Eventually Consistent Failure Detectors *

Mikel Larreal Antonio Ferndndez?* Sergio Arévalo®

1 Introduction

The concept of unreliable failure detector was introduced by Chandra and Toueg [1] as a mechanism
that provides information about process failures. This mechanism has been used to solve different
distributed problems in asynchronous systems, in particular the Consensus problem.

This short paper presents a new class of unreliable failure detectors, which we call Fventually
Consistent and denote by OC. This class adds to the failure detection capability of other classes
an eventual leader election capability. To show the power of this new class of failure detectors, we
propose an efficient Consensus algorithm based on an eventually consistent failure detector. This
algorithm successfully exploits the leader election capability of the failure detector and performs
better in the number of rounds than all the previously proposed Consensus algorithms for failure
detectors with eventual accuracy [1, 2, 6]. This is due to the fact that, to our knowledge, it is the
first Consensus algorithm for failure detectors with eventual accuracy that does not rely on the
rotating coordinator paradigm.

Due to space limitation, the reader is referred to [3] for an in-depth presentation of the new class
of failure detectors (relationship with other classes of failure detectors, equivalence between OC and
OS!, implementations of ©C), as well as for the correctness proof of the Consensus algorithm.

2 System Model

We consider a distributed system consisting of a finite totally ordered set II of n processes,
II = {p1,p2,...,pn}. Processes communicate only by sending and receiving messages. Every
pair of processes is assumed to be connected by a reliable communication channel. The system is
asynchronous, i.e., there are no timing assumptions about neither the relative speeds of the pro-
cesses nor the delay of messages. Processes can fail by crashing, that is, by prematurely halting.
Crashes are permanent, i.e., crashed processes do not recover.

A distributed failure detector can be viewed as a set of n failure detection modules, each one
attached to a different process in the system. These modules cooperate to satisfy the required
properties of the failure detector. Upon request, each module provides its attached process with a
set of processes it suspects to have crashed. These sets can differ from one module to another at a
given time. Let us denote by D, the set of suspected processes returned by a failure detector D to

*Research partially supported by the Spanish Research Council, contracts TIC99-0280-C02-02, TEL99-0582, and
TIC98-1032-C03-01, and the Madrid Regional Research Council, contract CAM-07T/00112/1998.

tUniversidad Piblica de Navarra, 31006 Pamplona, Spain, mikel.larrea@unavarra.es

HUniversidad Rey Juan Carlos, 28933 Méstoles, Spain, afernandez@acm.org

$Universidad Rey Juan Carlos, 28933 Méstoles, Spain, s.arevalo@escet.urjc.es

!The Eventually Strong class of failure detectors, denoted ¢S, is the weakest class for solving Consensus.

a given process p. We also denote by 7, the set of trusted (non-suspected) processes of the failure
detection module attached to process p, i.e., T, = II — D,.

3 Eventually Consistent Failure Detectors

In this section, we introduce the eventually consistent class of failure detectors. The main char-
acteristic of these failure detectors is the accuracy property they satisfy, which we call Fventual
Consistent Accuracy. Informally, the eventual consistent accuracy guarantees that there is a correct
process p that is eventually and permanently not suspected by any correct process, and that there
is a function that each correct process can apply to the output of its local failure detection module
that eventually and permanently returns p.

More formally, the eventual consistent accuracy property can be defined as follows. Let P(II)
be the power set of the set II.

Definition 1 A failure detector D satisfies Eventual Consistent Accuracy if there is a deterministic
function leader : P(II) — II, a time t and a correct process p such that, after t, for every correct
process q, p & Dy and leader(T,) = p.

Definition 2 We define the Eventually Consistent class of failure detectors, denoted OC, as those
that satisfy both the strong completeness® and the eventual consistent accuracy properties.

A failure detector of class ©C enhances the classical failure detection properties of previously
defined classes with an eventual leader election mechanism. These failure detectors guarantee that
after some point in time all correct processes can behave as a consistent leader election algorithm.
This property can be used by algorithms in which the safety properties are not affected by the
simultaneous existence of several leaders, and that guarantee termination if a unique leader exists.
Furthermore, these failure detectors can be very useful to algorithms that have early termination
when there is a unique leader. As it is well known, usually it is not necessary for the failure detector
to reach permanent stability to be useful. Instead, many algorithms can successfully complete if
the failure detector is stable (provides a unique leader) for long enough periods of time.

We have found several implementations of failure detectors in the literature that in fact im-
plement an eventually consistent failure detector. Examples are the algorithms implementing OGP
proposed in [1, 4], and the algorithms implementing ¢S proposed in [4, 5].

4 Solving Consensus using <C

In this section, we present an algorithm that solves Consensus using an eventually consistent failure
detector. In addition to the model defined in Section 2, we assume that the system is augmented
with a failure detector D of class OC, to which processes have access. We also assume that all
processes know the function leader associated with the failure detector, as specified in Definition 1.
Finally, we assume that a majority of processes are correct, i.e., do not crash.

Figures 1 and 2 present the algorithm in detail. Each process runs an instance of this algorithm,
which proceeds in asynchronous rounds. As the ¢S-Consensus algorithm of Chandra and Toueg [1],
it goes through three asynchronous epochs, each of which may span several rounds. In the first
epoch, several decision values are possible. In the second epoch, a value gets locked: no other
decision value is possible. In the third epoch, processes decide the locked value.

