: completeness and
accuracy. Completeness characterizes the failure detector capability of suspecting
every incorrect process (processes that actually crash) while accuracy character-
izes the failure detector capability of not suspecting correct processes. Two kinds
of completeness and four kinds of accuracy were defined, which combined yield
eight classes of failure detectors.

In this paper we will focus on the two kinds of completeness and two of the
four kinds of accuracy defined in [2], which are the following:

– Strong completeness. Eventually, every process that crashes is permanently
suspected by every correct process.

– Weak completeness. Eventually, every process that crashes is permanently
suspected by some correct process.

Note that completeness by itself is not very useful. We can trivially satisfy strong
completeness by forcing every process to permanently suspect every other process
in the system.

– Eventual strong accuracy. Eventually, no correct process is ever suspected
by any correct process.

– Eventual weak accuracy. Eventually, some correct process is never suspected
by any correct process.

Combining in pairs these completeness and accuracy properties, we obtain four
different failure detector classes, which are shown in Fig. 1. Out of these, Chandra
et al. [3] showed that ✸W is the weakest class of failure detectors required for
solving Consensus.

Chandra and Toueg [2] proposed a timeout-based implementation of a
✸P failure detector in a system with partial synchrony (they recognize that,
in practice, some synchrony is required to implement the failure detectors they
propose). In their algorithm, all processes periodically send a message to every
other process in order to inform them that it has not crashed. If there are n
processes in the system and C of them do not crash, at least nC messages are
periodically exchanged with this algorithm. We do not know of any other imple-
mentation of these classes of failure detectors.
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1.3 Our Results

In this paper, we present a family of algorithms that implement unreliable fail-
ure detectors of the four classes defined in the previous section, in partially
synchronous systems. Our algorithms have been designed, and are presented, in
a gradual way. First, we present an algorithm that provides weak completeness.
Next, we show how to extend this algorithm to provide eventual weak accuracy.
This extended algorithm implements a ✸W failure detector. Next, we present
two other extensions which strengthen the accuracy and the completeness, re-
spectively, implementing the stronger failure detectors.

In all these algorithms, each correct process monitors only one other pro-
cess in a cyclic fashion. The monitoring process performs this task by repeat-
edly polling the monitored process. Each polling involves only two messages
exchanged between the monitoring and monitored processes. If the pollings were
done periodically, a total of no more than 2n messages would be periodically
exchanged. Eventually, this amount becomes at most 2C, which is a significant
improvement over the at least nC messages of the previous algorithm (Chandra
and Toueg’s).

The rest of the paper is organized as follows. The next section describes our
model of distributed system. In Section 3, we present a basic algorithm that
provides weak completeness. In Section 4, we present an extension to the basic
algorithm that provides eventual weak accuracy. In Section 5, we present another
extension that provides eventual strong accuracy. In Section 6, we present an
extension to the previous algorithms that provides strong completeness, while
preserving accuracy. In Section 7, we study the performance of our algorithms
in terms of the number and the size of the messages periodically exchanged.
Finally, Section 8 summarizes the conclusions and presents future lines of work.

2 The Model

2.1 System Model

Our model of distributed system consists of a set Π of n processes, Π =
{p1, . . . , pn}, that communicate by exchanging messages. Every pair of processes
is assumed to be connected by a reliable communication channel.

Processes can fail by crashing, that is, by prematurely halting. Crashed pro-
cesses do not recover. In every execution of the system we identify two comple-
mentary subsets of Π : the subset of processes that do not fail, denoted correct,
and the subset of processes that do fail, denoted crashed. We use C to denote
the number of correct processes in the system, which we assume is at least one,
i.e., C = |correct| > 0. For every process p in crashed we use Tcrashp to denote
the instant at which p crashes.

In the algorithms presented in this paper we consider the processes p1, . . . , pn

arranged in a logical ring. This arrangement is known by all the processes. With-
out loss of generality, process pi is followed in the ring by process p(i mod n)+1. In
general, we use succ(p) to denote the process that follows process p in the ring,
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and pred(p) to denote the process that precedes process p in the ring. Finally, we
use corr succ(p) and corr pred(p) to denote the closest correct (i.e., belonging
to the subset correct) successor and predecessor of p in the ring, respectively.

