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Abstract—Unreliable failure detectors were proposed by Chandra and Toueg as mechanisms that provide information about process

failures. Chandra and Toueg defined eight classes of failure detectors, depending on how accurate this information is, and presented

an algorithm implementing a failure detector of one of these classes in a partially synchronous system. This algorithm is based on

all-to-all communication and periodically exchanges a number of messages that is quadratic on the number of processes. In this paper,

we study the implementability of different classes of failure detectors in several models of partial synchrony. We first show that no

failure detector with perpetual accuracy (namely, P, Q, S, and W) can be implemented in these models in systems with even a single

failure. We also show that, in these models of partial synchrony, it is necessary a majority of correct processes to implement a failure

detector of the class � proposed by Aguilera et al. Then, we present a family of distributed algorithms that implement the four classes

of unreliable failure detectors with eventual accuracy (namely, �P, �Q, �S, and �W). Our algorithms are based on a logical ring

arrangement of the processes, which defines the monitoring and failure information propagation pattern. The resulting algorithms

periodically exchange at most a linear number of messages.

Index Terms—Consensus problem, crash failures, distributed systems, failure detection, partial synchrony, unreliable failure

detectors.
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1 INTRODUCTION

THE Consensus problem [22] is considered one of the
fundamental problems in distributed computing. How-

ever, it was shown by Fischer et al. [12] that the Consensus
problem cannot be solved deterministically in an asynchro-
nous system inwhichprocesses can fail. This result, knownas
the FLP impossibility, generated a series of works that tried to
identify the amount of synchrony needed to solve Consensus
in the presence of failures, and showed how to solve
Consensus in these partially synchronous systems [9], [10].

An alternative and elegant approach to circumvent the

unsolvability of Consensus in asynchronous systems was

proposed by Chandra and Toueg [6]. They augmented the

asynchronous model of computation with unreliable failure

detectors. Informally, an unreliable failure detector is a

distributed“oracle” thatgives (possibly incorrect)hintsabout

which processes of the system have crashed. Based on two

basic abstract properties (namely, completeness and accuracy),

Chandra and Toueg proposed eight different classes of

unreliable failuredetectorsandshowed thatConsensuscould

be solved in an asynchronous systemwith any of them.
Chandra-Toueg’s model of unreliable failure detectors

can be viewed as an abstract way of incorporating partial

synchrony assumptions into the model of computation.

Instead of focusing on the timing assumptions of a given

model of partial synchrony, their model of failure detectors
considers abstract properties that must be satisfied in order
to solve Consensus. However, the synchrony assumptions
are in fact encapsulated in the failure detector. Clearly,
systems using these unreliable failure detectors are no
longer truly asynchronous; they merely produce the illusion
of an asynchronous system by encapsulating all references
to time in the failure detector. This leads to the practical
problem of implementing a given failure detector in a specific
model of synchrony.

From the FLP impossibility result [12] and the possibility
of solving Consensus using unreliable failure detectors [6],
one can establish the impossibility of implementing any of
Chandra-Toueg’s classes of failure detectors in a purely
asynchronous system. (Such an implementation could be
used to solve Consensus in an asynchronous system, contra-
dicting the FLP impossibility result.) On the other hand, in a
fully synchronous system even a Perfect failure detector (i.e.,
one that does not make mistakes) can be implemented. In
such a system, one can build a simple timeout-based
algorithm that reliably detects the failure of processes.

1.1 Partial Synchrony

Distributed algorithms can be designed under different
assumptions of system behaviors, i.e., system models. One
of the main assumptions in which system models can differ
is related to the timing aspects. Most models focus on two
timing attributes: the time taken for message delivery across
a communication channel and the time taken by a processor
to execute a piece of code. Depending on whether these
attributes are bounded or not, and on the knowledge of
these bounds, they can be classified as synchronous,
asynchronous, or partially synchronous [10]. A timing
attribute is synchronous if there is a known fixed upper
bound on it. On the other hand, it is asynchronous if there is
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no bound on it. Finally, a timing attribute is partially
synchronous if it is neither synchronous nor asynchronous.
Dwork et al. [10] consider two kinds of partial synchrony. In
the first one, the timing attributes are bounded, but the
bounds are unknown. In the second one, the timing
attributes are bounded and the bounds are known, but
they hold only after an unknown stabilization interval. They
showed that Consensus can be solved in both models and
that a majority of correct processes is required. Chandra
and Toueg [6] propose another kind of partial synchrony, in
which the timing attributes are bounded, but the bounds
are unknown and hold only after an unknown stabilization
interval. They showed how to implement a failure detector
strong enough to solve Consensus in this model.

