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ABSTRACT 
A large amount of work has been invested in devising al- 
gorithms to implement dis t r ibuted shared memory (DSM) 
systems under different consistency models. However, to our 
knowledge, the possibility of interconnecting DSM systems 
with simple protocols and the consistency of the resulting 
system has never been studied. Wi th  this paper, we s tar t  
a series of works on the propert ies of the interconnection of 
DSM systems, which tries to fill this void. 

In this paper,  we look at the interconnection of propagation- 
based causal DSM systems. We present extremely simple 
algorithms to interconnect two such systems (possibly im- 
plemented with different algorithms), tha t  only require the 
existence of a bidirectional reliable F IFO channel connecting 
one process from each system. We show that  the resulting 
DSM system is also causal. This result can be generalized to 
interconnect any number of DSM propagation-based causal 
systems. 

1. INTRODUCTION 
Shared memory (reading and writing of shared variables) 
is a well-known mechanism for inter-process communication 
in concurrent programs. However, while the semantic of 
read and write operations in sequential programs is clear, 
the situation is different for concurrent accesses to shared 
variables. This is more evident if the shared memory is not 
centralized but  dis tr ibuted among a number of processors, 
i.e. we have distr ibuted shared memory (DSM). There has 
been a number of proposals and implementations of DSM 
systems providing different semantics, or consistency models 
[1, 2, 4, 6, 12]. 

The consistency memory models proposed in the l i terature 
can be broadly classified into strong and weak memory mod- 
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els. The strong memory models are close in behavior to a 
centralized memory, which makes simple to write programs 
with them (the re turn value of each read operation is rather 
predictable).  However, it is widely accepted that  strong 
memory models do not scale well with the number of pro- 
cesses [3, 6]. On the other hand, weaker memory models 
can be more efficiently implemented, since they require less 
consistency overhead. This implies more possible return val- 
ues for each read operat ion [2, 5, 8], which makes harder to 
write programs for these models. Hence, we are faced with 
a tradeoff between simplicity of programming and perfor- 
mance of the consistency model implementation. 

The causal memory model has a t t rac ted  the attention of 
a number of researchers because is considered to be pow- 
erful enough to allow easy programming (like strong mem- 
ory models), but  at the same t ime allows for inexpensive 
implementat ions (like weak memory models). As a conse- 
quence, a number  of algorithms implementing the causal 
memory model  have been proposed in the l i terature (see for 
instance [2, 9, 10]). Most algorithms implementing causal 
memory, in order to increase concurrency, support  replica- 
tion of data. Wi th  replication, there are copies (replicas) of 
the same variables in the local memories of several processes 
of the system, which allows these processes to use the vari- 
ables simultaneously. However, in order to guarantee the 
consistency of the shared memory, the system must control 
the replicas when the variables are updated.  That  control 
can be done by either invalidating outdated replicas or by 
propagating the new variable values to update  the replicas. 

1.1 Our results 
A huge amount  of work has been invested in devising algo- 
r i thms for implementing distr ibuted shared memory systems 
under different memory models, as well as in studying the 
type of problems tha t  can be solved with them. However, 
to our knowledge, there has not been any work on devising 
algorithms to interconnect these DSM systems. The present 
work a t t empts  to be the  first investigating the interconnec- 
tion of DSM systems. 

In this paper we explore the interconnection of causal DSM 
systems implemented with replication and propagation. In 
particular,  we introduce simple algorithms for interconnect- 
ing causal memory systems, possibly implemented with dif- 
ferent propagat ion-based  algorithms. The interconnection 
algorithms proposed only require the existence of reliable 
F IFO channels connecting processes from each system. We 
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show that  the resulting system is also causal. For instance, 
the proposed algorithms could be used to obtain a causal 
DSM system by combining systems implemented with the 
algorithm proposed by Ahamad  et al. [2], and systems im- 
plemented with the algorithm proposed by Prakash et al. [9] 
(just to point out two of them). 

We first s tudy the connection of two propagat ion-based 
causal system. We assume the existence in each system of a 
special process, called gate process, which will be in charge 
of actually running the interconnection algorithm. Those 
gate processes are connected by a reliable F IFO channel, 
which will be used to exchange the da ta  required by the in- 
terconnection. We present algorithms that  can be run by 
the gate processes in order to connect both  systems. Basi- 
cally, these algorithms propagate  the variable updates  from 
one system to the other. For this reason, we denote them 
bridge algorithms. We then show tha t  the system obtained 
by connecting two systems with the gate processes, running 
the proposed bridge algorithms, is causal. 

