
On the Interconnection of Causal Memory Systems*

Antonio FernAndez
Universidad Rey Juan Carlos

28933 Mdstoles, Spain
afernandez@acm.org

Ernesto Jimdnez
Universidad Politdcnica de

Madrid
28031 Madrid, Spain

ernes@eui.upm.es

Vicent Cholvi
Universitat Jaume I

12071 Castelldn, Spain
vcholvi @ inf.uji.es

ABSTRACT
A large amount of work has been invested in devising al-
gorithms to implement dis t r ibuted shared memory (DSM)
systems under different consistency models. However, to our
knowledge, the possibility of interconnecting DSM systems
with simple protocols and the consistency of the resulting
system has never been studied. Wi th this paper, we s tar t
a series of works on the propert ies of the interconnection of
DSM systems, which tries to fill this void.

In this paper, we look at the interconnection of propagation-
based causal DSM systems. We present extremely simple
algorithms to interconnect two such systems (possibly im-
plemented with different algorithms), tha t only require the
existence of a bidirectional reliable F IFO channel connecting
one process from each system. We show that the resulting
DSM system is also causal. This result can be generalized to
interconnect any number of DSM propagation-based causal
systems.

1. INTRODUCTION
Shared memory (reading and writing of shared variables)
is a well-known mechanism for inter-process communication
in concurrent programs. However, while the semantic of
read and write operations in sequential programs is clear,
the situation is different for concurrent accesses to shared
variables. This is more evident if the shared memory is not
centralized but dis tr ibuted among a number of processors,
i.e. we have distr ibuted shared memory (DSM). There has
been a number of proposals and implementations of DSM
systems providing different semantics, or consistency models
[1, 2, 4, 6, 12].

The consistency memory models proposed in the l i terature
can be broadly classified into strong and weak memory mod-

*This work is part ial ly suppor ted by the CICYT under grant
TEL99-0582 and the Comunidad Autdnoma de Madrid un-
der grant CAM-07T/00112/1998.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 2000 Portland Oregon
Copyright ACM 2000 1-58113-183-6/00/07...$5.00

els. The strong memory models are close in behavior to a
centralized memory, which makes simple to write programs
with them (the re turn value of each read operation is rather
predictable). However, it is widely accepted that strong
memory models do not scale well with the number of pro-
cesses [3, 6]. On the other hand, weaker memory models
can be more efficiently implemented, since they require less
consistency overhead. This implies more possible return val-
ues for each read operat ion [2, 5, 8], which makes harder to
write programs for these models. Hence, we are faced with
a tradeoff between simplicity of programming and perfor-
mance of the consistency model implementation.

The causal memory model has a t t rac ted the attention of
a number of researchers because is considered to be pow-
erful enough to allow easy programming (like strong mem-
ory models), but at the same t ime allows for inexpensive
implementat ions (like weak memory models). As a conse-
quence, a number of algorithms implementing the causal
memory model have been proposed in the l i terature (see for
instance [2, 9, 10]). Most algorithms implementing causal
memory, in order to increase concurrency, support replica-
tion of data. Wi th replication, there are copies (replicas) of
the same variables in the local memories of several processes
of the system, which allows these processes to use the vari-
ables simultaneously. However, in order to guarantee the
consistency of the shared memory, the system must control
the replicas when the variables are updated. That control
can be done by either invalidating outdated replicas or by
propagating the new variable values to update the replicas.

1.1 Our results
A huge amount of work has been invested in devising algo-
r i thms for implementing distr ibuted shared memory systems
under different memory models, as well as in studying the
type of problems tha t can be solved with them. However,
to our knowledge, there has not been any work on devising
algorithms to interconnect these DSM systems. The present
work a t t empts to be the first investigating the interconnec-
tion of DSM systems.

In this paper we explore the interconnection of causal DSM
systems implemented with replication and propagation. In
particular, we introduce simple algorithms for interconnect-
ing causal memory systems, possibly implemented with dif-
ferent propagat ion-based algorithms. The interconnection
algorithms proposed only require the existence of reliable
F IFO channels connecting processes from each system. We

163

show that the resulting system is also causal. For instance,
the proposed algorithms could be used to obtain a causal
DSM system by combining systems implemented with the
algorithm proposed by Ahamad et al. [2], and systems im-
plemented with the algorithm proposed by Prakash et al. [9]
(just to point out two of them).