2 Bventually every process that crashes is permanently suspected by every correct process.

procedure propose(vy)

estimate, < vp {estimate, is p’s estimate of the decision value}
state, < undecided

rp 0 {rp is p’s current round number}
tsp <0 {tsp is the last round in which p updated estimate,, initially 0}
while state, = undecided {Rotate until decision is reached}

chosen, < false
replied, < false
T 1p+1

Phase 0: {Each process determines its coordinator for the round}

wait until [p = leader(T,) or for a process ¢: received (q, rp, coordinator)] {Query the failure detector}
if [for a process ¢: received (g, rp, coordinator)] then

Cp < ¢
else

Cp <P

send (p, rp, coordinator) to all processes except p
choseny « true

Phase 1: {Each process p sends estimate, to its current coordinator}
send (p, rp, estimatey, tsp) to cp

Phase 2: {Each coordinator tries to gather [("—;’1)] estimates to propose a new estimate}

if p = ¢, then
wait until [for f#] processes ¢: received (g, rp, estimateq, tsq) or (q,rp, null_estimate,0)]
msgsplrp] < {(q, rp,estimateq, tsy) | p received (q,rp, estimateq,tsq) from q}

if [for [(";1)] processes ¢: received (g, rp, estimatey, tsq)] then
decidibley, < true
t < largest ts, such that (g,rp, estimateq,tsq) € msgsp|ry]
estimate, < select one estimateq such that (g, rp, estimateq, t) € msgsp[rp]
send (p,rp, estimatey) to all

else {p received null_estimate from some process}
decidible, < false

send (p,rp, null_estimate) to all

Each process waits for a new estimate proposed by a coordinator

Ph 3:
ase or to recetve null_estimate from its coordinator or to suspect it

wait until [for a process ¢: received (g, rp, estimate,) or received (cp, rp, null_estimate) from ¢, or ¢, € Dy]

if [for a process q: received (g, rp, estimatey)] then {p received estimatey from a process q}
estimate, < estimatey
tsp < Tp
send (p,rp,ack) to q

else if [received (cp, rp, null_estimate) from c,] then {p received null_estimate from cp}
discard message

else {p suspects that ¢, crashed}

send (p,rp, nack) to cp
replied, < true

. (n+1) . L.
Phase 4: The coordinator that can still decide (if any) waits for [*25=21 replies. If they indicate that }

|—(”2L1)] processes adopted its estimate, the coordinator R-broadcasts a decide message
if (p = ¢p) and (decidible,) then

wait until [for f#] processes ¢q: received (g, rp,ack) or (q,rp, nack)]
if [for [@] processes ¢: received (g, rp,ack)] then

R-broadcast(p, rp, estimate,, decide)

Figure 1: Solving Consensus using any D € <C.

3

when received (q, rq, coordinator) from g such that (r, < rp) or ((rq = rp) and (chosen,))
send (p, rq, null_estimate, 0) to q

when received (q, rq, estimatey) from g such that (r, < rp) or ((rq = rp) and (replied,))
send (p,rq,nack) to q

when R-deliver(q, rq, estimatey, decide) {If p R-delivers a decide message, p decides accordingly}
if state, = undecided then
decide(estimateg)

statep < decided

Figure 2: Separate tasks for replying to late coordinators and taking the decision.

Each round of the algorithm is divided into five asynchronous phases. In Phase 0, every process
determines its coordinator for the round. In Phase 1, every process sends its current estimate of
the decision value timestamped with the round number in which it adopted this estimate, to its
coordinator. In Phase 2, each coordinator tries to gather a majority of estimates. If it succeeds, then
it selects an estimate with the largest timestamp and sends it to all the processes as a proposition.
In Phase 3, each process waits for a proposition from a coordinator. If the process receives a
non-null proposition from some coordinator (including its own), then it adopts it and sends an ack
message to this coordinator. Finally, in Phase 4 the coordinator that succeeded in Phase 2 and
sent a non-null proposition (if any, and at most one) waits for a majority of ack/nack messages.
If it gathers a majority of ack messages, then it knows that a majority of processes adopted its
proposition as their new estimate. Consequently, this coordinator broadcasts a request to decide
its proposition. At any time, if a process delivers such a request, it decides accordingly.

With this algorithm, if the failure detector is stable Consensus is solved in only one round. On
the other hand, with any ©S-Consensus algorithm based on the rotating coordinator paradigm, the
number of rounds can be ©(n), until the correct and non-suspected process becomes the coordinator.

Acknowledgements. We are grateful to André Schiper for his valuable comments.

References

[1] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM, 43(2):225-267, March 1996.

[2] M. Hurfin and M. Raynal. A simple and fast asynchronous consensus protocol based on a weak failure
detector. Distributed Computing, 12(4):209-223, 1999.

[3] M. Larrea. Efficient Algorithms to Implement Failure Detectors and Solve Consensus in Distributed
Systems. PhD thesis, University of the Basque Country, San Sebastian, October 2000.

[4] M. Larrea, S. Arévalo, and A. Fernandez. Efficient algorithms to implement unreliable failure detectors
in partially synchronous systems. In Proceedings of the 13th International Symposium on DlIstributed
Computing (DISC’99), pages 34-48. LNCS, Springer-Verlag, September 1999.

[5] M. Larrea, A. Ferndndez, and S. Arévalo. Optimal implementation of the weakest failure detector
for solving consensus. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems
(SRDS’2000), Nurenberg, Germany, October 2000. To appear.

[6] A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Distributed Com-
puting, 10(3):149-157, April 1997.