Next, we show that  the interconnection scheme for two sys- 
tems can be generalized for a larger number of systems. 
Hence, we show tha t  several propagat ion-implemented 
causal systems can be interconnected with our bridge al- 
gorithms to obtain a large causal system. 

Note that  the sequential memory model, which is maybe the 
most widely known, is in fact causal. Hence, these results 
also apply to it. Therefore, our results also show tha t  two 
sequential systems can be interconnected via a F IFO channel 
maintaining the causality of the overall resulting system. 

1.2 Interest of  our  w o r k  
An important  question to pose is why interconnecting causal 
systems with new algorithms instead of using a known al- 
gorithm for the full system. There axe several reasons for 
using this new approach. First ,  in this way, we can inter- 
connect systems that  are already running different causal 
algorithms without changing them. They can keep using 
different algorithms at  their local level. 

Second, it could be interesting to use different algorithms 
in different environments and our approach to combine the 
resulting systems. When  choosing the causal algorithms to 
use in a system, it is basic to analyze the characteristics of 
the network on which the system will run. For example, 
important  characteristics of a network axe the latency or 
the availability of multicast  support .  If we want to have a 
causal system in which there are several networks with dif- 
ferent characteristics involved, it may be convenient or more 
efficient to use the most appropr ia te  algorithm in each net- 
work and use our methods to connect the systems obtained. 
An example of this would be a causal system that  has to 
be implemented on two local area networks connected with 
a low-speed point- to-point  link. In this case, it would seem 
appropriate  to use one of the causal algorithms previously 
proposed in each of the local area networks, and use our 
bridge algorithms via the link to connect the whole system. 

The rest of the paper  is organized as follows. In Section 2 we 
introduce the basic framework and provide a formal defini- 
tion of causal system. In Section 3 we introduce the bridge 

algorithms we propose for interconnecting two causal sys- 
tems. In Section 4 we show tha t  the union of two causal 
systems with the bridge algorithms is causal. In Section 5 
we show tha t  our approach can be used to connect more 
than two causal systems. Finally, in Section 6 we present 
our concluding remarks.  

2 .  P R E L I M I N A R I E S  
In this section we provide a formal definition of causal dis- 
t r ibuted shared memory systems. A distributed shared mem- 
ory system (DSM system or system for short) consists of a 
set of processes tha t  interact  via a set of variables. These 
variables const i tute  the shared memory. 

All the process interactions with the memory are done 
through read and write operations (memory operations) on 
variables of the  memory. Each memory operat ion acts on a 
named variable and has an associated value. A write oper- 
ation by process i. (within the system Sq), denoted w~ (x)v, 
stores the value v in the variable x. Similarly, a read oper- 
ation, denoted r~(x)v,  reports  to i~ (within the system S q) 
tha t  v is s tored in the variable x. To simplify the nota- 
tion, we assume tha t  a given value is wri t ten at  most once 
in any given variable. This assumption does not introduce 
new restrictions, since it can be forced by associating a time- 
s tamp z with every write operation. We also assume that  the 
initial values of the  variables are set by using write opera- 
tions. 

A system computation ~x q of a system S q consists of the 
sequence of read and write operations observed in some ex- 
ecution of S q. We denote oti q the computat ion obtained by 
removing from 0¢ q all read operations from processes other 

~ q  

than L Similarly, we denote with ~ the order in which 
the operations in cx q happen.  For operations of the same 

o~ q 
process L, --~ also defines the order in which these opera- 
tions have been executed by i_ We now introduce the serial 
computat ion concept. 

DEFINITION 1 (SERIAL COMPUTATION). A computa- 
tX a 

tion ~x q is serial / ]Vop = r~(x)v (3op '  = w~(x)v : op '  

o~q op l l  aa op and ~]op" = w ~ ( x ) u  : op '  ~ ~ op).  

In order to capture  "causality" (in the sense of [7]), we need 
to define the causal order 2. 

DEFINITION 2 (CAUSAL ORDER). Let op and op '  be 
two operations in a computation cx q . Then op -.~=q op '  
if some of the following holds: 
I. op and op '  are operations from the same process and 

CX q 

op ~ op ' .  
2. op = w~(x)v and op '  = r~(x)v 

3. 3op"  : op ~=q o p "  -.~=q op '  

1Note that  there  are logical implementat ions of clocks that  
provide finite values[11]. 
2The causal order is actually a preorder, since the antisym- 
metric relation does not necessarily hold. 
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F i g u r e  1: Task  s c h e m e  of  t h e  b r i d g e  a l g o r i t h m s .  