Although the asynchronous model (in which at least one
of the timing attributes is asynchronous) is attractive for
designing distributed algorithms, it is well known that a
number of distributed problems cannot be solved determi-
nistically in asynchronous systems in which processes can
fail. For instance, as we said above, Consensus cannot be
solved deterministically in an asynchronous system that is
subject to even a single process failure [12], while it can be
solved in both synchronous and partially synchronous
systems [6], [9], [10]. In fact, the ability to solve these
synchronization distributed problems closely depends on
the ability to detect failures. In a synchronous system,
reliable failure detection is possible. One can reliably detect
failures using timeouts. (The timeouts can be derived from
the known upper bounds on message delivery time and
processing time.) On the other hand, in an asynchronous
system it is impossible to distinguish a failed process from a
very slow one. Thus, reliable failure detection is impossible.

However, even if it is sufficient, reliable failure detection
is not necessary to solve most of these problems. As we
already mentioned, Chandra and Toueg [6] introduced
unreliable failure detectors (i.e., failure detectors that can
make mistakes), and showed how they can be used to solve
Consensus and Atomic Broadcast. Guerraoui et al. [13]
showed how unreliable failure detectors can be used to
solve the Nonblocking Atomic Commitment problem.

1.2 Unreliable Failure Detectors

An unreliable failure detector is an oracle that gives hints
about crashed processes. In a system with a failure detector,
each process has access to a local failure detector module,
which monitors other processes in the system and main-
tains a set of those that it currently suspects to have crashed.
A failure detector module can make mistakes by not
suspecting a crashed process or by erroneously adding
processes to its set of suspects, i.e., it can suspect that a
process p has crashed even though p is still running. If it
later finds that suspecting p was a mistake, it can remove p

from its set of suspects. Thus, each module may repeatedly
add and remove processes from its set of suspected
processes. Furthermore, at any given time the failure
detector modules at two different processes may have
different sets of suspects.

Chandra and Toueg characterized a class of failure
detectors by specifying the completeness and accuracy
properties that failure detectors in that class must satisfy.
Roughly speaking, the completeness property requires that
every process that actually crashes is eventually suspected,
while the accuracy property restricts the mistakes (i.e., false
suspicions) that a failure detector can make. Chandra and
Toueg defined two completeness and four accuracy proper-
ties in [6], which combined gave rise to eight classes of
failure detectors. Regarding completeness, they proposed
the following two properties:

. Strong Completeness. Eventually every process that
crashes is permanently suspected by every correct
process.

. Weak Completeness. Eventually every process that
crashes is permanently suspected by some correct
process.

And regarding accuracy, the following four properties:

. (Perpetual) Strong Accuracy. No process is suspected
before it crashes.

. (Perpetual) Weak Accuracy. Some correct process is
never suspected.

. Eventual Strong Accuracy. There is a time after which
correct processes are not suspected by any correct
process.

. Eventual Weak Accuracy. There is a time after which
some correct process is never suspected by any
correct process.

Failure detectors with eventual accuracy may suspect
every process at one time or another, while failure detectors
with perpetual accuracy require that at least one correct
process is never suspected.

Note that, in isolation, completeness and accuracy are
useless. For example, strong completeness can be satisfied
by forcing every process to permanently suspect every
other process in the system. Similarly, strong accuracy can
be satisfied by forcing every process to never suspect any
process in the system. Such failure detectors are clearly
useless since they provide no information about failures. To
be useful, a failure detector must have some completeness
and some accuracy.

Combining one of the two completeness properties with
one of the four accuracy properties we obtain one class of
failure detectors. There are eight different classes, which are
presented in Fig. 1. In this paper, we denote the four classes
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with perpetual accuracy as perpetual and the four classes
with eventual accuracy as eventual. As we said, Chandra
and Toueg showed in [6] that any of the failure detectors of
Fig. 1 can be used to solve Consensus.

Chandra and Toueg [6] also proposed a timeout-based
implementation of a �P failure detector in a system with
partial synchrony. Since any failure detector of class �P also
belongs to classes �Q, �S, and �W, they in fact showed the
implementability of the four eventual classes of failure
detectors. In their algorithm, each process periodically
sends a message to the rest of processes in order to inform
them that it has not crashed. If there are n processes in the
system and Cr of them do not fail in a run r, at least nCr
messages are periodically exchanged with this algorithm.
Concerning the perpetual classes of failure detectors, i.e., P,
Q, S, and W, they were neither shown to be implementable
nor shown to be impossible to implement in models of
partial synchrony.

