
Telecommunication Systems 13 (2000) 99–109 99

Embedding complete binary trees in product graphs

Kemal Efe a, Adrienne L. Broadwater b and Antonio Fernandez c

a Department of Computer Engineering, Bilkent University, Ankara 06533, Turkey
E-mail: efe@cs.bilkent.edu.tr

b Computer Science Department, University of Southwestern Louisiana, Lafayette, LA 70504, USA
E-mail: axb0650@usl.edu

c Dipartimento de Arquitectura y Tecnogia de Computadores, Escuela Universitaria de Informatica,
Ctra. Valencia Km. 7, 28031 Madrid, Spain

E-mail: anto@eui.upm.es.

This paper shows how to embed complete binary trees in products of complete binary
trees, products of shuffle-exchange graphs, and products of de Bruijn graphs with small
dilation and congestion. In the embedding results presented here the size of the host graph
can be fixed to an arbitrary size, while we define no bound on the size of the guest graph.
This is motivated by the fact that the host architecture has a fixed number of processors due
to its physical design, while the guest graph can grow arbitrarily large depending on the
application. The results of this paper widen the class of computations that can be performed
on these product graphs which are often cited as being low-cost alternatives for hypercubes.

1. Introduction

Let Gr(N ) denote the r-dimensional product graph obtained from the N -node
graph G(N ). Note that Gr(N ) contains N r nodes. (As a special case, every graph
G(N ) is a one-dimensional product of itself, and we omit r when r = 1.) Let T (N )
be the N -node complete binary tree, where N = 2h − 1. We prove the following
results:

1. T (2rh−dr/2e+l − 1), where l > 1, can be embedded in the r-dimensional product
of complete binary trees, T r(2h−1), with dilation 2, congestion 2, and load 2l−1.

2. Given the r-dimensional product of shuffle-exchange graphs, Sr(N ),

(a) T (N r2l−1 − 1) can be embedded in it with dilation 3, congestion 2, and
load 2l − 1,

(b) T ((N2l)r − 1) can be embedded in it with dilation 4, congestion 4, and
load 2rl.

3. T ((N2l)r−1) can be embedded in the r-dimensional product of de Bruijn graphs,
Dr(N ), with dilation 2, congestion 2, and load 2rl.

 J.C. Baltzer AG, Science Publishers



100 K. Efe et al. / Embedding complete binary trees in product graphs

The significance of the first result above is not only due to its own merit, but also
due to the transitive nature of graph embedding results. If a graph can be efficiently
embedded in G, it can also be embedded, with the same efficiency, in any graph that
contains G as a subgraph. The first result implies that complete binary trees can be
efficiently embedded in any graph that contains the product of complete binary trees
as a subgraph. In practice, product networks are likely to be built from those factor
networks that either contain the complete binary tree or that can emulate the complete
binary tree with low dilation and congestion. For any such network, the first result
above gives an upper bound for the dilation and congestion of embedding complete
binary trees. On the other hand, it is possible that a better dilation and congestion can
be obtained if we find a direct embedding rather than a transitive method. The second
and third results are examples of such direct methods.

The first problem above, for unit load, was originally addressed in [2], where
it was shown that T (2r(h−1)+1 − 1) is a subgraph of T r(2h − 1). When r = 2 this
method embeds the largest possible tree for the number of nodes in T r(2h − 1), but
when r > 2 the size of the tree is smaller by a factor of 2r−1. Thus, as r grows the
method of [2] becomes less and less interesting. To utilize more nodes of the host,
a unit-load embedding was presented in [3] with dilation 3 and congestion 3. Our
emphasis here is how to embed arbitrarily-large complete binary trees in the fixed size
host graph. It turns out that the dilation and congestion values can be reduced from 3
to 2 when the load is increased.

The second and third problems above were addressed in [8] for unit load, but
the methods presented there only apply for two dimensions and use only about half of
the nodes of the product graph. Our methods utilize all (but one) of the nodes of the
product graph and are applicable for any number of dimensions. Also, our methods
yield perfectly balanced loads for the nodes of the host graphs.

Since a parallel architecture has a fixed size due to its physical design, these
results have significant practical importance as they show a way for solving arbitrarily
large tree computations on fixed-size parallel computers. These important practical
concerns appear to have been omitted in most of the papers in the literature except by
a few researchers [1,6,7].