From this last definition, we also derive the non-transitive 
causal order as a restriction of the causal order if the tran- 
sitive closure (i.e., the third condition) is not applied. We 
use  ...~¢q ^ I I op _~ up to denote that op precedes op in the non- 
transitive causal order. Note that,  if op -<,~ o ~ ,  then op 
has been executed before op' .  Hence, if op -<= op'  then 
op has been executed before op ' .  

By using the causal order and the serial computation con- 
cept, we now define both causal view and causal computa- 
tion as follows. Let ocq be a computation of system S q, and 
the causal order -.~=q be as previously defined. 

DEFINITION 3. We say that ~ is a causal view of oc~ i f  
it is a permutation of oct, and each prefix of ~t q is serial and 
preserves the causal order ~=q. 

DEFINITION 4. We say that a computation ocq is causal 
q has a causal view. if, for each process t, the computation oc t 

Finally, we provide the causal system definition. 

DEFINITION 5. We say that the system S q is causal i f  all 
its computations are causal. 

Note that the definition of causal system only imposes a 
restriction on the possible computations observed. It does 
not impose any restriction on how to enforce these compu- 
tations. Hence, it does not restrict the algorithms used to 
implement the causal system. 

As we said, in this paper we will consider only causal systems 
implemented with replication and propagation. We assume 
that each process of a causal system has a replica of each of 
the variables of the shared memory. The replicas of a given 
process are managed by a local causal module of the causal 
algorithm, which is in charge of updating them. Every time 
a process issues a write operation, this is propagated to the 
causal module of the other processes of the system. Each 

causal module chooses the appropriate instant at which ac- 
tually update the local replica. When a process issues a read 
operation, it obtains the current value of the local replica of 
the variable to be read. 

It is important to note that  the causal module of a process is 
completely free to choose the instant at which a local replica 
of a variable is updated, as long as the resulting computa- 
tion is causal. Note that  the causality of a computation 
strongly depends on the values obtained by the read oper- 
ations. Then, the causal module of a process that seldom 
reads has a significant freedom on the order and time the 
local replicas axe updated. For instance, if two write oper- 
ations on variables × and ~ are issued, and the write on x 
causally precedes the write on y, the causal module of some 
process can choose to update first the local replica of y and 
then the local replica of x, as long as the local read opera- 
tions issued between the updates do not violate the causality 
(e.g., do not show the change of order). However, we want to 
note that we do not know of any causal algorithm that uses 
this possibility of playing with the updating order, possibly 
due to the added complexity and bookkeeping involved. In 
this work we consider both kinds of algorithms. 

3. THE BRIDGE ALGORITHMS FOR IN- 
TERCONNECTING CAUSAL SYSTEMS 

In this section, we introduce algorithms for interconnecting 
two propagation-based causal systems S O and S 1 , which we 
will show ensure that the resulting system is also causal. We 
will refer to these algorithms as bridge algorithms since, as 
we said, all they do is basically propagating the variable up- 
dates from one system to the other. We present two bridge 
algorithms, so that  each system will choose which one to use 
depending on which causal algorithm it is running. We con- 
sider two classes of causal algorithms, depending on whether 
they guarantee the following property. 

PROPERTY 1. In any computation ock o] system S ~ 
(where k E {0, 1}), i f  processes ~ and j issue the write oper- 

ations w~k(×)V and w~(y)ax, and w~(x)v _.<=k w~(~)u, then 
every process of  the system S k will update its local replica 
of  x with value v before updating its local replica of ~ with 
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Propagateok~t(x,v)  :: task which is act ivated 
immediately after the local replica of 

variable x in g a t e  k is upda ted  with value v. 
begin 

if (x,v) was not received from g a t e  t then 

sertd (x,v) to gate ~" 
end 

P r o p a g a t e ~ ( x , v )  :: atomic task which is 
activated on the reception of a pair (x,v) 

from g a t e  ~. 
begin 

end 

Figure 2: T h e  b r i d g e  a l g o r i t h m  for  s y s t e m s  s a t i s f y i n g  P r o p e r t y  1. 

value 4.  

We will assume tha t  for each system S k (where k E {0, 1}) 
there is a "gate" process, denoted g a t e  k. Such a process 
does not perform any user operat ion and is in charge of ex- 
ecuting the bridge algorithm of the corresponding system. 
It is worthwhile to remark that  g a t e  ~ is part  of the system 
Sk; for that  reason, gate k has a local replica of each vari- 
able of the shared memory, and those replicas are upda ted  
following the causal algorithm implemented in S k. 

