
Decoupled Interconnection of Distributed
Memory Models�

Ernesto Jiménez1, Antonio Fernández2, and Vicente Cholvi3

1 Universidad Politécnica de Madrid, 28031 Madrid, Spain
ernes@eui.upm.es

2 Universidad Rey Juan Carlos, 28933 Móstoles, Spain
afernandez@acm.org

3 Universitat Jaume I, 12071 Castellón, Spain
vcholvi@inf.uji.es

Abstract. In this paper we present a framework to formally describe
and study the interconnection of distributed shared memory systems. In
our models we minimize the dependencies between the original systems
and the interconnection system (that is, they are decoupled) and consider
systems implemented with invalidation and propagation.
We first show that only fast memory models can be interconnected. We
then show that causal and pRAM systems can be interconnected if they
fulfill some restrictions, and for these cases, we present protocols to in-
terconnect them. Finally, we present a protocol to interconnect cache
systems.

1 Introduction

Distributed shared memory is an abstraction used for process communication. In
this abstraction, processes read and write variables of a shared memory, which is
usually implemented with distributed memory and message passing. Depending
on the semantics of the shared memory a number of consistency models have
been proposed in the literature [1,9]. Some of the most popular models are the
sequential [16], causal [3], pRAM [18], and cache [12]. Informally, the sequential
model requires that the read and write (memory) operations obtained in an
execution of a distributed system could have been obtained if they had been
executed in a single processor. Therefore, in this model there must be a total
order (a view) of the operations such that they seem to have been executed in
that sequential order. This sequential view must be the same for every process.
The causal model relaxes the memory semantics because it allows several views
(one for each process), where only causally related memory operations must
be ordered. Therefore, two processes could have different causal views if there
are operations that are not causally related. Similarly, the pRAM model is a
� This work has been partially supported by the Spanish MCyT under grants TIC2001-

1586-C03-01 and TIC2001-1586-C03-02, the Comunidad de Madrid under grant
07T/0022/2003, and the Universidad Rey Juan Carlos under grant PPR-2003-37.

M. Papatriantafilou and P. Hunel (Eds.): OPODIS 2003, LNCS 3144, pp. 235–246, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



236 E. Jiménez, A. Fernández, and V. Cholvi

relaxation of the causal model, because it only requires that in each process all
write operations of another process seem to have been executed in the same
order as they were issued. Finally, the cache model is like the sequential model
but applied on each variable independently. That is to say, there is a sequential
view formed by all operations on variable x (for every variable x of the shared
memory). Many protocols have been proposed in distributed shared memory
systems that implement these consistency models.

In this work we study the interconnection of distributed shared memory
systems. By this we mean the adding of an interconnection system to several
existing distributed shared memory systems that implement a given consistency
model to obtain a single distributed shared memory system that implements
the same consistency model. This line of work was started in [10], where the
interconnection of causal propagation-based systems was studied. In this work
we use much weaker assumptions on the systems to be interconnected, consider
also invalidation-based systems, and explore other models as well.

Our Contributions. In this work we first define a framework for the interconnec-
tion of systems. We formalize several classes of interactions, both for propagation
and invalidation-based protocols, between the existing systems and the intercon-
nection system. All these classes decouple the systems from the interconnection
system, unlike the previous model [10].

Then, we show that systems that implement non-fast consistency models
cannot be interconnected in these classes. A fast consistency model is one that
allows implementations of read and write operations that return control after
only local computations. After that, we study the interconnection of pRAM and
causal systems. We show that they can not be interconnected in general, but can
under certain restrictions. We give sufficient conditions and the corresponding
protocols to do so. Finally, we also show that systems that implement cache
consistency can always be interconnected.

Note that this is the first work that studies the interconnection of pRAM
and cache systems, that considers both propagation and invalidation, and that
shows that certain interconnections are in fact impossible. Our protocols need
not be very useful nor efficient in practice, since all we try to do with this work
is to define the bounds of the possibilities of interconnection.

The rest of the paper is organized as follows. In Section 2 we introduce
our framework for the interconnection of systems. In Section 3 we show the
impossibility result for non-fast consistency models. In Section 4 we study the
interconnection of pRAM systems, in Section 5 the interconnection of causal
systems, and in Section 5 we show how to interconnect cache systems. Finally,
in Section 7 we present concluding remarks.