We first s tudy the connection of two propagat ion-based
causal system. We assume the existence in each system of a
special process, called gate process, which will be in charge
of actually running the interconnection algorithm. Those
gate processes are connected by a reliable F IFO channel,
which will be used to exchange the da ta required by the in-
terconnection. We present algorithms that can be run by
the gate processes in order to connect both systems. Basi-
cally, these algorithms propagate the variable updates from
one system to the other. For this reason, we denote them
bridge algorithms. We then show tha t the system obtained
by connecting two systems with the gate processes, running
the proposed bridge algorithms, is causal.

Next, we show that the interconnection scheme for two sys-
tems can be generalized for a larger number of systems.
Hence, we show tha t several propagat ion-implemented
causal systems can be interconnected with our bridge al-
gorithms to obtain a large causal system.

Note that the sequential memory model, which is maybe the
most widely known, is in fact causal. Hence, these results
also apply to it. Therefore, our results also show tha t two
sequential systems can be interconnected via a F IFO channel
maintaining the causality of the overall resulting system.

1.2 Interest of our w o r k
An important question to pose is why interconnecting causal
systems with new algorithms instead of using a known al-
gorithm for the full system. There axe several reasons for
using this new approach. First , in this way, we can inter-
connect systems that are already running different causal
algorithms without changing them. They can keep using
different algorithms at their local level.

Second, it could be interesting to use different algorithms
in different environments and our approach to combine the
resulting systems. When choosing the causal algorithms to
use in a system, it is basic to analyze the characteristics of
the network on which the system will run. For example,
important characteristics of a network axe the latency or
the availability of multicast support . If we want to have a
causal system in which there are several networks with dif-
ferent characteristics involved, it may be convenient or more
efficient to use the most appropr ia te algorithm in each net-
work and use our methods to connect the systems obtained.
An example of this would be a causal system that has to
be implemented on two local area networks connected with
a low-speed point- to-point link. In this case, it would seem
appropriate to use one of the causal algorithms previously
proposed in each of the local area networks, and use our
bridge algorithms via the link to connect the whole system.

The rest of the paper is organized as follows. In Section 2 we
introduce the basic framework and provide a formal defini-
tion of causal system. In Section 3 we introduce the bridge

algorithms we propose for interconnecting two causal sys-
tems. In Section 4 we show tha t the union of two causal
systems with the bridge algorithms is causal. In Section 5
we show tha t our approach can be used to connect more
than two causal systems. Finally, in Section 6 we present
our concluding remarks.

2 . P R E L I M I N A R I E S
In this section we provide a formal definition of causal dis-
t r ibuted shared memory systems. A distributed shared mem-
ory system (DSM system or system for short) consists of a
set of processes tha t interact via a set of variables. These
variables const i tute the shared memory.

All the process interactions with the memory are done
through read and write operations (memory operations) on
variables of the memory. Each memory operat ion acts on a
named variable and has an associated value. A write oper-
ation by process i. (within the system Sq), denoted w~ (x)v,
stores the value v in the variable x. Similarly, a read oper-
ation, denoted r~(x)v, reports to i~ (within the system S q)
tha t v is s tored in the variable x. To simplify the nota-
tion, we assume tha t a given value is wri t ten at most once
in any given variable. This assumption does not introduce
new restrictions, since it can be forced by associating a time-
s tamp z with every write operation. We also assume that the
initial values of the variables are set by using write opera-
tions.

A system computation ~x q of a system S q consists of the
sequence of read and write operations observed in some ex-
ecution of S q. We denote oti q the computat ion obtained by
removing from 0¢ q all read operations from processes other

~ q

than L Similarly, we denote with ~ the order in which
the operations in cx q happen. For operations of the same

o~ q
process L, --~ also defines the order in which these opera-
tions have been executed by i_ We now introduce the serial
computat ion concept.

DEFINITION 1 (SERIAL COMPUTATION). A computa-
tX a

tion ~x q is serial /]Vop = r~(x)v (3op ' = w~(x)v : op '

o~q op l l aa op and ~]op" = w ~ (x) u : op ' ~ ~ op).

In order to capture "causality" (in the sense of [7]), we need
to define the causal order 2.

DEFINITION 2 (CAUSAL ORDER). Let op and op ' be
two operations in a computation cx q . Then op -.~=q op '
if some of the following holds:
I. op and op ' are operations from the same process and

CX q

op ~ op ' .
2. op = w~(x)v and op ' = r~(x)v

3. 3op" : op ~=q o p " -.~=q op '

1Note that there are logical implementat ions of clocks that
provide finite values[11].
2The causal order is actually a preorder, since the antisym-
metric relation does not necessarily hold.