Another class of failure detectors was proposed by
Aguilera et al. in [2]. They called this class � and showed
that the failure detectors in this class are the weakest
required to solve uniform reliable broadcast. We can define the
class � in terms of completeness and accuracy properties.
Let us say that a process p trusts another process q at a given
time t if p does not suspect q at time t; then, a failure
detector belongs to class � if it satisfies the following
properties:

. �-completeness: There is a time after which correct
processes do not trust any process that crashes.1

. �-accuracy: If there is a correct process then, at every
time, every process trusts at least one correct
process.

Note that a process may be trusted even if it has actually
crashed. Moreover, the correct process trusted by a process
p is allowed to change over time (in fact, it can change
infinitely often), and it is not necessarily the same as the
correct process trusted by another process q. Aguilera et al.
proposed in [2] an algorithm implementing � in an
asynchronous system with a majority of correct processes.

1.3 Our Results

In this paper, we study the possibility of implementing
several classes of failure detectors in partially synchronous
systems. We start with the four perpetual classes (P, Q, S,
and W) out of the eight classes of failure detector classes
proposed in [6]. We show that none of these four classes can
be implemented in a partially synchronous system with
failures (even with one single failure). The partial syn-
chrony assumptions we make in our system are at least as
strong as those made in [6], [10], which means that our
results apply to their models of partial synchrony as well.

At first glance, our result may seem evident. Never-
theless, even if the proofs are not very difficult, the result
itself is far from being trivial. To understand it, note that
Consensus can be solved—without perpetual failure detec-
tors—in the models of partial synchrony considered in this
paper, while we show that no one of the perpetual failure

detectors defined by Chandra and Toueg can be imple-

mented in these models. This means that, even if they

suffice, perpetual failure detectors are not necessary to solve

Consensus. Actually, eventual failure detectors suffice,2

which is not strange, knowing that Consensus requires that

the unanimous decision has to be reached eventually. From

the previous, it can also be derived that the problem of

implementing perpetual failure detectors is harder than

solving Consensus in the models of partial synchrony

considered in this paper.
We complete the impossibility results of this paper

showing that it is impossible to implement a failure detector

of class � in these partially synchronous systems if there is

not a majority of correct processes. Since Aguilera et al. [2]

also presented an algorithm implementing � in an

asynchronous system with a majority of correct processes,

our result identifies the majority of correct processes as a

necessary and sufficient condition for � failure detectors to

be implemented in partially synchronous systems.
Then, we present algorithms that implement unreliable

failure detectors of each of the four eventual classes (�P, �Q,

�S, and �W) in partially synchronous systems. Our algo-

rithms (and,particularly, our�P algorithm) aremore efficient

in terms of messages periodically exchanged than the �P
algorithmpresented in [6].Moreover, they strictly implement

failure detectors of the corresponding class. Then, the �W
failure detector implemented does not belong to �Q nor �S,
and the �Q and �S failure detectors implemented do not

belong to�P. This shows thepossibility of implementing each

class without implementing a stronger one.
Our algorithms have been designed and are presented as

a sequence of refinements. First, we present an algorithm

that provides weak completeness. Next, we show how to

extend this algorithm to provide eventual weak accuracy.

This extended algorithm implements a �W failure detector.

Next, we present two other extensions which strengthen the

accuracy and the completeness, respectively, implementing

the stronger failure detectors.
In all these algorithms, each correct process monitors

only one other process in a cyclic fashion. The monitoring

process performs this task by repeatedly polling the

monitored process. Each polling involves only two mes-

sages exchanged between the monitoring and monitored

processes. If the pollings were done periodically, a total of

no more than 2n messages would be periodically ex-

changed. Eventually, in a run r, this amount becomes at

most 2Cr (being Cr the number of processes that do not fail

in r), which is a significant improvement over the at least

nCr messages of Chandra and Toueg’s algorithm.
The rest of the paper is organized as follows: In Section 2,

we present the system model we will consider in the paper.

In Section 3, we present the impossibility results. In

Section 4, we present the algorithms that implement the

eventual classes of failure detectors. Finally, Section 5,

concludes the paper.
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1. �-completeness is the same as strong completeness since a trust is just
the complement of a suspicion.

2. This follows directly from the fact that �W is the weakest failure
detector for solving Consensus [5], and perpetual failure detectors are
stronger than �W.



1.4 Related Work

Several works have considered the implementation of some
of Chandra-Toueg’s classes of failure detectors in partially
synchronous systems [1], [4], [11], [15], [17], [18], [23].
Basically, the protocols proposed in all those works obey
the same principle as the ones presented in this paper:
Using successive approximations, each process dynamically
determines a value � that eventually becomes an upper
bound on message transfer delays.