We consider the model of partial synchrony proposed by Chandra and
Toueg [2]. In this model, there are bounds on both message delivery time and pro-
cessing time, but these bounds are not known and only hold after an unknown,
but finite, stabilization interval. We shall use Ts to denote the ending instant of
this stabilization interval in the execution of interest. We also denote by ∆msg

the maximum time interval, after stabilization, since a process sends a message
and that message is delivered and processed by its destination process (assuming
that both the sender and the destination have not failed). Clearly, ∆msg depends
on the existing bounds on both message delivery time and processing time. Note
that the exact value of ∆msg exists, but it is unknown.

2.2 Implementation of Failure Detectors

A distributed failure detector can be viewed as a set of n failure detection mod-
ules, each one attached to a different process in the system. These modules
cooperate to satisfy the required properties of the failure detector. Each module
maintains a list of the processes it suspects to have crashed. These lists can differ
from one module to another at a given time. We denote by Lp (Gp in Section 6)
the list of suspected processes of the failure detection module attached to pro-
cess p. Clearly, the contents of the list Lp (Gp) can be different at different times.
We use Lp(t) (Gp(t) in Section 6) to denote the contents of Lp (Gp) at time t.
A process p interacts only with its local failure detection module in order to get
the current list of suspected processes.

In this paper, we only describe the behavior of the failure detection modules
in order to implement a failure detector, but not the behavior of the processes
they are attached to. For this reason, in the rest of the paper we will mostly use
the term process instead of failure detection module. We consider that a process
cannot crash independently of its attached failure detection module.

In any algorithm that implements any of the failure detector classes defined
in Section 1.2, it is required that some processes monitor other processes. Mon-
itoring allows a process to detect whether another process has crashed and to
take proper action if so (usually suspect it). Clearly, there are several possible
ways to implement the monitoring. Examples are the monitored process send-
ing an I-am-alive message (a heartbeat) to the monitoring process or the later
polling the former for such a message. In any case, the only way a process can
show it has not crashed is by sending messages to those monitoring it. Hence,
any monitoring protocol requires that the monitored process sends messages to
the monitoring process.

Our algorithms use pollings instead of only sending heartbeats, because the
former allow a finer control of the monitoring. To monitor process q, a process p
sends an Are-you-alive? message to q and waits for an I-am-alive message
from it. As soon as q receives the Are-you-alive? message, it sends the I-am-
alive message to p. We will denote by ∆rtt = 2∆msg the maximum monitoring
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round-trip time after stabilization, i.e., the maximum time, after Ts, elapsed
between the sending of an Are-you-alive? message to a correct process, and
the reception and processing of the corresponding I-am-alive reply message.

Since a monitoring process p does not know ∆rtt, it has to use an estimated
value (timeout) that tells how much time it has to wait for the reply from the
monitored process q. This time value is denoted by ∆p,q. Then, if after ∆p,q

time p did not receive the reply from q, it suspects that q has crashed. We need
to allow these time values to vary over time in our algorithms. We use ∆p,q(t)
to denote the value of ∆p,q at time t.

3 A Basic Algorithm that Provides Weak Completeness

In this section, we present an algorithm that will be used as a framework for all
the failure detector implementations presented in this paper. This first algorithm
satisfies the weak completeness property. In the following sections we will extend
the algorithm to satisfy also eventual weak accuracy, eventual strong accuracy,
and strong completeness. This algorithm is presented here for the sake of clarity
but is not very useful by itself, since it does not satisfy any of the accuracy
properties previously defined.

The algorithm executes as follows: initially, every process starts monitoring
its successor in the ring. If a process p does not receive the reply from the pro-
cess q it is monitoring, then p suspects that q has crashed, and starts monitoring
the successor of q in the ring. This monitoring scheme is repeated, so that p
always suspects all processes in the ring between itself and the process it is
monitoring (not included). If, later on, p receives a message from a suspected
process q while it is monitoring another process r, then p stops suspecting q and
all the processes between q and r in the ring, and starts monitoring q again.