2 Definitions and Notation

We consider distributed shared memory systems (or systems for short) formed
by a collection of application processes that interact via a shared memory formed



Decoupled Interconnection of Distributed Memory Models 237

by a set of variables. All the interactions between the application processes and
the memory are done through read and write operations (memory operations)
on variables of the memory.

Each memory operation is applied on a named variable and has an associated
value. A write operation of the value v in the variable x, denoted w(x)v, stores
v in the variable x. A read operation of the value v from the variable x, denoted
r(x)v, reports to the issuing application process that the variable x holds the
value v. To simplify the analysis, we assume that a given value is written at most
once in any given variable and that the initial values of the variables are set by
using fictitious write operations.

Consistency Model of a System. An execution α of a system S is the set of
read and write operations observed in some run R of system S.

Definition 1 (Process Order). Let p be a process of S and op, op′ ∈ α. Then
op precedes op′ in p’s process order, denoted op ≺p op′, if op and op′ are opera-
tions issued by p, and op is issued before op′.

Definition 2 (Execution Order). Let op, op′ ∈ α. Then op precedes op′ in
the execution order, denoted op ≺ op′, if:
1. op and op′ are operations from the same process p and op ≺p op′, or
2. op = w(x)v and op′ = r(x)v, or
3. ∃op′′ ∈ α : op ≺ op′′ ≺ op′

We denote by αp the subset of operations obtained by removing from α all
read operations issued by processes other than p. We also denote by α(x) the
subset of operations obtained by removing from α all the operations on variables
other than x.

Definition 3 (View). Let ≺o be an order on execution α, and let α′ ⊆ α. A
view β of α′ preserving ≺o is a sequence formed by all operations of α′ such that
this sequence preserves the order ≺o.

Note that if ≺o applied on α′ is not a total order, there can be several views
of α′. We use op

β→ op′ to denote that op precedes op′ in a sequence of operations
β. We will omit the name of the sequence when it is clear from the context. We
will also use β1 → β2, where β1 and β2 are sequences of operations, to denote
that all the operations in β1 precede all the operations in β2.

Definition 4 (Legal View). Let ≺o be an order on execution α, and let α′ ⊆ α.
A view β of α′ preserving ≺o is legal if ∀r(x)v ∈ α′:

a) ∃ w(x)v ∈ α′ : w(x)v
β→ r(x)v, and

b) � w(x)u ∈ α′ : w(x)v
β→ w(x)u

β→ r(x)v.

By using this definition of legal view, we can define systems satisfying the
causal, pRAM, and cache consistency models.



238 E. Jiménez, A. Fernández, and V. Cholvi

Definition 5 (Causal, pRAM, or Cache System). A system S is causal if
for every execution α and every process p there is a legal view βp of αp preserving
≺ on α. A system S is pRAM if for every execution α and every process p there
is a legal view βp of αp, preserving ≺q on αp, for all q. A system S is cache
if for every execution α and every variable x there is a legal view βx of α(x)
preserving ≺ on α(x).

System Architecture. From a physical point of view, we consider distributed
systems formed by a set of nodes and a network that provides communication
among them. The essence of this model has been taken from [6]. The application
processes of the system are actually executed in the nodes of the distributed
system. We assume that the shared memory abstraction is implemented by a
memory consistency system (MCS ). The MCS is composed of MCS-processes
that use the local memory at the various nodes and cooperate following a dis-
tributed algorithm, or MCS-protocol , to provide the application processes with
the impression of having a shared memory. The MCS-processes are executed at
the nodes of the distributed system and exchange information as specified by
the MCS-protocol. They use the communication network to interact if they are
in different nodes. Each MCS-process can serve several application processes,
but an application process is assigned to only one local MCS-process. For each
application process p we use mcs(p) to denote its MCS-process.

An application process sequentially issues read or write operations on the
shared variables by sending (read or write) calls to its MCS-process. After send-
ing a call, the application process blocks until it receives the corresponding re-
sponse from its MCS-process, which ends the operation.