Unreliable failure detectors with limited completeness
and/or accuracy are studied in [3], [14], [20], [21], [24], [25].
Realistic failure detectors have been introduced and
investigated in [8]. The notion of Quality of Service of failure
detectors has been introduced and studied in [7] (namely,
how fast a failure detector detects failures and how well it
avoids false detection).

Recently, [19] proposes an asynchronous implementation
of failure detectors based on a query-response mechanism,
which assumes that the query/response messages ex-
changed obey a precise pattern regarding the order in
which the responses from some processes to a query arrive.

2 SYSTEM MODEL

2.1 Processes and Failures

We consider a distributed system consisting of a finite set �
of n processes, � ¼ fp1; p2; . . . ; png, that communicate only
by sending and receiving messages. Every pair of processes
is assumed to be connected by a reliable communication
channel.

Processes can fail by crashing, that is, by prematurely
halting. Crashes are permanent, i.e., crashed processes do
not recover. In every run r of the system, we identify two
complementary subsets of �: The subset of processes that
do not fail, denoted correctr, and the subset of processes
that do fail, denoted crashedr. We use f to denote a known
upper bound on the number of crashed processes in the
system in any run, which we assume is always less than n,
i.e., 8r : jcrashedrj � f < n. We also assume that failures are
symmetric, i.e., a priori any process in the system can crash.
For a given run r, for every process p in crashedr we use
Tcrashr

p to denote the instant at which p crashes in r.
Finally, when needed we use Cr to denote the number of
correct processes in run r, which we assume is at least one,
i.e., 8r : Cr ¼ jcorrectrj > 0.

2.2 Partial Synchrony

In order to define the level of synchrony of a system, we use
two parameters, the transmission delay of messages and the
relative speeds of processes. In the asynchronous model, there
are no upper bounds on one or both of these parameters.
Thus, to say that a system is asynchronous is to make no
timing assumptions. In the synchronous model, there are
known upper bounds, which we denote by � and �,
respectively, on the transmission delay of messages and the
relative speeds of processes. Between the synchronous and
the asynchronous models, there is a whole range of possible
models of synchrony. We call these partially synchronous
models. Dwork et al. [10] consider the following two models
of partial synchrony:

. M1: In every run of the system, there are upper
bounds � and � on the transmission delay of
messages and the relative speeds of processes,
respectively, but these bounds are not known.

. M2: bounds exist and are known, but they hold only
after some unknown (but finite) time GST (for Global
Stabilization Time).

A system that conforms to model M2 can be seen as
asynchronous up to GST and as synchronous after GST .
Thus, M2 can be seen as an eventually synchronous model.
However, it is important to note that the actual value of
GST is not known and can vary from run to run.

In the original model M2 of Dwork et al., messages sent
before GST can get lost. To be consistent with the
assumption of reliable channels, we will assume here that
no message is lost. Since we only use model M2 to show
impossibility results, this later assumption does not restrict
our results in any way. Any impossibility result shown with
this model also applies to the model with messages losses.

In [6], Chandra and Toueg proposed a weaker model of
partial synchrony M3, which somehow generalizes the two
previous models M1 and M2:

. M3: bounds � and � exist, but they are not known
and they hold only after some unknown (but finite)
time GST .

A system that conforms to model M3 can be seen as
asynchronous up to GST , and as a system conforming to
model M1 after GST . Note that every system that conforms
to models M1 or M2 also conforms to model M3.

In their initial definition, Chandra and Toueg considered
a model M3 in which no message can get lost (even before
GST ). They later considered the possibility of message
losses before GST . For simplicity, in this work, we consider
a model M3 without message losses. It is not hard to modify
the algorithms presented to deal with losses, but that would
imply an increase on the number of messages exchanged.

2.3 Implementation of Failure Detectors

A distributed failure detector can be viewed as a set of n failure
detectionmodules, each one attached to a different process in
the system. These modules cooperate to satisfy the required
properties of the failure detector. Each module maintains a
list of theprocesses it suspects to have crashed. These lists can
differ from one module to another at a given time.

In this paper, we only describe the behavior of the failure
detection modules in order to implement a failure detector,
but not the behavior of the processes they are attached to.
For this reason, in the rest of the paper, we will mostly use
the term process instead of failure detection module. It will be
clear from the context if we are referring to the failure
detection module or the process attached to it. We consider
that a process cannot crash independently of its attached
failure detection module.