Each bridge algorithm contains two concurrent atomic tasks, 
Propagateok~t and Propagateik~. Whereas Propagateok~t 
deals with transferring write operations issued in S k to the 

system S ~ (we use k to denote 1 - k), Propagateik~ deals 
with applying within S k the write operations transferred 

from the system S t by Propagateo~ut . To work properly, 
Propagateok~t has to guarantee tha t  two causally ordered 
write operations are transferred to S t following the causal 
order, using a reliable F IFO ordered communication chan- 
nel. Similarly, P r o p a g a t e ~  must apply the write opera- 
tions transferred from S ~¢ in exactly the same order they are 
received. An scheme of how the bridge algorithms work is 
shown in Fig. 1 

As it has been said, our algorithm requires a reliable F IFO 
ordered communication channel. Note, however, that  noth- 
ing has been said about how to implement it. In a practi-  
cal case, this channel could be implemented in a number of 
ways, either by using shared memory or by using message 
passing. 

We will first consider a system implemented with a causal 
algorithm that  satisfies Proper ty  1. As we said, all the causal 
algorithms we have found fall within this class. Fig. 2 shows 
an implementation of the Propagateik~ and Propagateok~t 
tasks for this case. Task Propagateok~t is activated with 
parameters  x and v immediately after the local replica of 
variable × in g a t e  k is upda ted  with value v. As a result, it 
sends the pair (x, v) to the g a t e  t process, but  only if such a 

pair was not received from g a t e  t .  This condition prevents 
that  pair from going back and forth between g a t e  k and 
g a t e  ~. I t  is important  tha t  the update  of the var iable  and 
the task P r o p a g a t e o ~ t  are executed as an atomic action. 

On its turn, task P r o p a g a t e ~  is act ivated with parameters  
x and v whenever the pair (x, v) is received from the process 

g a t e  ~. As a result, it performs a causal write operation, thus 
causally propagating the value v to all the replicas of variable 

x within S k. Note that ,  in order to avoid race conditions, 
we require task P r o p a g a t e [ ~  to be atomic as well. 

Let us consider now the more general case in which Prop- 
erty 1 is not necessarily satisfied by the causal algorithm of 
the system S k. In this  case, we need a second implemen- 
ta t ion of task Propagateok~t,  which is only slightly differ- 
ent from tha t  of Fig. 2. In this implementat ion,  on top of 
the process shown in Fig. 2, immediately before the local 
replica of variable x in gate k is upda ted  with a new value 
v, Propagateok~t issues a read operation on x, r~atek(x)s , 
where the previous value s of x is read. This implementa- 
tion enforces tha t  two causally ordered write operations are 
propagated by Propagateo~ut following the causal order. It 
is impor tant  tha t  the  read operat ion described, the update  
of the variable, and  the process shown in Fig. 2 are executed 
together in an atomic fashion. 

The following lemma presents the fundamental  proper ty  sat- 
isfied by bo th  bridge algorithms. 

LEMMA 1. In any computation 0¢ k of system S k (where 
k E {0, 1}), i f  processes ~ and j issue the write opera- 

tions w~(x)v and w~c(g)u, and ~ ( x ) v  -< ak w~(y)4 ,  then 
Propagateokut will send the pairs (×,v) and (g, 4) to system 

S E in this order. 

PROOF. The  claim follows if the causal algorithm used by 
S k satisfies Proper ty  1 and the algorithm of Fig. 2 is used, 
since in g a t e  k the  local replica of × is upda ted  with v before 
the local replica of g is upda ted  with 4,  and Propagateokut 
sends the pairs in the  same order the updates  are applied. 

Now, we show by contradict ion that ,  if we use the second 
implementat ion of Propagateokut ,  then the local replicas of 
x and g of g a t e  ~ are also upda ted  in that  order. This will 
prove the property,  since Propagateokut sends the pairs in 
the same order the  updates  are applied. Let us assume, by 
way of contradiction, tha t  the local r ep l i cao f  g is upda ted  
with value 4 before the  local replica of × is upda ted  with 
value v in computa t ion  ¢x k. Then, if we remove from ~¢k 
all the read operat ions not issued by g a t e  k, and since the 

s y s t e m  is causal, the resulting computat ion o~gkatek m u s t  

have a causal view. 