Fig. 2 presents the algorithm in detail. Each process p has a variable targetp
which holds the process being monitored by p at a given time. As we said above,
all processes between p and targetp in the ring (and only them) are suspected
by p, and these are the only processes included in the list Lp of suspected pro-
cesses of p. (Initially, no process is suspected, i.e., ∀p : Lp(0) = ∅.) The mutexp

variable is used to avoid race conditions in process p.
We now show that weak completeness holds with this algorithm. Given an

incorrect process p, the following theorem states that it will be permanently
suspected by corr pred(p) (the first correct process preceding p in the ring).

Theorem 1. ∃t0 : ∀p ∈ crashed, p has failed at time t0 and ∀t ≥ t0, p ∈
Lcorr pred(p)(t).

Proof. Let p be a process that crashes. We claim that p will be permanently
included in Lcorr pred(p). The proof uses strong induction on the distance from
corr pred(p) to p. Let first consider that such distance is 1, i.e., corr pred(p) =
pred(p). Before p fails, corr pred(p) and p exchange Are-you-alive? and I-am-
alive messages (see Fig. 2). Eventually p crashes, and there is an Are-you-
alive? message sent by corr pred(p) that reaches p after Tcrashp. Since p has



40 Mikel Larrea et al.

Every process p executes:

targetp← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task 1:

loop
wait(mutexp)
send Are-you-alive? to targetp

tout ← ∆p,targetp

received← false
signal(mutexp)
delay tout

wait(mutexp)
if not received

Lp ← Lp ∪ {targetp}
targetp← succ(targetp)

end if
signal(mutexp)

end loop

‖ Task 2:
loop
receive message m from a process q
wait(mutexp)
case

m = Are-you-alive?:
send I-am-alive to q
if q ∈ Lp

Lp ← Lp − {q, . . . , pred(targetp)}
targetp← q
received← true

end if
m = I-am-alive:

case
q = targetp:

received← true
q ∈ Lp:
Lp ← Lp − {q, . . . , pred(targetp)}
targetp← q
received← true

else discard m
end case

end case
signal(mutexp)

end loop
coend

Fig. 2. Algorithm that provides weak completeness.

already crashed by then, it will never reply to that message. If such a message
was sent at time t′, then ∆corr pred(p),p(t′) time later, corr pred(p) will include p
in Lcorr pred(p). Since no message will ever be received by corr pred(p) from p
after that, it will never be removed from Lcorr pred(p).

We will now prove that if the claim holds for any distance 1 ≤ d ≤
i − 1, it also holds for distance i. Let us assume the distance from corr pred(p)
to p be i > 1. Then, for any process q ∈ {succ(corr pred(p)), . . . , pred(p)}, it
can be easily seen that corr pred(q) = corr pred(p) and the distance d from
corr pred(p) to q verifies 1 ≤ d ≤ i − 1. Hence, from the induction hypothesis,
all processes in {succ(corr pred(p)), . . . , pred(p)} will eventually be permanently
in Lcorr pred(p). After that, they will never be monitored again by corr pred(p).
The situation then is similar to the distance-1 case considered above and, by a
similar argument, p will eventually be permanently included in Lcorr pred(p).

Corollary 1. The algorithm of Fig. 2 provides weak completeness.
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4 Extending the Basic Algorithm to Provide Eventual
Weak Accuracy

The algorithm presented in the previous section does not satisfy any of the
accuracy properties defined in Section 1.2. It does not prevent the erroneous
suspicion of any correct process, and these incorrect suspicions, although not
permanent (if the suspected process is correct, the reply message will eventually
be received), can happen infinitely often. This is due to the fact that the message
delivery time could be greater than the fixed default timeout (see Fig. 2). In
order to provide some useful accuracy, the timeout values must be augmented
when processes are aware of having erroneously suspected a correct process. In
this section, we present an extension to the basic algorithm of Fig. 2, based
on augmenting the timeout values, which satisfies the eventual weak accuracy
property.

Eventual weak accuracy requires that, eventually, some correct process is
never suspected by any correct process. In order to provide it, it is enough that
this is satisfied for only one correct process. Our extension to the basic algorithm
guarantees the existence of such a process, which we denote leader. Clearly, if we
knew beforehand a correct process, eventual weak accuracy could be obtained
by making all processes augment their timeout value with respect to this process
each time they suspect it. This correct process would be leader. But since we
cannot know in advance the correctness of any process, we need to devise another
way to eventually have a correct and not-suspected process.