3 IMPOSSIBILITY RESULTS OF IMPLEMENTING

FAILURE DETECTORS

In this section, we show various impossibility results, the
main one being the impossibility of implementing perpetual
failure detectors. When proving impossibility results, it is
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convenient to consider the strongest model of partial

synchrony because the impossibility applies directly to the

weaker ones. Hence, we will consider in our proofs of

impossibility models M1 and M2. Furthermore, when

considering model M1, we will assume that the bound on

the relative speeds of processes � is known, while only the

bound on the transmission delay of messages � is

unknown.3 Clearly, this model is stronger than M1 and

M3, and any negative result will apply to these models as

well. We will also assume that communication channels are

completely reliable under both models. As we will see, the

impossibility proofs are the same for both models, with

minor variations, which will be pointed out.

3.1 Any Implementation of a Perpetual Failure
Detector in Model M1M1 Requires a Majority of
Correct Processes

There is a simple proof that any implementation in model

M1 of a perpetual failure detector requires a majority of

correct processes. The proof basically shows that any

implementation of a failure detector of class W in the

model of partial synchrony M1 (and, thus, in model M3)

requires f < n=2.
The proof, which uses contradiction, is as follows: It is

shown in [10] that the smallest number of processes for

which a Consensus protocol that tolerates f failures exists in

the model of partial synchronyM1 is 2f þ 1. In other words,

any protocol that solves Consensus in model M1 requires a

majority of correct processes, i.e., f < n=2.
Let us assume now that we have an algorithm A that

implements a failure detector of class W in model M1 with

f � n=2. In [6], Chandra and Toueg propose a Consensus

protocol based on W 4 that tolerates up to n� 1 faulty

processes in asynchronous systems with n processes. In

other words, Chandra-Toueg’s protocol does not require a

majority of correct processes. Clearly, one could run this

protocol on top of A and solve Consensus in model M1 with

f � n=2, which is a contradiction.
Note that this argument shows that W cannot be

implemented in the model of partial synchrony M1 without

a majority of correct processes, but it says nothing about the

possibility of implementing W with a majority of correct

processes, i.e., when f < n=2. In the following section, we

show the impossibility even when there is only one faulty

process. Furthermore, the above proof only applies to the

modelsM1 andM3 of partial synchrony, while the results of

the following section also apply to model M2.

3.2 Impossibility of Implementing Perpetual Failure
Detectors

In this section, we show that none of the perpetual failure

detector classes (i.e., P, Q, S, andW) can be implemented in

the models of partial synchrony M1 and M2.

3.2.1 An Outline of the Result

From the relationship between failure detector classes

described in [6], it would be sufficient to show the

impossibility result for the failure detector class W since

W is the weakest of the four classes of failure detectors

satisfying perpetual accuracy. For the sake of the presenta-

tion we prefer to start showing the result for the failure

detector classes satisfying perpetual strong accuracy (P and

Q) and then show it for those satisfying perpetual weak

accuracy (S and W). In both cases, the approach followed is

assuming the existence of a failure detector satisfying a

completeness property, and showing that the perpetual

accuracy property is violated.
The principle used to prove the impossibility is to

consider different runs of the system—with and without

crashes—such that they look identical for some correct

processes up to certain time t. Hence, these processes can

take the same actions in both kinds of runs up to t, in

particular in what concerns the suspicion of other processes.

We show that, by doing this, the required perpetual

accuracy is violated and, thus, the failure detector does

not implement any of the four perpetual failure detector

classes defined in [6]. To construct a run without a crash

that looks identical up to time t to one with a crash, we

assume that the appropriate messages are delayed beyond

t. This can happen if the value of the parameter � or GST

(depending on the synchrony model) is larger than t. This is

a valid assumption since the values of these parameters are

unknown and can be chosen freely for a given run if

required.
We first show the impossibility result for failure detector

classes P and Q. For that, one single incorrect suspicion of a

correct process by another correct process is sufficient since

this violates the perpetual strong accuracy property. Then,

we extend the result to failure detector classes S and W, by

showing a run of the system in which all the correct

processes are erroneously suspected at least once, thus

violating perpetual weak accuracy.5

3.2.2 Impossibility for P and Q (Perpetual Strong

Accuracy)

In this section, we show the impossibility result for failure

detector classes P and Q. Let � be a partially synchronous

distributed system that conforms to modelM1 or modelM2,

made up of n > 1 processes, such that at least one of them is

correct, i.e., at most f < n of them may crash.

Theorem 1. Let FD� be a failure detector, implemented on the

system �, that satisfies the weak completeness property. Then,

FD� cannot satisfy the strong accuracy property.