164

propagate value v
to the rest of S °

. A

update local replica of
variable g with value ~t

gateO \

Propagatet°~(x, v)

S o

/ /
/

x / go-te 1
\ /

~ _ ~ _ e~t_ / update local replica of
to . - - ~ - - 9 / a ~ ° " ~ X variable x. with value v

d <~, v> __..7

P I ~ propagate value it
t ~ to the rest of SI

. Propagate~n {N, u } ! \
! \

/ \
\

\ ~ S 1
/

/
J

F i g u r e 1: Task s c h e m e of t h e b r i d g e a l g o r i t h m s .

From this last definition, we also derive the non-transitive
causal order as a restriction of the causal order if the tran-
sitive closure (i.e., the third condition) is not applied. We
use ...~¢q ^ I I op _~ up to denote that op precedes op in the non-
transitive causal order. Note that, if op -<,~ o ~ , then op
has been executed before op' . Hence, if op -<= op' then
op has been executed before op ' .

By using the causal order and the serial computation con-
cept, we now define both causal view and causal computa-
tion as follows. Let ocq be a computation of system S q, and
the causal order -.~=q be as previously defined.

DEFINITION 3. We say that ~ is a causal view of oc~ i f
it is a permutation of oct, and each prefix of ~t q is serial and
preserves the causal order ~=q.

DEFINITION 4. We say that a computation ocq is causal
q has a causal view. if, for each process t, the computation oc t

Finally, we provide the causal system definition.

DEFINITION 5. We say that the system S q is causal i f all
its computations are causal.

Note that the definition of causal system only imposes a
restriction on the possible computations observed. It does
not impose any restriction on how to enforce these compu-
tations. Hence, it does not restrict the algorithms used to
implement the causal system.

As we said, in this paper we will consider only causal systems
implemented with replication and propagation. We assume
that each process of a causal system has a replica of each of
the variables of the shared memory. The replicas of a given
process are managed by a local causal module of the causal
algorithm, which is in charge of updating them. Every time
a process issues a write operation, this is propagated to the
causal module of the other processes of the system. Each

causal module chooses the appropriate instant at which ac-
tually update the local replica. When a process issues a read
operation, it obtains the current value of the local replica of
the variable to be read.

It is important to note that the causal module of a process is
completely free to choose the instant at which a local replica
of a variable is updated, as long as the resulting computa-
tion is causal. Note that the causality of a computation
strongly depends on the values obtained by the read oper-
ations. Then, the causal module of a process that seldom
reads has a significant freedom on the order and time the
local replicas axe updated. For instance, if two write oper-
ations on variables × and ~ are issued, and the write on x
causally precedes the write on y, the causal module of some
process can choose to update first the local replica of y and
then the local replica of x, as long as the local read opera-
tions issued between the updates do not violate the causality
(e.g., do not show the change of order). However, we want to
note that we do not know of any causal algorithm that uses
this possibility of playing with the updating order, possibly
due to the added complexity and bookkeeping involved. In
this work we consider both kinds of algorithms.

3. THE BRIDGE ALGORITHMS FOR IN-
TERCONNECTING CAUSAL SYSTEMS

In this section, we introduce algorithms for interconnecting
two propagation-based causal systems S O and S 1 , which we
will show ensure that the resulting system is also causal. We
will refer to these algorithms as bridge algorithms since, as
we said, all they do is basically propagating the variable up-
dates from one system to the other. We present two bridge
algorithms, so that each system will choose which one to use
depending on which causal algorithm it is running. We con-
sider two classes of causal algorithms, depending on whether
they guarantee the following property.

PROPERTY 1. In any computation ock o] system S ~
(where k E {0, 1}), i f processes ~ and j issue the write oper-

ations w~k(×)V and w~(y)ax, and w~(x)v _.<=k w~(~)u, then
every process of the system S k will update its local replica
of x with value v before updating its local replica of ~ with

1 6 5

Propagateok~t(x,v) :: task which is act ivated
immediately after the local replica of

variable x in g a t e k is upda ted with value v.
begin

if (x,v) was not received from g a t e t then

sertd (x,v) to gate ~"
end

P r o p a g a t e ~ (x , v) :: atomic task which is
activated on the reception of a pair (x,v)

from g a t e ~.
begin

end

Figure 2: T h e b r i d g e a l g o r i t h m for s y s t e m s s a t i s f y i n g P r o p e r t y 1.

value 4.

We will assume tha t for each system S k (where k E {0, 1})
there is a "gate" process, denoted g a t e k. Such a process
does not perform any user operat ion and is in charge of ex-
ecuting the bridge algorithm of the corresponding system.
It is worthwhile to remark that g a t e ~ is part of the system
Sk; for that reason, gate k has a local replica of each vari-
able of the shared memory, and those replicas are upda ted
following the causal algorithm implemented in S k.