2. Definitions and notation

The nodes of the N -node complete binary tree are assigned the labels 1, . . . ,N .
Each node u, u < N/2, is connected to nodes 2u and 2u + 1. This labeling will be
referred to as the level-order labeling of T (N ) (see figure 1). The graph T (2h − 1)
will often be also called the h-level complete binary tree.

The N -node shuffle-exchange graph, denoted S(N ), contains N = 2n nodes,
labeled 0, . . . ,N − 1, and 3× 2n−1 edges connected as follows:

(a) (u, v) is an “exchange” edge if v = u+ 1, where u is even, or v = u− 1, where
u is odd, or



K. Efe et al. / Embedding complete binary trees in product graphs 101

Figure 1. Level-order labeling of the complete binary tree.

Figure 2. Construction of the 2-dimensional product of the shuffle-exchange graph S(8). Both rows and
columns are connected in the pattern of the basic shuffle-exchange graph.

(b) (u, v) is a “shuffle” edge if v = 2u, where u < N/2, or v = (2u modN ) + 1,
where u > N/2.

The N -node de Bruijn graph, denoted D(N ), contains N = 2n nodes, labeled
0, . . . ,N − 1, and 2n+1 edges connected as follows: (u, v) is an edge of D(N ) if
v = 2u modN or v = (2u modN ) + 1.

Let G = (VG,EG) and H = (VH ,EH) be two arbitrary graphs. Their Cartesian
product is the graph P = G ⊗ H whose vertex set is VG × VH and whose edge set
contains all edges of the form (x1x0, y1y0) such that either x1 = y1 and (x0, y0) ∈ EG,
or x0 = y0 and (x1, y1) ∈ EH .

The r-dimensional homogeneous product of an N -node graph G(N ), denoted
Gr(N ), is:

(1) a single vertex with no labels and no edges if r = 0,

(2) G(N )⊗Gr−1(N ) when r > 0.

Figure 2 illustrates this definition by presenting the construction of the 2-dimen-
sional product S2(8).

An embedding of a “guest” graph G in a “host” graph H is a mapping of the
vertices of G into the vertices of H and the edges of G into paths in H . The main
cost measures used in embedding efficiency are (see [2]):



102 K. Efe et al. / Embedding complete binary trees in product graphs

• Load of an embedding is the maximum number of vertices of G mapped to any
vertex of H .

• Dilation of an embedding is the maximum path length in H representing an edge
of G.

• Congestion of an embedding is the maximum number of paths (that correspond to
the edges of G) that share any edge of H .

The level-order labeling of a complete binary tree as in figure 1 defines an
embedding of T (N − 1) in S(N ) with dilation 2, congestion 2, and load 1 [5]. This
labeling also shows that T (N − 1) is a subgraph of D(N ) [8].

3. Embedding in the product of complete binary trees

In this paper we use the embedding method of [2] as part of the improved
embedding method presented here. For easy reference this result is included here.

Theorem 1. T (2r(h−1)+1 − 1) is a subgraph of T r(2h − 1).

As an example, figure 3 shows the embedding for r = 2.
The main result of this section is the following:

Theorem 2. T (2rh−dr/2e+l − 1), where l > 1, can be embedded in T r(2h − 1) with
dilation 2, congestion 2, and load 2l − 1.

Before proving the theorem, we will first distinguish a particular node in the
T r(N ) graph as follows:

• Root of T r(N ). The node v = vr−1 . . . v1v0 is the root of T r(N ) if and only if
vi = 1 (that is, vi is the root of T (N )), for all 0 6 i 6 r − 1.

First we show that a 63-node complete binary tree can be embedded in T 2(7)
with dilation 2, congestion 2, and load 3. A simple modification of this gives an

Figure 3. Embedding the complete binary tree T (31) in T 2(7) by theorem 1. The complete binary tree
subgraph is highlighted by heavy dark lines.