We consider MCSs implemented with propagation and invalidation. For sim-
plicity, in both cases we consider that each MCS-process has a copy (replica) of
the whole shared memory. In an MCS with invalidation, some of the copies of a
variable x can be “invalid” or outdated. If an MCS-process’ copy of a variable x
is invalid and one of its application processes tries to read x, the MCS-process
has to obtain the current value of x from some other MCS-process (following the
MCS-protocol). When an application process issues a write operation w(x)v, the
local copy of x in its MCS-process is updated with the current value v, and the
valid copies of x in the rest of MCS-processes are marked as invalid. In an MCS
with propagation no copy is ever invalid and holds the current value (as seen by
the MCS-process). This value is returned to an application process that issues
a read operation. New written values are propagated among MCS-processes to
maintain the copies up to date.

The Interconnection System. This paper deals with the interconnection of
systems. This means that, after the interconnection, the set of original systems
will behave as one single system. Using the terminology defined above, intercon-
necting systems is, in fact, interconnecting MCSs. In our model, the load of such
an interconnection will fall on an interconnection system (IS). An IS is a set
of processes (IS-processes) that execute some distributed algorithm or protocol



Decoupled Interconnection of Distributed Memory Models 239

(IS-protocol). For simplicity in the IS design, we consider one IS-process for each
MCS to be interconnected. The IS-process of each system is at the same level
as an application process and has its own MCS-process. The IS-process uses the
MCS-process to read and write on the shared memory of the local system. In
particular, the only way a value written by an application process in some sys-
tem can be read by an application process in another system is if the IS-process
of the latter system writes it. IS-processes exchange information among them
(as specified by the IS-protocol) by using a communication network. Note that,
after the interconnection, the overall system has a global MCS formed by the
MCSs of the original systems plus the IS that interconnects them.

For system interconnections we extend the interface between the MCS and
the IS beyond read and write operations issued by IS-processes. We assume
that MCS-processes are connected with its corresponding IS-process through
a reliable FIFO channel and send messages to it with the changes on the local
memory replicas by using these FIFO channels. We consider the following classes
of interfaces between the MCS and the IS.
(a) Weak decoupled class with propagation (WDP). The MCS-process of
the IS-process sends a message to the IS-process every time a variable copy is
updated. Each of these messages, denoted by msg(p, x, u), carries the process p
that issued the corresponding write operation, the variable x, and the new value
u.
(b) Strong decoupled class with propagation (SDP). Every MCS-process
in the system sends a message to its corresponding IS-process every time a
variable copy is updated. Each of these messages, denoted by msg(p, m, x, u),
carries the application process p that issued the corresponding write operation,
the MCS-process m that updated, the variable x, and the new value u. Trivially,
in the SDP class, the IS-process receives at least as much information as in the
WDP class. Thus, in this sense, SDP is stronger than WDP.
(c) Strong decoupled class with invalidation (SDI). Every MCS-process
in the system sends a message to its corresponding IS-process every time a
variable copy is invalidated or updated (by a write operation issued by one of its
application processes). Each of these messages, denoted by msg(p, q, x, u), carries
the process p that issued the corresponding write operation, the MCS-process
q that updated or invalidated this replica, the variable x, and the new value
u (if it is an update). For each write operation w(x)u issued by some process
p, the IS-process will receive an update message msg(p, mcs(p), x, u) from p’s
MCS-process, and an invalidation message msg(p, m, x) from each MCS-process
m that had a valid copy of x, and has invalidated it.

Model and Notation. In this paper we assume an asynchronous model. This
means that there is no bound on the time instructions and message transmissions
take. We do not assume synchronized clocks among processes. We also assume
that no system component (processes, nodes, and networks) fails.

In the rest of the paper we will use N to denote the number of systems
to be interconnected. The systems to be inteconnected will be denoted by



240 E. Jiménez, A. Fernández, and V. Cholvi

S0, · · · , SN−1, and the resulting interconnected system by ST . The IS-process
for each system Sk (where k ∈ {0, · · · , N − 1}) is denoted by ispk. It is worth
to remark that ispk is part of the system Sk. For that reason, the MCS-process
mcs(ispk) has a local replica of each variable of the shared memory, and those
replicas are updated or invalidated (depending on the method used to main-
tain the coherence of these replicas) following the MCS-protocol implemented
in the MCS of Sk. We also assume that the IS-processes are interconnected
among them through reliable FIFO communication channels which will be used
to propagate write operations from one system to the other. We consider that
the set of processes of ST includes all the processes in S0, · · · , SN−1 except for
isp0, · · · , ispN−1 (they are only used to interconnect the systems S0, · · · , SN−1).