From the description above of the second implementat ion 
of Propagateok~t and our assumption, ga t e  k has issued the 
following operations,  in this order: r k (g)t ,  rgkatek(~)U, g a t e  k 
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rk t k(X)S, and r k ~(x)v, where t and s are the pre- 
wous vames o~ g and x, respectively• Hence, from the 

ock rk first condition of the definition of d , g o . t c k ( ~ )  u .~OCk 

r k (x)s d °ck r k (x)v. We also have that w~k(x)V d °ck g a t e  k go.te k 

w~(g)u  from the statement of the lemma. Finally, from 

the second condition of the definition of d =~, w~(g)u  -.K oc~ 
r k k ock g,~te~(g)~. Since any causal view l~g,~te ~ of ~ate~ 

ock 
must preserve the order d , the above operations on 

k x must appear in [30~tCk in the order w~(x)v ~£--~ 

rgkatek(X)S ~-~--~ ek rgkatek(X)V. Let us consider now the op- 

eration w[(x}s that writes s in x. There are three pos- 
k sible cases, either there is no such operation in fh0ot~k , 

k l~k 

w~(x)v ~--2-~ ~k wtk(x)s, or wtk(x)s ~--~-~ wi~(x)v. In ei- 
k ther case, the seriality o f  ~gatek is violated and ~x k can not 

be causal, which is a contradiction• Hence, the local replica 
of x must be updated before that  of g. [] 

4. THE INTERCONNECTION OF TWO 
SYSTEMS IS CAUSAL 

In this section we show that the system S T, obtained by 
connecting two systems S o and S 1 using the bridge algo- 
rithms, is causal. We consider that the set of processes of 
S r includes all the processes in S o and S 1 except gate  ° and 
gate  1 (they are only used to interconnect the systems S o 
and $1). 

In what follows, oc T will denote a computation of S T ob- 
served when executing all the processes of both systems S o 
and S 1 , interconnected through the gate processes running 
bridge algorithms. Similarly, ¢x k (where k E {0, 1}) will de- 
note the computation of S k observed in the same execu- 
tion. Note that o~ k and o¢ v have in common all the opera- 
tions issued by processes in Sk; furthermore, write operation 
w~ff(x)v in o¢T issued by some processes i. in S ~ appears in 
~x k as the write operation w kgctte k (X)V issued by the process 

gate  ~ in S k. This is so because every write operation is- 
sued by gate  k in o¢ k is, from the bridge algorithms, just the 

propagation of a write operation issued by a process of S t .  

DEFINITION 6. Let op and op '  be two operations in ~x r 

such that op ...<=v op ' .  A causal sequence between op and 
op'  is a sequence of operations opl ,  opZ, . . .  , opra such that 

• ocT o p . i +  1 op 1 = op, op m = op ' ,  and op ~ drL for I < ~ < m. 

Note that at least one causal sequence always exists between 

op and op '  if op ..<oct op ' .  A causal sequence Seq between 
op and op '  can be divided in n subsequences s~bSeql ,  
su.bSeqz, . . .  , subSeqn,  such that all the operations in sub- 
sequence subSeq~ belong to the same system S k and the 
operations in consecutive subsequences belong to different 
systems. We use subSeq~ to express that  all the operations 
of the i th  subsequence belong to system S k. 

We use f i r s t ( subSeql )  and l a s t ( subSeq i )  to denote the 
first and last operation of the subsequence subSeq$, respec- 
tively. Note that, in two consecutive subsequences subSeq~ 

and subSeq~+l of a given sequence, tast(subSeq~} = 

w~(x)v and f i rs t (subSeq~+l)  = r~(x)v, i.e. the first op- 
eration of the later subsequence reads the value written by 
the last operation of the former subsequence. 

LEMMA 2. Let op and op '  be two operations in ccv such 

that op .<oct op ' .  I f  there is a causal sequence between op 

and op ~ with one single subsequence su.bSeql k, then o p d  =k 
op'. 

PROOF. Let us assume, by the way of contradiction, that 
the claim does not hold. Then there must be two operations 

• . oct o p ~ + l ,  op ~ and op TM of s~bSeql  k such that op '  dr~ but 
• ock o p i +  1 oct o p t +  1 does not hold op ~ --<~ . However, if op ~ d,~ 

we have two cases: 
• ocT o p l q _ l  Case i: op '  ~ and both operations are issued by 

the same process• Since the operations issued by this pro- 
cess of S k appear in the same order in 0¢ r and 0¢ k, then 

• ock o p i +  1 • ock o p i + l  op '  ~ . Hence op '  d~  from the first con- 
dition of the non-transitive causal order definition, and we 
reach a contradiction• 
Case 2: op i = w~C(x)v and op i+1 = rtk(X)V (where j and t 

• ock opt+ I , are two processes in Sk). But then op ~ -K~ from 
the second condition of the non-transitive causal order def- 
inition, and we reach a contradiction. [] 

LEMMA 3. Let op and op'  be two operations in o~ r issued 

by system S k such that o p d  oct op t. Then op ..<ock op,. 