K. Efe et al. / Embedding complete binary trees in product graphs 103

embedding for T (2l+5 − 1) in T 2(7) with the same dilation and congestion, but the
load is increased to 2l − 1, where l > 1. Next, we use induction on r to show
that T (2b5r/2c+1 − 1) can be embedded in T r(7) with dilation 2, congestion 2, and
load 3. Finally, by combining these results and theorem 1 the claim of the theorem is
obtained.

Lemma 1. T (63) can be embedded in T 2(7) with dilation 2 and congestion 2, such
that 10 nodes have load 3 and 33 nodes have load 1. The remaining 6 nodes of T 2(7)
are unused. In this embedding the root of the embedded tree coincides with the root
of T 2(7).

Proof. Figure 4(a) presents a subgraph of T 2(7) extended with some new nodes (the
small empty nodes). We emphasize that the small empty nodes in figure 4(a) do not
exist in T 2(7) itself; we just added these nodes for convenience in the presentation of
proof (we will eventually erase these nodes). Figure 4(b) presents a 63-node complete
binary tree drawn in a form suitable for the following discussion.

Consider embedding the graph of figure 4(b) in the graph of figure 4(a) by super-
imposing the nodes of the two graphs on top of each other. It can be easily checked that
any edge in figure 4(b) corresponds to a path of length no more than 3 in figure 4(a).
Dilation-3 edges are those that connect the large dark nodes to small empty nodes in
figure 4(b). It can be also easily seen that the maximum congestion of 3 is found in
some of the edges connecting large empty nodes with small empty nodes in figure 4(a).
(The reader can trace the connections sharing the edge from the large empty node to
the small empty node in the rightmost column of figure 4(a).)

Finally, by contracting the edges between the large empty nodes and small empty
nodes in figure 4(a) we obtain a real subgraph of T 2(7), while we increase the load in
the large empty nodes to 3. This process also reduces both the dilation and congestion
values to 2. Since the tree of figure 4(b) has 6 levels we have obtained an embedding
of T (63) in T 2(7) with dilation and congestion values of 2, and load 3. From the
figure it is easily verified that the root of the embedded tree coincides with the root of
T 2(7). �

Figure 4. Embedding the (l + 5)-level complete binary tree in a subgraph of T 2(7).



104 K. Efe et al. / Embedding complete binary trees in product graphs

Corollary 1. T (2l+5−1), where l > 1, can be embedded in T 2(7), such that 32 nodes
of T 2(7) have load 2l − 1, 10 nodes have load 3, and the root has load 1.

This is obtained by simply replacing the dark nodes of figure 4(b) (the leaves of
the embedded tree) by l-level complete binary trees, and then using the embedding
method above.

The properties of the embedding highlighted in the statement of lemma 1 are
needed in lemma 2 below. This lemma uses induction on r to increase the number of
dimensions.

Lemma 2. T (2b5r/2c+1 − 1) can be embedded in T r(7) with dilation 2, congestion 2,
and load 3. In this embedding the root of the embedded tree is the root of T r(7) and
the leaves are in unit-load nodes.

Proof. We prove the claim by induction on the number of dimensions, r. We will
have two initial base cases (cases of r = 1 and r = 2) and an induction step that
increases the number of dimensions by two. This allows to prove the claim for any
number of dimensions, since depending on whether r is odd or even, we can use either
r = 1 or r = 2 as the base case, respectively.

The base cases are trivially verified. For r = 1, T 1(7) is isomorphic to
T (2b5/2c+1 − 1). For r = 2, lemma 1 above shows the embedding.

In the induction step, given an embedding of T (2b5k/2c+1 − 1) in T k(7)
with dilation 2, congestion 2, and load 3, we show that it is possible to embed
T (2b5(k+2)/2c+1 − 1) in T k+2(7) with the same dilation, congestion, and load. In
this embedding the root of the embedded tree is the root of T k+2(7).

By removing all the edges along dimensions k and k+1 from T k+2(7) we obtain
49 disjoint copies of T k(7). From the induction hypothesis, we can embed a disjoint
copy of T (2b5k/2c+1 − 1) in each of these copies.

Now consider only the roots of the embedded trees and reconnect them along
dimensions k and k+1. Considering only the dimensions k and k+1, we have a graph
isomorphic to T 2(7). From lemma 1, we know that a 6-level complete binary tree can
be embedded in this graph. The leaves of this tree (the dark nodes of figure 4(a))
correspond to the roots of embedded T (2b5k/2c+1 − 1) graphs. (The trees whose roots
fall in the large empty nodes are not considered.)