In our extension of the algorithm of Fig. 2, processes behave as follows.
Initially, every process will consider a pre-agreed process (e.g. p1) as an initial
candidate to be leader. When a process that monitors this candidate suspects
it, it considers its successor in the ring as new candidate and monitors it. This
scheme is repeated every time the current candidate is suspected. (Note that
a process not monitoring a candidate cannot suspect it.) If a process p stops
suspecting a process q, previously considered as candidate, then p will augment
its timeout value ∆p,q

1. If the previously suspected process q was not considered
as candidate, then p will not change ∆p,q. This way, leader will be the first
correct process in the ring starting from the initial candidate (inclusive). All
processes monitoring it will eventually stop suspecting it, and processes that do
not monitor it will never suspect it. This gives us the eventually weak accuracy
property. Fig. 3 presents the extended algorithm in detail.

We now show that eventual weak accuracy holds with this algorithm, i.e.,
eventually some correct process is never suspected by any correct process.

Lemma 1. After Ts, any correct process p will suspect leader for no more
than ∆rtt time, each time it does.

Proof. Remember that, after Ts, ∆rtt is a bound on the monitoring round-trip
time. A correct process p suspects leader after sending an Are-you-alive? mes-
sage to it at time t and not receiving an I-am-alive reply message in ∆p,leader(t)
1 For simplicity of the algorithm, instead of increasing timeouts when we stop sus-
pecting, we increase timeouts as soon as we suspect a candidate.
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Every process p executes:

initial candp ← pre-agreed process
targetp← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task 1:

loop
wait(mutexp)
send Are-you-alive? to targetp

tout ← ∆p,targetp

received← false
signal(mutexp)
delay tout

wait(mutexp)
if not received

if initial candp ∈ {succ(p), . . . , targetp}
∆p,targetp ← ∆p,targetp + 1

Lp ← Lp ∪ {targetp}
targetp ← succ(targetp)

end if
signal(mutexp)

end loop

‖ Task 2:
. . . {Same as algorithm in Fig. 2}

coend

Fig. 3. Extension to the algorithm of Fig. 2 to provide eventual weak accuracy.

time. Since, by definition, leader is a correct process, the I-am-alive message
will arrive at most at time t+∆rtt (Ts +∆rtt if t < Ts). At this moment leader
is removed from Lp, the list of suspected processes of p.

Lemma 2. Any correct process p will suspect leader a finite number of times.

Proof. Let p be some correct process. Since the value of Ts is finite, p suspects
leader a finite number of times before Ts. After that, from the algorithm, each
time p suspects leader, the value of ∆p,leader is incremented by one. After sus-
pecting leader a finite number of times, ∆p,leader will be greater than ∆rtt. After
this moment, p never suspects leader anymore.

Theorem 2. ∃t1 : ∀p ∈ correct, ∀t > t1, leader /∈ Lp(t)

Proof. Let tp1 be the instant at which a correct process p stops suspecting leader
for the last time. (If p never suspects leader, tp1 = 0.) Such an instant exists
from Lemma 1 and Lemma 2. Then, after instant t1 = max

p∈correct
{tp1} no correct

process p has leader in its list Lp.

Corollary 2. The algorithm of Fig. 3 provides eventual weak accuracy.

Observation 1 The only difference between this algorithm and the algorithm of
Fig. 2 is that in the former the values of ∆p,q can change. Clearly, this does not
affect the proof of Theorem 1. Hence, Corollary 1 also applies to this algorithm.

Corollary 3. The algorithm of Fig. 3 implements a failure detector of class
✸W.

Proof. Follows from Corollary 2, Observation 1, and Corollary 1.
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Every process p executes:

targetp← succ(p)
Lp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task 1:

loop
wait(mutexp)
send Are-you-alive? to targetp

tout ← ∆p,targetp

received← false
signal(mutexp)
delay tout

wait(mutexp)
if not received

∆p,targetp ← ∆p,targetp + 1
Lp ← Lp ∪ {targetp}

targetp ← succ(targetp)
end if
signal(mutexp)

end loop

‖ Task 2:
. . . {Same as algorithm in Fig. 2}

coend

Fig. 4. Extension to the algorithm of Fig. 2 to provide eventual strong accuracy.