PROOF. Let Seq be a causal sequence between op and 
op ' .  We use induction on the number of subsequences of 
Seq to show the result• Note that  this number has to be odd. 
In the base case, the sequence Seq has only one subsequence 

subSeq~. Hence, from Lemma 2, op = f i rs t (subSeq~) ~ock 
op '  = tas t (subSeq~) .  

Assume the claim is true for sequences with i subsequences. 
We show it also holds if Seq has ~ + 2 subsequences. By in- 

duction hypothesis, we have that  op = f i rs t (subSeq~) ..<=k 
tas t (subSeq~) .  Note that t a s t ( subSeq l  k) = w~C(x)v is 

propagated to system S t by process gate  k. Before doing so, 
ga te  k issues the operation rgkatek(X)V (see Propagateok,t 

of Fig. 2). Later on, ga te  k propagates tast(subSeq~+ l) = 

k (g)u  (see Propagate~,~ of Fig. 2). From w~(y)u as wg~tek 
the definition of causal order, w~(x)v d =~ Vgkatek (X)Y d °ck 
w k (~)u. From Lemma 2 we have that first(subSeq~+z ) g a t e  k 

= r~k(g)u d °ck op '  = tost(subSeq~+z).  Also, W o ~ t ~ k k  (g)u " 

d °ck first(subSeq~+z) = rsk(y)u. Hence, by transitivity, 

op = f i r s t ( subSeq~)  d oc~ op '  = tast(subSeqik+z). [] 

To set up some notation, given a write operation op issued 
in S ~, we denote by prop(op) the write operation issued by 
go.re k as a result of propagating op to S k as defined by the 
bridge algorithms. 
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LEMMA 4. Let op and op '  be two write operations in ocT 
issued by system S ~. If  op -< °~T op ' ,  then prop(op)  ~=~ 
prop(op ' ) .  

PROOF. From Lemma 3, op -<=~ op ' .  Then, the result 
follows from Lemma 1, the fact that  the channel connecting 
ga te  £ to ga te  ~ is reliable and FIFO, and the implementa- 
tion of task Propagateik~ (see Fig. 2). []  

LEMMA 5. Let op and op '  be two operations in oct is- 
sued respectively by systems S t and S k, such that op = 
w~(x)v .<=Top ' .  Then prop(op)  ~=~ op ' .  

PROOF. Let Seq be a causal sequence between op and 
op ' .  Let us assume tas t ( subSeq~)  = w~(~)u  and 

fi .rst(subSeq~) -- rtk(O)u. From Lemma 4, p rop(op)  -d =~ 

p rop( ta s t ( subSeq~) )  = prop(w~(g)u.)  = woate~(,g)u . k  

From Lemma 3 we have that  fi .rst(subSeq= k) = rtk(g)u ~=~ 

op ' .  From the definition of causal order k 

rtk(g)U- Hence, from transitivity, p rop(op)  ~=~ op ' .  []  

LEMMA 6. Let op and op '  be two operations in ocT issued 
respectively by systems S ~ and S ~, such that op ~=T op '  = 
W~(X)V. Then op -d =~ p r o p ( o p ' ) .  

PROOF. Let Seq be a causal sequence between op and op '  
with rt subsequences. Let us assume tast(subSeqk~_l) = 
w~(y )u  and f i r s t ( subSeq~)  = r~(y)u.  From a e m m a  3, 

op ~=k [ a s t ( subSeq~_ l )  = w~(g)u. From the im- 
plementation of task Propagateokut (see Fig. 2) the 
value u is read from 19 by g a t e  k before propagating it. 
Hence, from the definition of causal order, w~(y )u  ~=k 

k rgatek('g)U. Since r~(~)u  has to be executed after 
the propagation of w~(~j)u, so has to be op ' .  Then, 
p r o p ( o p ' )  = w~ate~ (x)v is executed a f t e r  Tgkate  k (~)U, and 
r k k ~ate~(~)u ~ p r o p ( o p ' )  (x)v. Hence, from YVgatek 
transitivity, op -<=~ p rop(op ' ) .  []  

Since S k is a causal system, ¢x k has to be causal. Therefore, 
k (see Definition 3) has at least one causal any sequence ocl 

view J3~. Like in ock, every write operation in (31 k (see also 
Definition 3) of the process ga t e  k is the propagation of a 
write operation issued by a process of S t .  Let us denote by 
o'ri.g(op) the original write operation propagated as oper- 
ation op in j3i k by process ga t e  k. Now, from f3~ k, we will 
derive a sequence y k which we will show is a causal view of 

T oct(k), defined as the sequence obtained by removing from 
ocT all read operations except those from the process i. in 
system S k. 