By this procedure, we have obtained an embedding of the (2b5k/2c+1+5 − 1) =
(2b5(k+2)/2c+1−1)-node complete binary tree in T k+2(7) with dilation 2, congestion 2,
and load 3, as claimed. �

Proof of theorem 2. If we remove the 2 lowest levels from every tree along each
dimension in T r(2h−1) we obtain a graph isomorphic to T r(2h−2−1). From theorem 1
we can embed an (r(h − 3) + 1)-level tree in this subgraph of T r(2h − 1) such that
the leaves of the tree are mapped to the leaves of T r(2h−2 − 1).



K. Efe et al. / Embedding complete binary trees in product graphs 105

Similarly, if we remove the h−3 top levels from every tree along each dimension
we obtain a disconnected graph formed by 2r(h−3) disjoint copies of T r(7). Then, by
using lemma 2, we embed a (b5r/2c+ 1)-level tree in each copy of T r(7), where the
roots of the embedded trees coincide with the roots of T r(7) graphs. The combination
of both embeddings in T r(2h−1) yields an embedding of the (b5r/2c+1+r(h−3)) =
(rh−dr/2e+1)-level complete binary tree in T r(2h−1) with dilation 2, congestion 2,
and load 3. Note that in this tree the leaves are embedded with unit load.

Finally, by replacing the leaves of the embedded tree with l-level trees (as in
corollary 1) we obtain a dilation 2 and congestion 2 embedding where the load is
2l − 1. �

This proves the first result claimed in the introduction and completes this section.

4. Embedding in the product of shuffle-exchange graphs

In this section we focus our attention on embeddings of complete binary trees
of arbitrary size in Sr(N ). We start by presenting a method to embed T (N r − 1) in
Sr(N ) with dilation 3, congestion 2, and unit load. We continue by showing how to
extend this method for arbitrarily large trees with the same dilation and congestion
values, thus, proving the result 2(a) claimed in section 1.

However, in this embedding half of the nodes (minus one) of Sr(N ) have unit
load, while the other half are collectively mapped most of the nodes of the embedded
tree. In the next section we comment on a method to embed arbitrarily large trees
with perfectly-balanced load distribution (result 2(b)).

Theorem 3. T (N r− 1) can be embedded in Sr(N ) with dilation 3, congestion 2, and
unit load.

Proof. We prove the theorem by induction on the number of dimensions. We already
mentioned that T (N − 1) can be embedded in S(N ) with dilation 2 and congestion 2,
which proves the base case r = 1. We now illustrate the induction step by presenting
the construction of the embedding of T (N2 − 1) in S2(N ). The generalization of this
process for an arbitrary number of dimensions is similar and will be briefly described.

We begin by embedding T (N − 1) in each of the subgraphs isomorphic to S(N )
that form the dimension-1 connections in S2(N ). Since each node has a label of the
form v1v0, we can do this by using the level-order embedding of T (N − 1) in S(N )
using the v0 part of the label. Note that the roots of these N trees all have the form v11
and that the nodes v10 are all unused. See figure 5 (looking at row connections only).
We can now embed another N − 1 node complete binary tree using the level-order
labeling in the nodes of the form v10 using dimension-2 connections. This tree forms
the “top” of the N2− 1 node complete binary tree. The root of this tree is at 10. The
leaves of this tree are found in the nodes k0, where N/2 6 k 6 N − 1. Each of these
leaves now becomes the root of two subtrees as described next.



106 K. Efe et al. / Embedding complete binary trees in product graphs

Figure 5. Embedding of 63-node complete binary tree in the 2-dimensional product of shuffle-exchange
graphs.

Let kl = 2k−N and kr = 2k−N + 1. The left child of k0 is kl1 and the right
child of k0 is kr1 (see figure 5). The connection between k0 and kr1 is realized by a
path of length 2 in S2(N ). The path from k0 to kr1 is formed by the following edges:

1. k0 is connected to k1 by an exchange edge in dimension 1.