Proof. Let us consider a run R of � in which some process p

crashes at time 0. Since FD� satisfies the weak

completeness property, there is a time t after which

some correct process q permanently suspects p.
Let us consider now a run R0 in which no process

crashes, but:
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detector classes W and S are equivalent.

5. Note that an algorithm implementing any given class D of failure
detectors must satisfy the properties that characterize D in any run.



. All messages sent by p are received after time t.
This can happen if we assume that � > t, if �
conforms to M1, or GST > t, if � conforms to M2.

. All processes except p behave exactly like in run
R up to time t.

Clearly, process q cannot distinguish run R from run
R0 up to time t as defined in R. Hence, at time t, q will
suspect p in R0, as it did in R, and the strong accuracy
property is not satisfied. tu

Corollary 1. There is no protocol that implements a failure

detector of class Q (hence, of class P) in a partially

synchronous distributed system that conforms to model M1

or model M2.

3.2.3 Impossibility for S and W
(Perpetual Weak Accuracy)

In this section, we show the impossibility result for failure
detector classes S and W. We first give a more intuitive
preliminary result, which assumes runs in which all
processes except one crash. Then, we generalize the result
for any number of crashes.

Let � be a partially synchronous distributed system that
conforms to model M1 or model M2, made up of n > 1

processes, such that at least one of them is correct.

3.2.4 Impossibility for f ¼ n� 1

Theorem 2. Let FD� be a failure detector, implemented on the

system �, that satisfies the strong completeness property.

Then, if f ¼ n� 1, FD� cannot satisfy the weak accuracy

property.

Proof. Let us consider n runs Ri, i ¼ 1; . . . ; n, of � such that,
in run Ri all processes except pi crash at time 0. Since
FD� satisfies the strong completeness property, there is
some time ti at which pi suspects all other processes. Let
us define t ¼ maxiftig.

Let us consider now a run R in which no process
crashes, but:

. All messages sent are received after time t. This
can happen if we assume that � > t, if �
conforms to M1, or GST > t, if � conforms to M2.

. Each process pi, i ¼ 1; . . . ; n, behaves exactly like
in run Ri up to time t.

Clearly, a process pi, i ¼ 1; . . . ; n, cannot distinguish
run R from run Ri up to time t. Hence, at time ti � t it
will suspect the rest of processes in R, as it did in Ri.
Since this is true for every process in the system, in run R
all correct processes are suspected at some time by the
rest of correct processes, and the weak accuracy property
is not satisfied. tu

3.2.5 Impossibility for any f < n

Theorem 3. Let FD� be a failure detector, implemented on the

system �, that satisfies the strong completeness property.

Then, FD� cannot satisfy the weak accuracy property.

Proof. Let us consider a run R1 of � in which only process
p1 crashes, doing it at time t0 ¼ 0. Since FD� satisfies the
strong completeness property, there is some time t1 at
which all other processes permanently suspect p1 in R1.

Let us consider now a run R2 of � in which only
process p2 crashes, doing it at the time t1 defined in R1,
and all messages sent by p1 are received after t1 (this can
happen if we assume that � > t1, if � conforms to M1, or
GST > t1, if � conforms to M2). Also, in R2, all processes
except p1 behave exactly like in run R1 up to time t1.
Clearly, all correct processes, except p1, cannot distin-
guish run R2 from run R1 up to time t1. Hence, at time t1
they will suspect p1 in R2, as they did in R1. Finally, since
FD� satisfies the strong completeness property, there is
some time t2 � t1 at which all other processes perma-
nently suspect p2 in R2.

Generalizing this reasoning, we obtain n runs Ri, i ¼
1; . . . ; n of � as follows. In run Ri, only process pi crashes,
at time ti�1, defined in Ri�1, and for each process pk,
k ¼ 1; . . . ; i� 1, all messages sent by pk after tk�1 are
received after tk, with t0 ¼ 0 (this can happen if we
assume that� > ti�1, if � conforms toM1, or GST > ti�1,
if � conforms to M2). Also, in Ri, for each process pk,
k ¼ 1; . . . ; i� 1, all processes except pk behave exactly
like in run Rk up to time tk. Clearly, for each process pk,
k ¼ 1; . . . ; i� 1, all correct processes except pk cannot
distinguish run Ri from run Rk up to time tk. Hence, at
time tk they will suspect pk in Ri, as they did in Rk.
Finally, since FD� satisfies the strong completeness
property, there is some time ti � ti�1 at which all other
processes permanently suspect pi in Ri.