Each bridge algorithm contains two concurrent atomic tasks,
Propagateok~t and Propagateik~. Whereas Propagateok~t
deals with transferring write operations issued in S k to the

system S ~ (we use k to denote 1 - k), Propagateik~ deals
with applying within S k the write operations transferred

from the system S t by Propagateo~ut . To work properly,
Propagateok~t has to guarantee tha t two causally ordered
write operations are transferred to S t following the causal
order, using a reliable F IFO ordered communication chan-
nel. Similarly, P r o p a g a t e ~ must apply the write opera-
tions transferred from S ~¢ in exactly the same order they are
received. An scheme of how the bridge algorithms work is
shown in Fig. 1

As it has been said, our algorithm requires a reliable F IFO
ordered communication channel. Note, however, that noth-
ing has been said about how to implement it. In a practi-
cal case, this channel could be implemented in a number of
ways, either by using shared memory or by using message
passing.

We will first consider a system implemented with a causal
algorithm that satisfies Proper ty 1. As we said, all the causal
algorithms we have found fall within this class. Fig. 2 shows
an implementation of the Propagateik~ and Propagateok~t
tasks for this case. Task Propagateok~t is activated with
parameters x and v immediately after the local replica of
variable × in g a t e k is upda ted with value v. As a result, it
sends the pair (x, v) to the g a t e t process, but only if such a

pair was not received from g a t e t . This condition prevents
that pair from going back and forth between g a t e k and
g a t e ~. I t is important tha t the update of the var iable and
the task P r o p a g a t e o ~ t are executed as an atomic action.

On its turn, task P r o p a g a t e ~ is act ivated with parameters
x and v whenever the pair (x, v) is received from the process

g a t e ~. As a result, it performs a causal write operation, thus
causally propagating the value v to all the replicas of variable

x within S k. Note that , in order to avoid race conditions,
we require task P r o p a g a t e [~ to be atomic as well.

Let us consider now the more general case in which Prop-
erty 1 is not necessarily satisfied by the causal algorithm of
the system S k. In this case, we need a second implemen-
ta t ion of task Propagateok~t, which is only slightly differ-
ent from tha t of Fig. 2. In this implementat ion, on top of
the process shown in Fig. 2, immediately before the local
replica of variable x in gate k is upda ted with a new value
v, Propagateok~t issues a read operation on x, r~atek(x)s ,
where the previous value s of x is read. This implementa-
tion enforces tha t two causally ordered write operations are
propagated by Propagateo~ut following the causal order. It
is impor tant tha t the read operat ion described, the update
of the variable, and the process shown in Fig. 2 are executed
together in an atomic fashion.

The following lemma presents the fundamental proper ty sat-
isfied by bo th bridge algorithms.

LEMMA 1. In any computation 0¢ k of system S k (where
k E {0, 1}), i f processes ~ and j issue the write opera-

tions w~(x)v and w~c(g)u, and ~ (x) v -< ak w~(y)4 , then
Propagateokut will send the pairs (×,v) and (g, 4) to system

S E in this order.

PROOF. The claim follows if the causal algorithm used by
S k satisfies Proper ty 1 and the algorithm of Fig. 2 is used,
since in g a t e k the local replica of × is upda ted with v before
the local replica of g is upda ted with 4, and Propagateokut
sends the pairs in the same order the updates are applied.

Now, we show by contradict ion that , if we use the second
implementat ion of Propagateokut , then the local replicas of
x and g of g a t e ~ are also upda ted in that order. This will
prove the property, since Propagateokut sends the pairs in
the same order the updates are applied. Let us assume, by
way of contradiction, tha t the local r ep l i cao f g is upda ted
with value 4 before the local replica of × is upda ted with
value v in computa t ion ¢x k. Then, if we remove from ~¢k
all the read operat ions not issued by g a t e k, and since the

s y s t e m is causal, the resulting computat ion o~gkatek m u s t

have a causal view.