2. k1 is connected to kr1 by a shuffle edge in dimension 2. Since the binary form
of k has a ‘1’ in the most significant position, the shuffle of k results in the label
value 2k −N + 1.

The connection between k0 and kl1 is realized by a path of length 3. That path
is formed by the following edges:

1. Traverse the two edges as described above, k0 to k1 to kr1.

2. kr1 is connected to kl1 by an exchange edge in dimension 2.

The dilation of this embedding is clearly 3. The congestion is 2 because the paths
to the left and right child of k0 coincide with each other but do not coincide with any
other path between adjacent nodes in the tree. This completes the case for r = 2.

Given that there is an embedding of an (N r−1 − 1)-node complete binary tree
in Sr−1(N ), with the root at node 10 . . . 0 and with congestion 2, and dilation 3,
we can construct an embedding of the N r − 1 node complete binary tree in Sr(N )
with these same properties. We do this by first embedding the (N r−1 − 1)-node
complete binary tree in the N subgraphs isomorphic to Sr−1(N ) formed if the highest



K. Efe et al. / Embedding complete binary trees in product graphs 107

dimension connections are not considered. All nodes within each subgraph have the
same value vr−1 in their labels. We now embed an (N − 1)-node complete binary tree
in the new dimension in the subgraph isomorphic to S(N ) formed by the nodes of the
form vr−10 . . . 0. The root of this tree is at 10 . . . 0. We form the connections between
the N/2 leaves of this tree and the roots of the N subtrees in the same manner as
in the 2-dimensional case. This time only vr−1 and vr−2 will be considered when
connecting k0 . . . 0 to its descendents. �

Corollary 2. T (N r2l−1−1) can be embedded in Sr(N ) with dilation 3, congestion 2,
and load 2l − 1.

This embedding is obtained by simply replacing the leaves of the embedded tree
by an l-level complete binary tree, as in corollary 1. This proves the result 2(a) claimed
in section 1.

Note that if l > 1, the load of the embedding described in the above corollary
is not fully balanced. Half the nodes of Sr(N ) will have load 2l − 1, while the other
half (except one unused) has unit load. It is possible to obtain a better load balance
by increasing the dilation and congestion slightly. It will be easier to explain how to
do this once we see the embedding method in products of de Bruijn graphs.

5. Embedding in the product of de Bruijn graphs

All the results presented in the previous sections are also applicable to products
of de Bruijn graphs. The reason is that T r(N − 1) is a subgraph of Dr(N ) [2, the-
orem 13] and that Sr(N ) is a subgraph of Dr(N ) (combining [4, theorem 2] and
[2, theorem 3]). However, we are able to obtain better embeddings in Dr(N ) if we
consider this network directly.

Again here we initially focus our attention on embeddings with unit load. Then
we comment on how to extend this method for embedding arbitrarily large trees
with perfectly balanced load distribution, thereby proving the result 3 claimed in sec-
tion 1.

Theorem 4. T (N r−1) can be embedded in Dr(N ) with dilation 2, congestion 2, and
unit load.

Proof. This proof is similar to that of theorem 3. In the interest of brevity, we only
sketch the basic idea pointing out the differences from the above case.

It was shown in [8] that D(N ) contains the (N−1)-node tree as a subgraph. This
result can be used for the first dimension connections of figure 5. The connections
in the second dimension require congestion 2, just as for Sr(N ), but a dilation of 2
instead of 3. This is because the connection between k0 and kr1 is realized by a path
of length 2 in Dr(N ). This path is formed by the following edges:



108 K. Efe et al. / Embedding complete binary trees in product graphs

1. k0 is connected to k1 by an edge in dimension 1.

2. k1 is connected to kr1 by an edge in dimension 2. Since the binary form of
k has a ‘1’ in the most significant position, the shuffle of k results in the value
2k −N + 1.

The connection between k0 and kl1 is realized by a path also of length 2. That path
is formed by the following edges:

1. k0 is connected to k1 by an edge in dimension 1.

2. k1 is connected to kl1 by the edge connecting k to label value 2k−N in dimen-
sion 2.

This completes the proof for the case of r = 2. For r > 2, similar arguments as in
theorem 3 apply. �

We could use now this result to embed larger trees using the same technique as
used in corollaries 1 and 2. Like in these results, the embedding obtained would not
fully balance the load among the nodes of the host graph.