Let us now consider a run R of � in which no process
crashes, but:

. All messages sent by pn after time tn�1 as defined
in Rn�1 are received after time tn as defined in Rn.
This can happen if we assume that � > tn, if �
conforms toM1, orGST > tn, if � conforms toM2.

. For each process pi, i ¼ 1; . . . ; n, all processes
except pi behave exactly like in runRi up to time ti.

Clearly, for each process pi, i ¼ 1; . . . ; n, all processes
except pi cannot distinguish run R from run Ri up to
time ti. Hence, at time ti they will suspect pi in R, as they
did in Ri. Since this is true for every process pi, i ¼
1; . . . ; n in the system, in run R all correct processes are
suspected at some time by the rest of correct processes,
and the weak accuracy property is not satisfied. tu

Corollary 2. There is no protocol that implements a failure

detector of class S in a partially synchronous distributed

system that conforms to model M1 or model M2.

Corollary 3. There is no protocol that implements a failure

detector of class W in a partially synchronous distributed

system that conforms to model M1 or model M2.

Proof. Follows from Corollary 2 and the fact that S and W
are equivalent [6]. tu

3.3 Impossibility of Implementing � without a
Majority of Correct Processes

In this section, we show that the failure detector �,

proposed by Aguilera et al. in [2], cannot be implemented

in the models of partial synchrony M1 and M2 without a

majority of correct processes.
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Theorem 4. Let � be a partially synchronous distributed system
that conforms to model M1 or model M2, made up of n > 1
processes. Let FD� be a failure detector, implemented on the
system �, that satisfies the �-completeness property. Then, if
f � dn=2e, FD� cannot satisfy the �-accuracy property.

Proof. Let us consider a run R of � in which processes
p1; p2; . . . ; pdn=2e crash at time 0. Since FD� satisfies the
�-completeness property, there is some time t at which
pn permanently suspects all these processes.

Let us now consider a run R0 in which processes
pdn=2eþ1; . . . ; pn crash at time tþ 1, and:

. All messages sent by processes p1; p2; . . . ; pdn=2e
are received after time t. This can happen if we
assume that � > t, if � conforms to M1, or
GST > t, if � conforms to M2.

. Each process pdn=2eþ1; . . . ; pn behaves exactly like
in run R up to time t.

Clearly, process pn cannot distinguish run R0 from run
R up to time t. Hence, at time t, it will suspect all the
processes p1; p2; . . . ; pdn=2e which are the correct processes
of the run R0. Hence, in run R0, all correct processes are
suspected at time t by process pn, and the �-accuracy
property is not satisfied since there is a time at which
some process does not trust any correct process. tu

Corollary 4. There is no protocol that implements a failure
detector of class � in a partially synchronous distributed
system that conforms to model M1 or model M2 without a
majority of correct processes.

4 IMPLEMENTING EVENTUAL FAILURE DETECTORS

In this section, we present a family of algorithms that
implement the four classes of unreliable failure detectors
satisfying eventual accuracy, namely, �W, �Q, �S, and �P.
The algorithms are based on a logical ring arrangement of
the processes, which defines the monitoring and failure
information propagation pattern. As a consequence, the
resulting algorithms periodically exchange at most a linear
number of messages.

The algorithms have been designed and are presented as
a sequence of refinements. First, we present a basic
algorithm providing only weak completeness (i.e., it does
not provide any accuracy). Next, we present two extensions
to this basic algorithm that provide the two eventual
accuracy properties, respectively, and a third extension
that transforms weak completeness into strong complete-
ness while preserving accuracy. Hence, the basic algorithm
combined with the extensions implement the four classes of
failure detectors.

4.1 Definitions

In the algorithms presented in this section, we consider the
processes p1; . . . ; pn arranged in a logical ring. This
arrangement is known by all the processes. Without loss
of generality, process pi is followed in the ring by process
pði mod nÞþ1. In general, we use succðpÞ to denote the process
that follows process p in the ring, and predðpÞ to denote the
process that precedes process p in the ring. Finally, for a
given run r, we use corr succrðpÞ and corr predrðpÞ to

denote the closest correct (i.e., belonging to the subset
correctr) successor and predecessor of p in the ring in r,
respectively.