DEFINITION 7. "yt k is the sequence obtained by replacing 
in ~ every write operation op from ga te  k by the write op- 
eration ovi.g (op). 
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Note that  every prefix of y~ can also be obtained from the 
corresponding prefix of f3[ with same length by replacing 
every write operation op from ga t e  k by the write operation 
ori.g(op). 

LEMMA 7. y k is a permutation of the operations in oct(k). 

PROOF. T oci(k) contains all the write operations of oc T and 
the read operations of process i~ in system S k. On the other 

k hand, oci contains all the write operations in ocT of processes 
in S k, all the read operations of process i. in system S k, and 
the propagation by g a t e  k of all the write operations in ocT 
of processes in system S t .  Then, the difference in their 
respective sets of operations is that ,  for each operation op 

k T issued by g a t e  k in oct, oct(k) contains the original operation 
ori.g(op) 

Since 13~ k is a permutat ion of OCk by definition of causal view, 
both have the same operations. Finally, y~¢ is obtained 
from f3~ by replacing each op issued by ga t e  k by orig{op). 
Hence, the set of operations in y~ is the same as that  of 

T oci{k)' []  

LEMMA 8. Each prefix of y i  k preserves the causal order 
. ~  T . 

PROOF. The  proof uses contradiction. We show that  if 
some prefix of "yi k does not preserve the order ..<=T then 
some prefix of 13[ does not preserve the order ..<=k. But 

k by definition of causal view since ~ is a causal view of oci, 
each prefix of ~k must  preserve the causal order ~=~, and 
we reach a contradiction. 

Then, by way of contradiction, let us assume there is a prefix 
of "yi k, denoted prefi.x(y~¢), which does not preserve the order 
..<=T. Let prefix(J3i k) denote the corresponding prefix of J3i k. 
Hence, there must  be at least two operations op and op '  
such that  op ~ °~T o p '  but o p '  precedes op in prefix(Yik). 
Let us consider four possible cases. 

Case 1: op and o p '  have been issued by processes of 5 k. 
Then, from Lemma  3, we have that  op ..<=k op ' .  NOW note 
that  since op '  precedes op in prefi.x(yik), op '  also precedes 
op in pref~x(~ik), by definition of y~. Then, p r e f ~ x ( ~ ) ,  
does not preserve the order ~=k.  However, this is not possi- 
ble since, by definition, [3~ is a causal view. Hence, we reach 
a contradiction. 

Case 2: op and o p '  have been issued by processes of 
S ~. Since both operations are in y k, which only contains 
read operations from process i. of system S k, both must be 
write operations. Let op and op '  be propagated as opera- 
tions p rop(op)  and pvop(op ' ) ,  respectively, issued by pro- 

cess ga te  k. From Lemma 4, we have that  p rop(op)  ~=k 
prop (op'). 

Observe now that ,  by definition, operation prop(op)  in ~3~ k 
is replaced by op and operation p r o p ( o p ' )  is replaced by 



op '  to obtain "yi k. Then p r o p ( o p ' )  precedes p rop(op)  in 
prefi.x(13[). However, this is not possible since, by defini- 

k tion, [3~ is a causal view of computat ion oci. Hence, we 
reach a contradiction. 

Case 3: op has been issued by a process of S t and op '  
has been issued by a process of S k. Note that  op must be 
a write operation, since y~ only contains read operations 
from process i. of system S k. Operat ion op is propagated 
from S t to S k as described by the bridge algorithms, and 
the write operation performed by op appears in S k as an op- 
eration prop(op)  issued by process g a t e  k. From Lemma 5, 

p rop(op)  -.<~ op I. 

Observe now that ,  by definition, operation p rop(op)  in 131 k 
is replaced by op to obtain y~. Then op '  must  precede 
prop(op)  in p re f ix (~k) .  However, this is not possible since, 

k Hence, by definition, [3i k is a causal view of computat ion oct. 
we reach a contradiction. 