From the description above of the second implementat ion
of Propagateok~t and our assumption, ga t e k has issued the
following operations, in this order: r k (g)t , rgkatek(~)U, g a t e k

166

rk t k(X)S, and r k ~(x)v, where t and s are the pre-
wous vames o~ g and x, respectively• Hence, from the

ock rk first condition of the definition of d , g o . t c k (~) u .~OCk

r k (x)s d °ck r k (x)v. We also have that w~k(x)V d °ck g a t e k go.te k

w~(g)u from the statement of the lemma. Finally, from

the second condition of the definition of d =~, w~(g)u -.K oc~
r k k ock g,~te~(g)~. Since any causal view l~g,~te ~ of ~ate~

ock
must preserve the order d , the above operations on

k x must appear in [30~tCk in the order w~(x)v ~£--~

rgkatek(X)S ~-~--~ ek rgkatek(X)V. Let us consider now the op-

eration w[(x}s that writes s in x. There are three pos-
k sible cases, either there is no such operation in fh0ot~k ,

k l~k

w~(x)v ~--2-~ ~k wtk(x)s, or wtk(x)s ~--~-~ wi~(x)v. In ei-
k ther case, the seriality o f ~gatek is violated and ~x k can not

be causal, which is a contradiction• Hence, the local replica
of x must be updated before that of g. []

4. THE INTERCONNECTION OF TWO
SYSTEMS IS CAUSAL

In this section we show that the system S T, obtained by
connecting two systems S o and S 1 using the bridge algo-
rithms, is causal. We consider that the set of processes of
S r includes all the processes in S o and S 1 except gate ° and
gate 1 (they are only used to interconnect the systems S o
and $1).

In what follows, oc T will denote a computation of S T ob-
served when executing all the processes of both systems S o
and S 1 , interconnected through the gate processes running
bridge algorithms. Similarly, ¢x k (where k E {0, 1}) will de-
note the computation of S k observed in the same execu-
tion. Note that o~ k and o¢ v have in common all the opera-
tions issued by processes in Sk; furthermore, write operation
w~ff(x)v in o¢T issued by some processes i. in S ~ appears in
~x k as the write operation w kgctte k (X)V issued by the process

gate ~ in S k. This is so because every write operation is-
sued by gate k in o¢ k is, from the bridge algorithms, just the

propagation of a write operation issued by a process of S t .

DEFINITION 6. Let op and op ' be two operations in ~x r

such that op ...<=v op ' . A causal sequence between op and
op' is a sequence of operations opl , opZ, . . . , opra such that

• ocT o p . i + 1 op 1 = op, op m = op ' , and op ~ drL for I < ~ < m.

Note that at least one causal sequence always exists between

op and op ' if op ..<oct op ' . A causal sequence Seq between
op and op ' can be divided in n subsequences s~bSeql ,
su.bSeqz, . . . , subSeqn, such that all the operations in sub-
sequence subSeq~ belong to the same system S k and the
operations in consecutive subsequences belong to different
systems. We use subSeq~ to express that all the operations
of the i th subsequence belong to system S k.

We use f i r s t (subSeql) and l a s t (subSeq i) to denote the
first and last operation of the subsequence subSeq$, respec-
tively. Note that, in two consecutive subsequences subSeq~

and subSeq~+l of a given sequence, tast(subSeq~} =

w~(x)v and f i rs t (subSeq~+l) = r~(x)v, i.e. the first op-
eration of the later subsequence reads the value written by
the last operation of the former subsequence.

LEMMA 2. Let op and op ' be two operations in ccv such

that op .<oct op ' . I f there is a causal sequence between op

and op ~ with one single subsequence su.bSeql k, then o p d =k
op'.

PROOF. Let us assume, by the way of contradiction, that
the claim does not hold. Then there must be two operations

• . oct o p ~ + l , op ~ and op TM of s~bSeql k such that op ' dr~ but
• ock o p i + 1 oct o p t + 1 does not hold op ~ --<~ . However, if op ~ d,~

we have two cases:
• ocT o p l q _ l Case i: op ' ~ and both operations are issued by

the same process• Since the operations issued by this pro-
cess of S k appear in the same order in 0¢ r and 0¢ k, then

• ock o p i + 1 • ock o p i + l op ' ~ . Hence op ' d~ from the first con-
dition of the non-transitive causal order definition, and we
reach a contradiction•
Case 2: op i = w~C(x)v and op i+1 = rtk(X)V (where j and t

• ock opt+ I , are two processes in Sk). But then op ~ -K~ from
the second condition of the non-transitive causal order def-
inition, and we reach a contradiction. []

LEMMA 3. Let op and op' be two operations in o~ r issued

by system S k such that o p d oct op t. Then op ..<ock op,.

PROOF. Let Seq be a causal sequence between op and
op ' . We use induction on the number of subsequences of
Seq to show the result• Note that this number has to be odd.
In the base case, the sequence Seq has only one subsequence

subSeq~. Hence, from Lemma 2, op = f i rs t (subSeq~) ~ock
op ' = tas t (subSeq~) .