Regarding executions, we will use the next notation. αT will denote an exe-
cution of ST . Similarly, αk (where k ∈ {0, · · · , N − 1}) will denote the execution
of Sk obtained in the same run. Note that αk and αT have in common all the
operations issued by processes in Sk. We also extend the notation used with read
and write operations. We denote by wk

p(x)v the write operation w(x)v issued by
process p of system Sk. Similarly, we denote by rk

p(x)v the read operation r(x)v
issued by process p of system Sk. A write operation wl

q(x)v in αT issued by some
processes q in Sl appears in αk, k �= l, as the write operation wk

ispk(x)v issued by
the process ispk in Sk. This is so because every write operation issued by ispk in
αk is, from the IS-protocol, just the propagation of a write operation issued by a
process of another system Sm, m �= k. We denote by orig(op) the original write
operation propagated as operation op in αk

p by process ispk. Similarly, given a
write operation op issued in Sl, l �= k, we denote by prop(op) the write operation
issued by ispk as a result of propagating op to Sk as defined by the IS-protocol.

We will say that a consistency model can be interconnected if there is an IS-
protocol that interconnects systems implementing this consistency model. The
IS-protocol can specify the number of systems it interconnects. (However, it
cannot restrict how applications processes are mapped to nodes.)

3 Non-fast Consistency Models

In this section we show that systems implementing “non-fast” consistency models
can not be interconnected in any of the classes defined in the previous section. We
say that a consistency model is fast if there is an MCS–protocol that implements
it, such that memory operations only require local computations before returning
control, even in systems with several nodes. There is a number of consistency
models (e.g., causal or pipelined RAM) that are fast, while there are stronger
memory models (e.g., the sequential or atomic) that are not. This implies that
the property of being fast classifies the set of memory models in a non trivial
way.

The proof of the following theorem is omitted due to space limitations.

Theorem 1. There is no IS that guarantees the interconection of systems im-
plementing some non-fast memory model.



Decoupled Interconnection of Distributed Memory Models 241

As a consequence of this theorem, we can derive that a number of popular
memory models can not be interconnected. In [6] it is shown that the sequential
consistency model is not fast. Hence it cannot be interconnected and neither
can the atomic consistency model, nor its derivations, safe and regular [17].
Similarly, Attiya and Friedman [4] have shown that the processor consistency
models PCG and PCD [12,2] are not fast and hence cannot be interconnected.
Finally, in [4] Attiya and Friedman also proved that any algorithm for the mutual
exclusion problem using fast operations must be cooperative. This implies that
any synchronization operation that guarantees mutual exclusion must be non–
fast. Therefore, any synchronized memory model that provides exclusive access
cannot be interconnected. As a result, we have that memory models such as the
eager release [11], the lazy release [15], the entry [7] or the scope [13] can not be
interconnected.

4 pRAM Consistency Model

In this section we study the interconnection of pRAM systems. We first show
that in general the interconnection is not possible. Then present IS-protocols for
the different classes defined under different restrictions.

Impossibility for Interconnecting pRAM Systems. In this subsection we
show that we can not guarantee the interconnection, through some IS in any
class, of every pair of pRAM systems. The proof of the following theorem is
based on the fact that, when some process p in Sk, k ∈ {0, 1}, issues several
write operations, it may update the corresponding variables in its local memory
in a different order from p′s process order.

The proof of the following theorem is omitted due to space limitations.

Theorem 2. There is no IS in SDP that guarantees pRAM interconnection for
every pair of pRAM systems.

We know, by definition, that SDP is stronger than WDP. Hence, we can also
apply this impossibility result to ISs interconnecting pairs of pRAM systems in
WDP. Note also that the above proof can be easily adapted to the SDI class.
Hence, we have that there is no IS in SDI that guarantees pRAM interconnection
for every pair of pRAM systems.