5 Extending the Basic Algorithm to Provide Eventual
Strong Accuracy

Eventual strong accuracy requires that, eventually, no correct process is ever
suspected by any correct process. In this section, we propose another extension
to the basic algorithm of Section 3 which satisfies this property. Broadly, the
extension consists in each process augmenting its timeout values with respect
to all processes it incorrectly suspects. This way every process will augment the
timeout value with respect to its closest correct successor in the ring, and will
thus eventually stop suspecting it (and hence, any other correct process). This
gives us the eventually strong accuracy property. Fig. 4 presents the extended
algorithm in detail.

We now show that eventual strong accuracy holds with the algorithm in
Fig. 4. We start with two lemmas, whose proofs are similar to those of Lemma 1
and Lemma 2, respectively, and are omitted.

Lemma 3. After Ts, any correct process p will suspect corr succ(p) for no more
than ∆rtt time, each time it does.

Lemma 4. Any correct process p will suspect corr succ(p) a finite number of
times.

Theorem 3. ∃t2 : ∀p ∈ correct, ∀q ∈ correct, ∀t > t2, q /∈ Lp(t)

Proof. Let tp2 be the instant at which a correct process p stops suspecting
corr succ(p) for the last time. (If p never suspects corr succ(p), tp2 = 0.) Such an
instant exists from Lemma 3 and Lemma 4. Then, after instant t2 = max

p∈correct
{tp2}
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no correct process p has corr succ(p) in its list Lp. Then, after t2, each correct
process p only suspects processes in succ(p), . . . , pred(corr succ(p)), which are
not correct by the definition of corr succ(p). Therefore, no correct process q is
in Lp after t2.

Corollary 4. The algorithm of Fig. 4 provides eventual strong accuracy.

Note that Observation 1 still applies to this algorithm. Hence, the following
corollary, that follows from Corollary 4, Observation 1, and Corollary 1.

Corollary 5. The algorithm of Fig. 4 implements a failure detector of class
✸Q.

6 Extending the Previous Algorithms to Provide Strong
Completeness

In this section we present an extension to the previous algorithms to provide
strong completeness, while preserving accuracy. By combining this extension
with the algorithms that implement failure detectors of classes ✸W and ✸Q,
presented in previous sections, we obtain implementations of failure detectors of
classes ✸S and ✸P , respectively.

Strong completeness requires that, eventually, every process that crashes is
permanently suspected by every correct process. In [2], Chandra and Toueg
presented a distributed algorithm that transforms weak completeness into strong
completeness. Broadly, in their algorithm, every process periodically broadcasts
(sends to every other process) its local list of suspected processes. Upon reception
of these lists, each process builds a global list of suspected processes, which
provides strong completeness. Clearly, in this algorithm each correct process
periodically sends n messages, with the total number of messages exchanged
being at least nC.

In our extension, we follow a similar approach. Besides its local list Lp of
suspected processes, each process p has a global list Gp of suspected processes.
While Lp only holds the suspected processes between p and the process p is
monitoring (targetp), Gp holds all the processes that are being suspected in the
system. Now, the global lists are the ones providing strong completeness.

In order to correctly build the global lists, processes need to propagate their
local lists. However, instead of periodically broadcasting its local list, every pro-
cess will only send its global list (which contains the local list) to the process it is
monitoring. This process, upon reception of that list, updates its global list and
further propagates it. Note that, since we use the ring arrangement of processes,
each process at most sends and receives one message periodically, and the total
number of messages exchanged is O(n) in the worst case, which eventually be-
comes O(C). Furthermore, instead of using specific messages to send the global
lists, we can piggyback the global lists in the Are-you-alive? messages inherent
to the monitoring action. This way, there is no increment in message exchanges
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Every process p executes:

{if the algorithm needs it:
initial candp ← pre-agreed process}
targetp← succ(p)
Lp ← ∅
Gp ← ∅
∀q ∈ Π : ∆p,q ← default timeout

cobegin
‖ Task 1:

loop
wait(mutexp)
send Are-you-alive?