Assume the claim is true for sequences with i subsequences.
We show it also holds if Seq has ~ + 2 subsequences. By in-

duction hypothesis, we have that op = f i rs t (subSeq~) ..<=k
tas t (subSeq~) . Note that t a s t (subSeq l k) = w~C(x)v is

propagated to system S t by process gate k. Before doing so,
ga te k issues the operation rgkatek(X)V (see Propagateok,t

of Fig. 2). Later on, ga te k propagates tast(subSeq~+ l) =

k (g)u (see Propagate~,~ of Fig. 2). From w~(y)u as wg~tek
the definition of causal order, w~(x)v d =~ Vgkatek (X)Y d °ck
w k (~)u. From Lemma 2 we have that first(subSeq~+z) g a t e k

= r~k(g)u d °ck op ' = tost(subSeq~+z). Also, W o ~ t ~ k k (g)u "

d °ck first(subSeq~+z) = rsk(y)u. Hence, by transitivity,

op = f i r s t (subSeq~) d oc~ op ' = tast(subSeqik+z). []

To set up some notation, given a write operation op issued
in S ~, we denote by prop(op) the write operation issued by
go.re k as a result of propagating op to S k as defined by the
bridge algorithms.

167

LEMMA 4. Let op and op ' be two write operations in ocT
issued by system S ~. If op -< °~T op ' , then prop(op) ~=~
prop(op ') .

PROOF. From Lemma 3, op -<=~ op ' . Then, the result
follows from Lemma 1, the fact that the channel connecting
ga te £ to ga te ~ is reliable and FIFO, and the implementa-
tion of task Propagateik~ (see Fig. 2). []

LEMMA 5. Let op and op ' be two operations in oct is-
sued respectively by systems S t and S k, such that op =
w~(x)v .<=Top ' . Then prop(op) ~=~ op ' .

PROOF. Let Seq be a causal sequence between op and
op ' . Let us assume tas t (subSeq~) = w~(~)u and

fi .rst(subSeq~) -- rtk(O)u. From Lemma 4, p rop(op) -d =~

p rop(ta s t (subSeq~)) = prop(w~(g)u.) = woate~(,g)u . k

From Lemma 3 we have that fi .rst(subSeq= k) = rtk(g)u ~=~

op ' . From the definition of causal order k

rtk(g)U- Hence, from transitivity, p rop(op) ~=~ op ' . []

LEMMA 6. Let op and op ' be two operations in ocT issued
respectively by systems S ~ and S ~, such that op ~=T op ' =
W~(X)V. Then op -d =~ p r o p (o p ') .

PROOF. Let Seq be a causal sequence between op and op '
with rt subsequences. Let us assume tast(subSeqk~_l) =
w~(y)u and f i r s t (subSeq~) = r~(y)u. From a e m m a 3,

op ~=k [a s t (subSeq~_ l) = w~(g)u. From the im-
plementation of task Propagateokut (see Fig. 2) the
value u is read from 19 by g a t e k before propagating it.
Hence, from the definition of causal order, w~(y)u ~=k

k rgatek('g)U. Since r~(~)u has to be executed after
the propagation of w~(~j)u, so has to be op ' . Then,
p r o p (o p ') = w~ate~ (x)v is executed a f t e r Tgkate k (~)U, and
r k k ~ate~(~)u ~ p r o p (o p ') (x)v. Hence, from YVgatek
transitivity, op -<=~ p rop(op ') . []

Since S k is a causal system, ¢x k has to be causal. Therefore,
k (see Definition 3) has at least one causal any sequence ocl

view J3~. Like in ock, every write operation in (31 k (see also
Definition 3) of the process ga t e k is the propagation of a
write operation issued by a process of S t . Let us denote by
o'ri.g(op) the original write operation propagated as oper-
ation op in j3i k by process ga t e k. Now, from f3~ k, we will
derive a sequence y k which we will show is a causal view of

T oct(k), defined as the sequence obtained by removing from
ocT all read operations except those from the process i. in
system S k.

DEFINITION 7. "yt k is the sequence obtained by replacing
in ~ every write operation op from ga te k by the write op-
eration ovi.g (op).

168

Note that every prefix of y~ can also be obtained from the
corresponding prefix of f3[with same length by replacing
every write operation op from ga t e k by the write operation
ori.g(op).

LEMMA 7. y k is a permutation of the operations in oct(k).