IS-protocols for pRAM Systems. In this section we show how to intercon-
nect systems implementing the pRAM [18] consistency model in SDP, WDP,
and SDI, as long as these systems satisfy certain restrictions. First, we present
an IS-protocol in SDP, for MCSs that satisfy the following property, which is
fulfilled by all pRAM MCSs we have found.

Property 1. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for each
process p in Sk, there is an MCS-process s(p), known by ispk, such that if p issues
two write operations wk

p(x)v ≺p wk
p(y)u, then s(p) updates its local replica of x

with the value v before updating the variable y with the value u.



242 E. Jiménez, A. Fernández, and V. Cholvi

Property 1 guarantees that each process ispk knows MCS-processes in system
Sk that locally apply the write operations in the same order as they were issued
in Sk by the application processes. Furthermore, ispk knows at least one such
MCS-process for each application process p. With this knowledge, ispk will be
able to propagate the write operations to other systems preserving the process
order ≺p (see Definition 1). Then, in our algorithm, each IS-process ispk, k ∈
{0, · · · , N − 1}, contains two concurrent tasks, Propagatek

out and Propagatek
in.

Propagatek
out deals with transferring write operations issued in Sk to every Sl,

l �= k, while Propagatek
in deals with applying within Sk the write operations

transfered from the systems Sl, l �= k. The two tasks that form the pRAM
IS-protocol in SDP operate as follows (see Fig. 1):

– Task Propagatek
out is activated after a message msg(p, s(p), x, v), for some

process p, is received by ispk. Then, Propagatek
out sends the pair 〈x, v〉 to

every ispl, l �= k. From the above Property 1, the sending of the pairs
generated from the write operations issued by p follows p’s process order.
We avoid to re-propagate write operations received from other systems, by
checking that the write operation was not issued in Sk by ispk.

– Task Propagatek
in is activated whenever a pair 〈x, v〉 is received from some

process ispl, l �= k. As a result, it performs a write operation wk
ispk(x)v, thus

propagating the value v to all the replicas of variable x within Sk.

1 Task Propagatek
out :: upon

reception of msg(p, s(p), x, v)
2 begin
3 if p �= ispk then
4 send 〈x, v〉 to every ispl, l �= k
5 end

1 Task Propagatek
in :: upon

reception of 〈x, v〉 from ispl, l �= k
2 begin
3 wk

ispk (x)v
4 end

Fig. 1. The pRAM IS-protocol in ispk in SDP.

The correctness of the IS-protocol of Fig. 1 is omitted due to space limita-
tions. There, we show that the system ST , obtained by connecting N systems
S0, · · · , SN−1 using this pRAM IS-protocol in SDP, is pRAM.

We now consider an IS-protocol in WDP such that this IS only interconnects
MCSs that fulfill the following Property 2.

Property 2. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for
each process p in Sk, if p issues two write operations wk

p(x)v ≺p wk
p(y)u, then

mcs(ispk) updates its local replica of x with the value v before updating its local
replica of y with the value u.

Property 2 guarantees that the MCS-process of ispk applies the write op-
erations in the same order as they are issued in Sk. We can observe that this



Decoupled Interconnection of Distributed Memory Models 243

Property 2 is a particular case of Property 1 where process s(p) is now mcs(ispk),
for all p. Hence, we can use the same IS-protocol of Figure 1.

Finally, to end this section, we consider an IS-protocol in SDI such that this
IS only interconnects MCSs that fulfill the following Property 3.

Property 3. In any computation αk of system Sk (k ∈ {0, · · · , N − 1}), for each
process p in Sk, if p issues two write operations wk

p(x)v ≺p wk
p(y)u, then mcs(p)

updates its local replica of x with the value v before updating its local replica
of y with the value u.

Now Property 3 guarantees that every MCS-process of system Sk applies the
write operations in the same order as they are issued in Sk. Again, this property
is a particular case of Property 1 where process s(p) is now mcs(p). Hence, we
can use the same IS-protocol of Figure 1 to interconnect pRAM systems in SDI.

5 Causal Consistency Model

In this section we study the interconnection of causal systems. Note that the
pRAM model is strictly weaker than causal model [3,8]. Therefore, the results
of impossibility of Section 4 are also applicable to causal systems.