Case 4: op has been issued by a process of S k and op '  

has been issued by a process of S t .  Note that  op '  must  be a 
write operation, since y k only contains read operations from 
process i of system S k. Operat ion op '  is propagated from S t 
to S k as described by the bridge algorithms, and the write 
operation performed by op '  appears in S k as an operation 

p r o p ( o p ' )  issued by process g a t e  k. From Lemma 6, op ~,~k 
pvop(op ' ) .  

Observe now that ,  by definition, operation p r o p ( o p ' )  in {3~ 
is replaced by op '  to obtain y i  k. Then p r o p ( o p ' )  must  pre- 
cede op in p r e f i x ( ~ ) .  However, this is not possible since, 
by definition, [3~ is a causal view of computat ion oc[. Hence, 
we reach a contradiction. []  

LEMMA 9. Each prefix of y~ k is serial. 

PROOF. Let us assume, by way of contradiction, that  
some prefix p re f ix (y~)  o fTi  k is not serial. Let p r e f i x (~ i  k) be 
the corresponding prefix of ~i k. By definition of serial com- 
putation,  we must have one of the following two situations in 
prefi.x(y~k): (a) there is an operation op = r (x )u  and there 

is no op '  = Wk(X)U such that  op '  --~ op, or (b) there are 
such operations but  there is also an operation o p "  = w(x)v 

such that  op '  --~ o p "  --~ op. Note that ,  by definition of ~,~, 
the operations of p re f ix (y~)  and those of prefix(i3i  k) read 
and write the same values in the same variables in the same 
order. Then, whichever of the two situations above occurs in 
prefix(y~') ,  also occurs in prefix(j3ik), and p r e f i x ( i t  k) can- 
not be serial. However, prefi.x([3i k) is serial because [3i k is 
the causal view of oci k, and all its prefixes are serial. Hence, 
we reach a contradiction and pref ix(Yi  k) has to be serial. []  

THEOREM 1. The system S T is causal. 

PROOF. To prove tha t  S T is causal, we need to show that  
each computat ion oc T is causal. To do so for a given com- 
putat ion cx T it is enough to show that ,  for each process i. 

and each system S k (k E {0, 1}, i # ga tek) ,  there is a causal 
view (namely "y[) of T oci(k)" 

Let 0¢ T be a computa t ion  of S T and let OC~(k)T be obtained 

from OCT, for some k E (0, l} and some process i. of system 
S k, i. ¢ g a t e  k. From Lemma 7, 7~, as defined in Defini- 

T Also, tion 7, is a permuta t ion  of the operations in oct(k}. 

from Lemma 8, each prefix of y~ preserves the causal order 
~ T .  Finally, from Lemma 9, each prefix of y~ is serial. 

T Hence, from Definition 3, Ti k is a causal view of oct(k}- 

Since this holds for each process i. ~ gate  k of system S k, for 
k E (0, 1}, we have tha t  OCT is a causal computation. Hence 
any computat ion oct of S T is causal, and S T is a causal 
system. []  

Note that  S T is a propagat ion-based system, since S o and 
S 1 axe also propagat ion-based  systems and from the imple- 
mentat ion of the bridge algorithms. 

5. GENERALIZATION TO SEVERAL SYS- 
TEMS 

The following corollary shows that  the bridge algorithms can 
be used to interconnect any number of systems to obtain a 
large causal system. 

COROLLARY l.  Let S°,S1, . . . ,S  '~-1 be Tt propagation- 
based causal systems. They can be interconnected with the 
bridge algorithms to obtain a propagation-based system S T 
causal. 

PROOF. We use induction on rt to show the result. For 
rt = 1 the claim is cleaxly true, since S T = S °. For 11. = 2 
it is immediate from Theorem 1. Now, assume that  we can 
obtain a propagat ion-based causal system S' by intercon- 
necting the systems S °, $1 ,..., S ~-2.  Then, from Theorem 1, 
we can interconnect S'  and S ~-1 to obtain the propagat ion-  
based causal system S T. []  

6. CONCLUSIONS AND FUTURE WORK 
In this paper,  we have presented algorithms for intercon- 
necting causal systems. Such systems may have different 
implementations,  as fax as they axe propagation-based.  We 
have shown tha t  those algorithms guarantee that  the result- 
ing system will remain causal. To the best of our knowledge, 
this has been the first work on devising algorithms to inter- 
connect memory systems. 

Several axeas for future work are suggested by this work. 
The most impor tan t  of them is studying the interconnection 
of systems with other consistency models and exploring the 
models of the resulting system. Currently, we are engaged 
in such a study. 
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