PROOF. T oci(k) contains all the write operations of oc T and
the read operations of process i~ in system S k. On the other

k hand, oci contains all the write operations in ocT of processes
in S k, all the read operations of process i. in system S k, and
the propagation by g a t e k of all the write operations in ocT
of processes in system S t . Then, the difference in their
respective sets of operations is that , for each operation op

k T issued by g a t e k in oct, oct(k) contains the original operation
ori.g(op)

Since 13~ k is a permutat ion of OCk by definition of causal view,
both have the same operations. Finally, y~¢ is obtained
from f3~ by replacing each op issued by ga t e k by orig{op).
Hence, the set of operations in y~ is the same as that of

T oci{k)' []

LEMMA 8. Each prefix of y i k preserves the causal order
. ~ T .

PROOF. The proof uses contradiction. We show that if
some prefix of "yi k does not preserve the order ..<=T then
some prefix of 13[does not preserve the order ..<=k. But

k by definition of causal view since ~ is a causal view of oci,
each prefix of ~k must preserve the causal order ~=~, and
we reach a contradiction.

Then, by way of contradiction, let us assume there is a prefix
of "yi k, denoted prefi.x(y~¢), which does not preserve the order
..<=T. Let prefix(J3i k) denote the corresponding prefix of J3i k.
Hence, there must be at least two operations op and op '
such that op ~ °~T o p ' but o p ' precedes op in prefix(Yik).
Let us consider four possible cases.

Case 1: op and o p ' have been issued by processes of 5 k.
Then, from Lemma 3, we have that op ..<=k op ' . NOW note
that since op ' precedes op in prefi.x(yik), op ' also precedes
op in pref~x(~ik), by definition of y~. Then, p r e f ~ x (~) ,
does not preserve the order ~=k. However, this is not possi-
ble since, by definition, [3~ is a causal view. Hence, we reach
a contradiction.

Case 2: op and o p ' have been issued by processes of
S ~. Since both operations are in y k, which only contains
read operations from process i. of system S k, both must be
write operations. Let op and op ' be propagated as opera-
tions p rop(op) and pvop(op ') , respectively, issued by pro-

cess ga te k. From Lemma 4, we have that p rop(op) ~=k
prop (op').

Observe now that , by definition, operation prop(op) in ~3~ k
is replaced by op and operation p r o p (o p ') is replaced by

op ' to obtain "yi k. Then p r o p (o p ') precedes p rop(op) in
prefi.x(13[). However, this is not possible since, by defini-

k tion, [3~ is a causal view of computat ion oci. Hence, we
reach a contradiction.

Case 3: op has been issued by a process of S t and op '
has been issued by a process of S k. Note that op must be
a write operation, since y~ only contains read operations
from process i. of system S k. Operat ion op is propagated
from S t to S k as described by the bridge algorithms, and
the write operation performed by op appears in S k as an op-
eration prop(op) issued by process g a t e k. From Lemma 5,

p rop(op) -.<~ op I.

Observe now that , by definition, operation p rop(op) in 131 k
is replaced by op to obtain y~. Then op ' must precede
prop(op) in p re f ix (~k) . However, this is not possible since,

k Hence, by definition, [3i k is a causal view of computat ion oct.
we reach a contradiction.

Case 4: op has been issued by a process of S k and op '

has been issued by a process of S t . Note that op ' must be a
write operation, since y k only contains read operations from
process i of system S k. Operat ion op ' is propagated from S t
to S k as described by the bridge algorithms, and the write
operation performed by op ' appears in S k as an operation

p r o p (o p ') issued by process g a t e k. From Lemma 6, op ~,~k
pvop(op ') .

Observe now that , by definition, operation p r o p (o p ') in {3~
is replaced by op ' to obtain y i k. Then p r o p (o p ') must pre-
cede op in p r e f i x (~) . However, this is not possible since,
by definition, [3~ is a causal view of computat ion oc[. Hence,
we reach a contradiction. []

LEMMA 9. Each prefix of y~ k is serial.

PROOF. Let us assume, by way of contradiction, that
some prefix p re f ix (y~) o fTi k is not serial. Let p r e f i x (~ i k) be
the corresponding prefix of ~i k. By definition of serial com-
putation, we must have one of the following two situations in
prefi.x(y~k): (a) there is an operation op = r (x)u and there

is no op ' = Wk(X)U such that op ' --~ op, or (b) there are
such operations but there is also an operation o p " = w(x)v

such that op ' --~ o p " --~ op. Note that , by definition of ~,~,
the operations of p re f ix (y~) and those of prefix(i3i k) read
and write the same values in the same variables in the same
order. Then, whichever of the two situations above occurs in
prefix(y~') , also occurs in prefix(j3ik), and p r e f i x (i t k) can-
not be serial. However, prefi.x([3i k) is serial because [3i k is
the causal view of oci k, and all its prefixes are serial. Hence,
we reach a contradiction and pref ix(Yi k) has to be serial. []

THEOREM 1. The system S T is causal.