In Section 4 we present an IS–protocol in SDP for interconnecting pRAM
systems satisfying Property 1. We can show that there is no IS in SDP that
interconnects every pair of causal systems satisfying Property 1. The proof is
omitted due to space limitations. This result can be easily extended to WDP
with Property 2 and SDI with Property 3.

We now propose an IS–protocol in SDP for causal systems. We also show in
this subsection that the resulting system of this interconnection is causal. For
our IS, we will only consider MCSs that fulfill the following Property 4 (which
is in fact satisfied by all the causal protocols we have found).

Property 4. Consider any execution αk of the causal system Sk (where k ∈
{0, · · · , N − 1}). For each two write operations wk

p(x)v ≺ wk
q (y)u on αk, each

MCS–process of system Sk updates its local replica of x with the value v before
updating its local replica of y with the value u.

Property 4 guarantees that every MCS-process of system Sk applies the
write operations preserving the execution order ≺ (see Definition 2). In Fig-
ure 2 we present the causal IS-protocol we propose. This protocol requires that
the communication among IS-processes is totally ordered. There are well-known
message-passing protocols (e.g., [5, pp. 177-179]) to provide total ordering of
messages.

It can be observed that the IS-protocol is composed by two task, like the IS-
protocol of Fig. 1. In fact, the Propagatek

in task is the same. However, the key
difference is found in task Propagateout. In this task a pair 〈x, v〉 is not sent to
the other systems until all the MCS replicas of x have been updated. Note that,
from Property 4, write operations are propagated to the rest of systems following



244 E. Jiménez, A. Fernández, and V. Cholvi

1 Task Propagatek
out :: upon reception

of msg(p, q, x, v), from every
MCS-process q

2 begin
3 if p �= ispk then
4 send 〈x, v〉 to every ispl, l �= k
5 end

1 Task Propagatek
in :: upon reception

of 〈x, v〉 from ispl, l �= k
2 begin
3 wk

ispk (x)v
4 end

Fig. 2. The causal IS-protocol in ispk in SDP.

the causal order in system Sk. We need the communication among IS-processes
to be totally ordered to enforce that two write operations from different systems
and casually ordered, are applied in the rest of systems in the causal order.

Let us now show that the system ST , obtained by connecting N systems
S0, · · · , SN−1 using the causal IS–protocol of Fig. 2 in SDP, is causal.

Let p be some process in system Sk, k ∈ {0, · · · , N − 1}, and let mcs(p) be
its MCS-process. Recall that αk

p (resp. αT
p ) is the set obtained by removing from

αk (resp. αT ) all read operations except those from process p. We define βk
p as

a sequence with the same operations as αk
p that preserves the order in which

all operations of αk
p are issued by process p, and the order in which every write

operation is applied in mcs(p). Formally,

Definition 6. Let βk
p a sequence of the operations in αk

p. Let op and op′ in αk
p.

Then op → op′ in βk
p , if any of the following happens:

1. op and op′ are operations from the same process p of Sk and op ≺p op′.
2. op = wk

q (x)u, op′ = wk
s (y)v, and in mcs(p) the local copy of x is updated with

u before updating y with v.
3. op = wk

q (x)u, op′ = rk
p(y)v, and in mcs(p) the local copy of x is updated with

u before p issues op′.

Note that, like in αk
p , every write operation of process ispk in βk

p is the
propagation of a write operation issued by a process of Sl, l �= k. We define βT

p

as the sequence obtained by replacing in βk
p every write operation op from ispk

by the write operation orig(op). The proof of the following results is omitted
due to space limitations.

Lemma 1. βT
p is formed by all operations of αT

p , preserves the execution order
≺ on αT , and is legal.

Theorem 3. The system ST is causal.

6 Cache Consistency Model

In this section we study the interconnection of cache systems. We show that,
unlike the previous models, the interconnection of cache systems is always possi-
ble, independently of how they are implemented. The interconnection only uses



Decoupled Interconnection of Distributed Memory Models 245

read and write operations, without any other consideration about the interface
between the MCS and the IS. Hence, we can use the same IS-protocol for SDP,
SDI and WDP classes.