However, it is possible to map arbitrarily large complete binary trees to a fixed-
size product Dr(N ) with perfectly-uniform load distribution. That is, if the product
graph contains N r nodes, we can embed T ((N2l)r − 1) in it with a uniform load of
2rl for all nodes of the product graph, with the exception of one node that will be
mapped 2rl − 1 nodes.

The new embedding can be done in two steps. In the first step, we embed
T ((N2l)r − 1) in Dr(N2l) with dilation 2, congestion 2, and load 1 by the method
of theorem 4. In the second step, we embed Dr(N2l) in Dr(N ) with dilation 1,
congestion 1, and load 2rl by the method given in [2, corollary 8]. This induces an
embedding for T ((N2l)r− 1) in Dr(N ) with dilation 2, congestion 2, and load 2rl, as
claimed in section 1 (result 3).

This result can also be used to obtain an embedding of T ((N2l)r − 1) in Sr(N )
with a perfectly-balanced load of 2rl (result 2(b)). To do so, we simply combine it
with an embedding of Dr(N ) in Sr(N ) with dilation 2, congestion 2, and unit load
[2,5]. This leads to the dilation and congestion values of 4.

6. Remarks

The embedding methods in this paper can also be applied, without any change, to
product graphs made from graphs containing different numbers of nodes for different
dimensions.

It is shown in [2] that if G contains the complete binary tree as a subgraph, then
Gr(N ) contains the r-dimensional product of complete binary trees as a subgraph.
Combined with this result, theorem 2 implies that for any graph G, if G contains
the complete binary tree as a subgraph, then its r-dimensional product can embed



K. Efe et al. / Embedding complete binary trees in product graphs 109

the complete binary tree with dilation 2 and congestion 2. This observation makes
theorem 2 very powerful and widely applicable since the factor graph G used in
practice is likely to contain the complete binary tree as a subgraph. For example,
we easily conclude from theorem 2 that arbitrarily large complete binary trees can be
embedded in products of de Bruijn graphs with the dilation 2 and congestion 2.

Besides the generality of this result, we inspected two specific cases to see if
the cost measures can be improved by considering the specific connections in these
graphs. The methods in sections 4 and 6 did not improve the dilation or congestion
of embedding, but they improved the load distribution by mapping exactly the same
number of tree nodes to each node of the host graph.

Acknowledgements

This research has been supported by Louisiana Board of Regents, grant No.
LEQSF (1998-01)-RD-A-36; the U.S. Department of Energy, grant No. DE-FG02-
97ER1220; Spanish Ministry of Education, grant No. PF94-04166960; and the Turkish
Scientific and Engineering Research Council, grant No. EEEAG-199E013.

References

[1] K. Efe, Embedding large complete binary trees in hypercubes with load balancing, Journal of Parallel
and Distributed Computing 35(1) (1996) 104–109.

[2] K. Efe and A. Fernández, Products of networks with logarithmic diameter and fixed degree, IEEE
Transactions on Parallel and Distributed Systems 6 (September 1995) 963–975.

[3] K. Efe and A. Fernández, Mesh connected trees: A bridge between grids and meshes of trees, IEEE
Transactions on Parallel and Distributed Systems, to appear (1996).

[4] R. Feldmann and W. Unger, The cube-connected cycles network is a subgraph of the butterfly
network, Parallel Processing Letters 2(1) (1992) 13–19.

[5] A. Fernández, Homogeneous product networks for processor interconnection, Ph.D. thesis, University
of Southwestern Louisiana, Lafayette, LA (1994).

[6] J.P. Fishburn and R.A. Finkel, Quotient networks, IEEE Transactions on Computers 31 (April 1982)
288–295.

[7] R. Koch, T. Leighton, B. Maggs, S. Rao and A.L. Rosenberg, Work-preserving emulations of fixed-
connection networks, in: Proc. of the 21st Annual ACM Symposium on Theory of Computing, Seattle
(May 1989) pp. 227–240.

[8] A.L. Rosenberg, Product-shuffle networks: Toward reconciling shuffles and butterflies, Discrete
Applied Mathematics 37/38 (July 1992) 465–488.