PROOF. To prove tha t S T is causal, we need to show that
each computat ion oc T is causal. To do so for a given com-
putat ion cx T it is enough to show that , for each process i.

and each system S k (k E {0, 1}, i # ga tek) , there is a causal
view (namely "y[) of T oci(k)"

Let 0¢ T be a computa t ion of S T and let OC~(k)T be obtained

from OCT, for some k E (0, l} and some process i. of system
S k, i. ¢ g a t e k. From Lemma 7, 7~, as defined in Defini-

T Also, tion 7, is a permuta t ion of the operations in oct(k}.

from Lemma 8, each prefix of y~ preserves the causal order
~ T . Finally, from Lemma 9, each prefix of y~ is serial.

T Hence, from Definition 3, Ti k is a causal view of oct(k}-

Since this holds for each process i. ~ gate k of system S k, for
k E (0, 1}, we have tha t OCT is a causal computation. Hence
any computat ion oct of S T is causal, and S T is a causal
system. []

Note that S T is a propagat ion-based system, since S o and
S 1 axe also propagat ion-based systems and from the imple-
mentat ion of the bridge algorithms.

5. GENERALIZATION TO SEVERAL SYS-
TEMS

The following corollary shows that the bridge algorithms can
be used to interconnect any number of systems to obtain a
large causal system.

COROLLARY l. Let S°,S1, . . . ,S '~-1 be Tt propagation-
based causal systems. They can be interconnected with the
bridge algorithms to obtain a propagation-based system S T
causal.

PROOF. We use induction on rt to show the result. For
rt = 1 the claim is cleaxly true, since S T = S °. For 11. = 2
it is immediate from Theorem 1. Now, assume that we can
obtain a propagat ion-based causal system S' by intercon-
necting the systems S °, $1 ,..., S ~-2. Then, from Theorem 1,
we can interconnect S' and S ~-1 to obtain the propagat ion-
based causal system S T. []

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented algorithms for intercon-
necting causal systems. Such systems may have different
implementations, as fax as they axe propagation-based. We
have shown tha t those algorithms guarantee that the result-
ing system will remain causal. To the best of our knowledge,
this has been the first work on devising algorithms to inter-
connect memory systems.

Several axeas for future work are suggested by this work.
The most impor tan t of them is studying the interconnection
of systems with other consistency models and exploring the
models of the resulting system. Currently, we are engaged
in such a study.

1

[1]
REFERENCES

S. Adve. Designing Memory Consistency Models for
Shared-Memory Multiprocessors. PhD thesis,
University of Wisconsin-Madison, 1993.

169

[2] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and
P. Hutto. Causal memory: Definitions,
implementation and programming. Distributed
Computing, 9(1):37-49, August 1995.

[3] H. Attiya and J. Welch. Sequential consistency versus
linearizability. ACM Transactions on Computer
Systems, 12(2):91-122, 1994.

[4] V. Cholvi. Specification of the behavior of memory
operations in distributed systems. Parallel Processing
Letters, 8(4):589-598, December 1998.

[5] J. Goodman. Cache consistency and sequential
consistency. Technical Report 61, IEEE Scalable
Coherence Interface Working Group, March 1989.

[6] M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems,
12(3):463-492, July 1990.

[7] L. Lamport. Time, clocks and the ordering of events
in a distributed system. Communications of the A CM,
21(7):558-565, July 1991.

[8] R. Lipton and J. Sandberg. PRAM: A scalable shared
memory. Technical Report CS-TR-180-88, Princeton
University, Department of Computer Science,
September 1988.

[9] R. Prakash, M. Raynal, and M. Singhal. An adaptive
causal ordering algorithm suited to mobile computing
environments. Journal of Parallel and Distributed
Computing, 41:190-204, 1997.

[10] M. Raynal and M. Ahamad. Exploiting write
semantics in implementing partially replicated causal
objects. In Proceedings of the 6th EUROMICRO
Conference on Parallel and Distributed Computing,
pages 157-163, Feb 1998.

[11] A. Singh. Bounded timestamps in process networks.
Parallel Processing Letters, 6(2):259-264, 1996.

[12] H. Sinha. Mermera: Non-Coherent Distributed Shared
Memory for Parallel Computing. PhD thesis,
Computer Science Department, Boston University,
April 1993.

170