The IS-protocol we propose only works for the interconnection of two systems.
However, it can be repeatedly used to interconnect as many systems as desired.
Each ispk (in this case k ∈ {0, 1}) has one task for each variable of the shared
memory, presented in Figure 3. Note that each IS-process maintains a copy of

1 Task Propagatek(x) :: upon reception of 〈x, v〉 from isp1−k

2 begin
3 if v �= “NoData′′ then
4 wk

ispk (x)v
5 last(x) = v

6 rk
ispk (x)u

7 if u = last(x) then
8 u = “NoData′′

9 send 〈x, u〉 to isp1−k

10 end

Fig. 3. The cache IS-protocol in ispk for variable x.

the latest value propagated from the other system in last(x) for each variable x.
That copy must be initialized with a special value (e.g., “NoData′′). Note also
that initially one of the IS-processes (for instance isp0) must send to the other a
message with 〈x, NoData〉 for each variable x to start the interconnection. The
proof that this cache IS-protocol interconnects two cache systems is omitted due
to space limitations.

7 Conclusions

In this paper we have formalized and studied the interconnection of distributed
shared memory systems. We have shown that non-fast, pRAM, and causal sys-
tems cannot be interconnected in general, while cache systems can. Then, we
have given sufficient conditions to interconnect pRAM and causal systems. Then,
with the results presented in this paper we can determine, for example, whether
several systems, that implement certain memory models, can be interconnected
by merely looking at the properties that these systems satisfy, and independently
of what specific protocols they use.

Limitations of space have made impossible to include all the proofs. A com-
plete version of this paper can be found in [14].

References

1. S.V. Adve. Designing Memory Consistency Models for Shared-Memory Multipro-
cessors. PhD thesis, University of Wisconsin-Madison, 1993.



246 E. Jiménez, A. Fernández, and V. Cholvi

2. M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor
consistency. In Proceedings of the 5th ACM Symposium on Parallel Algorithms and
Architectures, pages 251–260, 1993.

3. M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W. Hutto. Causal memory:
Definitions, implementation and programming. Distributed Computing, 9(1):37–49,
August 1995.

4. H. Attiya and R. Friedman. Limitations of fast consistency conditions for dis-
tributed shared memories. Information Processing Letters, 57:243–248, 1996.

5. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill, 1998.

6. H. Attiya and J.L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, 1994.

7. B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The Midway distributed shared
memory system. In COMPCON, 1993.

8. V. Cholvi. Formalizing Memory Models. PhD thesis, Department of Computer
Science, Polytechnic University of Valencia, December 1994.

9. V. Cholvi. Specification of the behavior of memory operations in distributed sys-
tems. Parallel Processing Letters, 8(4):589–598, December 1998.

10. A. Fernández, E. Jiménez, and V. Cholvi. On the interconnection of causal memory
systems. In Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing. ACM, July 2000.

11. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26. ACM, May 1990.

12. J.R. Goodman. Cache consistency and sequential consistency. Technical Report 61,
IEEE Scalable Coherence Interface Working Group, March 1989.

13. L. Iftode, J. Singh, and K. Li. Scope consistency: A bridge between release con-
sistency and entry consistency. In Proc. of the 8th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1996.

14. Ernesto Jiménez, Antonio Fernández, and Vicente Cholvi. Decoupled Interconnec-
tion of Distributed Memory Models. Technical Report TR-GSYC-2003-2, Univer-
sidad Rey Juan Carlos, October 2003, http://gsyc.escet.urjc.es/publicaciones/tr.

15. P. Keleher. Distributed Shared Memory Using Lazy Consistency. PhD thesis, Rice
University, 1994.

16. L. Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers, 28(9):690–691, September
1979.

17. L. Lamport. On interprocess communication: Parts I and II. Distributed Comput-
ing, 1(2):77–101, 1986.

18. R.J. Lipton and J.S. Sandberg. PRAM: A scalable shared memory. Technical
Report CS-TR-180-88, Princeton University, Department of Computer Science,
September 1988.


	Introduction
	Definitions and Notation
	Non-fast Consistency Models
	pRAM Consistency Model
	Causal Consistency Model
	Cache Consistency Model
	Conclusions