—with Gp— to targetp

tout ← ∆p,targetp

received← false
signal(mutexp)
delay tout

wait(mutexp)
if not received
{Update ∆p,targetp if required}
Gp ← Gp ∪ {targetp}
Lp ← Lp ∪ {targetp}

targetp← succ(targetp)
end if
signal(mutexp)

end loop

‖ Task 2:
loop
receive message m from a process q
wait(mutexp)
case

m = Are-you-alive? —with Gq—:
send I-am-alive to q
if q ∈ Lp

Lp ← Lp − {q, . . . , pred(targetp)}
targetp← q
received← true

end if
Gp ← Gq ∪ Lp − {p, q}

m = I-am-alive:
case

q = targetp:
received← true

q ∈ Lp:
Lp ← Lp − {q, . . . , pred(targetp)}

Gp ← Gp − {q}
targetp← q
received← true

else discard m
end case

end case
signal(mutexp)

end loop
coend

Fig. 5. Extension to the previous algorithms to provide strong completeness.

from the previous algorithms. Fig. 5 presents the extended algorithm in detail.
We now show that strong completeness holds, while accuracy is preserved, with
this algorithm.

Observation 2 The only difference between this algorithm and the previous
ones is the handling of the global lists of suspected processes Gp, while the local
lists Lp are handled as before. Hence, Theorem 1 and whichever corresponds of
Theorem 2 and Theorem 3 are still applicable to this algorithm.

Observation 3 ∀p ∈ Π, ∀t, Lp(t) ⊆ Gp(t).

Observation 4 ∀p ∈correct,∀t, p will eventually receive Are-you-alive? mes-
sages after t.
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Lemma 5. ∃t3 : ∀q ∈ crashed, ∀p ∈ correct, ∀t ≥ t3, q ∈ Gp(t).

Proof. Let us assume we are at least at instant t0 as defined in Theorem 1. We
know that at this instant any process q ∈ crashed has already failed and has
been permanently included in Lcorr pred(q).

Let us assume now that we have a process q ∈ crashed and a process p ∈
correct. We claim that q will eventually be permanently included in Gp. We use
strong induction on the number of correct processes in the set
{corr pred(q), . . . , p}. For the base case we assume there is only one correct
process in the set, i.e., p = corr pred(q). Hence, from Theorem 1, q is perma-
nently in Lp and, from Observation 3, q will be permanently in Gp in this case.

We will now prove that, if the claim holds for any number 1 ≤ c ≤ i − 1 of
correct processes in the set {corr pred(q), . . . , p}, it also holds when the num-
ber of correct processes in the set is i. To do so, we show first that there is a
time t′ after which p receives Are-you-alive? messages and all of them carry
global lists containing q. From that, it is immediate to see in the algorithm
that, after receiving the first such Are-you-alive? message, q will be perma-
nently included in Gp. Let us assume the number of correct processes in the
set {corr pred(q), . . . , p} be i > 1. By induction hypothesis, there is a time t′′

at which any correct process r ∈ {corr pred(q), . . . , corr pred(p)} permanently
contains q in its global list Gr. Also, there is a time t′ = max(t′′, Ts) + ∆msg at
which all the Are-you-alive? messages sent to p before t′′ have been received.
From Observation 4, process p will receive new Are-you-alive? messages af-
ter t′. Let be an Are-you-alive? message received by p from a process s at a
time t > t′. There are two cases to consider:

– s ∈ {corr pred(q), . . . , corr pred(p)}. In this case, from the induction hy-
pothesis and the definition of t′, we know that the global list Gs carried by
the Are-you-alive? message contains q.

– s ∈ {p, . . . , corr pred(corr pred(q))}. In this case, it can be seen from the
algorithm that if p receives an Are-you-alive? message from s, then nec-
essarily, at the time of sending the message, p = targets and Ls contained q.
Therefore, from Observation 3, the Gs carried by the Are-you-alive? mes-
sage contains q.

The following lemma states that the algorithm of Fig. 5 preserves eventual
accuracy.

Lemma 6. Let p be any correct process. If there is a time after which no correct
process q contains p in Lq, then there is a time after which no correct process q
contains p in Gq.

Proof. Let us assume we are at least at instant t0 as defined in Theorem 1. We
know that at this instant any process in crashed has already failed. Let p be a
correct process and t′′′ ≥ t0 be an instant such that ∀t ≥ t′′′, ∀q ∈ correct, p /∈ Lq.

Let us assume now that we have a process q ∈ correct. We claim that there
is a time after which p is never in Gq. We use strong induction on the number
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of correct processes in the set {p, . . . , q}. For the base case, we assume there is
only one correct process in the set, i.e., p = q. It is easy to observe from the
algorithm that p will never include itself in Gp.

We will now prove that, if the claim holds for any number 1 ≤ c ≤ i − 1 of
correct processes in the set {p, . . . , q}, it also holds when the number of correct
processes in the set is i. To do so, we show first that there is a time t′ after
which q receives Are-you-alive? messages and all of them carry global lists
not containing p. From that, it is immediate to see in the algorithm that, after
receiving the first such Are-you-alive? message, p will be removed (if needed)
and never included again in Gq. Let us assume the number of correct processes in
the set {p, . . . , q} be i > 1. By induction hypothesis, there is a time t′′ after which
any correct process r ∈ {p, . . . , corr pred(q)} does not contain p in its global
list Gr. Also, there is a time t′ = max(t′′, Ts)+∆msg at which all the Are-you-
alive? messages sent to q before t′′ have been received. From Observation 4,
process q will receive new Are-you-alive? messages after t′. Let be an Are-
you-alive? message received by q from a process s at a time t > t′. There are
two cases to consider:

– s ∈ {p, . . . , corr pred(q)}. In this case, from the induction hypothesis and
the definition of t′, we know that the global list Gs carried by the Are-you-
alive? message does not contain p.

– s ∈ {q, . . . , corr pred(p)}. This case cannot happen, because it would imply
that p is in the local list Ls.

Combining both lemmas it is immediate to derive the following theorem.

Theorem 4. The algorithm of Fig. 5 provides strong completeness while pre-
serving accuracy.

Corollary 6. The algorithm of Fig. 5, combined with the algorithm of Fig. 3 or
Fig. 4, implements failure detectors of classes ✸S and ✸P, respectively.

7 Performance Analysis

In this section, we will evaluate the performance of the presented algorithms in
terms of the number and size of the exchanged messages. Observe that failure
detection is an on-going activity that inherently requires an infinite number
of messages. Furthermore, the pattern of message exchange between processes
can vary over time (and need not be periodic), and different algorithms can
have completely different patterns. For these reasons, we have to make some
assumptions in order to use the number of messages as a meaningful performance
measure. We will first assume that the algorithms execute in a periodic fashion,
so that we can count the number of messages exchanged in a period. Secondly, to
be able to compare the number of messages exchanged by different algorithms,
we must assume that their respective periods have the same length.
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Under the above assumptions, in our algorithms each correct process period-
ically polls only one other process. Each polling involves two messages. Thus, a
total of no more than 2n messages would be periodically exchanged. Eventually,
this amount becomes 2C, since there will be only C correct processes remaining
in the system. This compares favorably with Chandra and Toueg’s algorithm,
which requires a periodic exchange of at least nC messages.

Concerning the size of the messages, our algorithms implementing failure
detectors with weak completeness (✸W and ✸Q) require messages of Θ(log n)
bits (to identify the sender). On the other hand, the algorithms implementing
failure detectors with strong completeness (✸S and ✸P) require messages of
Θ(n) bits, since we can code the global list Gp of suspected processes in n bits
(one bit per process).

Chandra and Toueg’s algorithm, which only implements ✸P , requires mes-
sages of Θ(log n) bits. This size is smaller than the size needed by our ✸P
algorithm. However, the total amount of information periodically exchanged in
our algorithm is Θ(n2) bits, while in theirs it is Θ(n2 logn) bits. Furthermore,
each message that is sent involves a fixed overhead. In this sense, our algorithm
presents an edge, since it involves less messages.

8 Conclusions and Future Work

In this paper we have proposed several algorithms to implement failure detectors
of classes ✸W , ✸Q, ✸S and ✸P . These algorithms are efficient alternatives to
the algorithm implementing ✸P proposed by Chandra and Toueg [2].

Apparently, the time to propagate the failure information in our algorithms
is larger than the time in Chandra and Toueg’s algorithm. We need to further
study this performance parameter both theoretically and empirically.

As pointed out in the previous section, the number of messages periodically
exchanged is not a general enough performance measure, since algorithms need
not be periodic. We are studying new ways of evaluating the performance of this
kind of algorithms.
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