Contrary to the case of proving impossibility results,
when designing a distributed algorithm it is convenient to
consider the weakest model of partial synchrony because
the algorithm remains correct in the stronger models.
Hence, in all our algorithms, we will consider a partially
synchronous system conforming to the model M3. In this
model, we shall use GSTr to denote the ending instant of
the stabilization interval in the run r of interest. We will also
denote by �r

msg the maximum time, after GSTr, between the
sending of a message and the delivery and processing by its
destination process (assuming that both the sender and the
destination have not crashed) in run r. Clearly, �r

msg

depends on the existing bounds on processor relative
speeds and on message transmission time. Note that the
exact value of �r

msg exists, but it is unknown.
We denote by Lp the list of suspected processes of the

failure detection module attached to process p. Clearly, the
contents of the list Lp can be different at different times. We
use LpðtÞ to denote the contents of Lp at time t.

The algorithms use a polling monitoring model. To
monitor process q, a process p sends an ARE-YOU-ALIVE?
message to q and waits for an I-AM-ALIVE message from it.
As soon as q receives the ARE-YOU-ALIVE? message, it
sends the I-AM-ALIVE message to p. We will denote by
�r

rtt ¼ 2�r
msg the maximum monitoring round-trip time

after stabilization, i.e., the maximum time, after GSTr,
elapsed between the sending of an ARE-YOU-ALIVE?
message to a correct process, and the reception and
processing of the corresponding I-AM-ALIVE reply message.

Since a monitoring process p does not know�r
rtt, it has to

use an estimated value (timeout) that tells how much time it
has to wait for the reply from the monitored process q. This
time value is denoted by �p;q. Then, if after �p;q time p did
not receive the reply from q, it suspects that q has crashed.
We need to allow these time values to vary over time in the
algorithms. We use �p;qðtÞ to denote the value of �p;q at
time t.

4.2 A Basic Algorithm that Provides Weak
Completeness

We present here an algorithm that will be used as a
framework for all the failure detector implementations
presented in this section. This first algorithm satisfies the
weak completeness property. In the following sections, we
will extend the algorithm to satisfy also eventual weak
accuracy, eventual strong accuracy, and strong complete-
ness. This algorithm is presented here for the sake of clarity
but is not very useful by itself since it does not satisfy any of
the accuracy properties previously defined.

The algorithm executes as follows: Initially, every
process starts monitoring its successor in the ring. If a
process p does not receive the reply from the process q it is
monitoring, then p suspects that q has crashed, and starts
monitoring the successor of q in the ring. This monitoring
scheme is repeated, so that p always suspects all processes
in the ring between itself and the process it is monitoring
(not included). If, later on, p receives a message from a
suspected process q while it is monitoring another process r,
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then p stops suspecting q and all the processes between q
and r in the ring, and starts monitoring q again.

Fig. 2 presents the algorithm in detail. Each process p has
a variable targetp which holds the process being monitored
by p at a given time. As we said above, all processes
between p and targetp in the ring (and only them) are
suspected by p, and these are the only processes included in
the list Lp of suspected processes of p. (Initially, no process
is suspected, i.e., 8p : Lpð0Þ ¼ ;.)

We now show that weak completeness holds with this
algorithm. For every run r, given an incorrect process p, the
following theorem states that it will be permanently
suspected by corr predrðpÞ (the first correct process preced-
ing p in the ring in r).

Theorem 5. 8r : 9t0 : 8p 2 crashedr; p has failed at time t0 and
8t � t0; p 2 Lcorr predrðpÞðtÞ.

Proof. Let p be a process that crashes, doing it at time
Tcrashr

p. We claim that pwill be permanently included in
Lcorr predrðpÞ. The proof uses strong induction on the
distance from corr predrðpÞ to p. Let’s first consider that
such distance is 1, i.e., corr predrðpÞ ¼ predðpÞ. Before p
fails, corr predrðpÞ and p exchange ARE-YOU-ALIVE? and
I-AM-ALIVE messages (see Fig. 2). Eventually, p crashes,
and there is an ARE-YOU-ALIVE? message sent by
corr predrðpÞ that reaches p after Tcrashr

p. Since p has
already crashed by then, it will never reply to that
message. If such a message was sent at time t0, then
�corr predrðpÞ;pðt0Þ time later, corr predrðpÞ will include p in
Lcorr predrðpÞ. Since no message will ever be received by
corr predrðpÞ from p after that, it will never be removed
from Lcorr predrðpÞ.

We will now prove that, if the claim holds for any
distance 1 � d � i� 1, it also holds for distance i. Let us
assume the distance from corr predrðpÞ to p be i > 1. Then,
for any process q 2 fsuccðcorr predrðpÞÞ; . . . ; predðpÞg, it

can be easily seen that corr predrðqÞ ¼ corr predrðpÞ and
thedistance d from corr predrðpÞ to q verifies 1 � d � i� 1.
Hence, from the induction hypothesis, all processes in
fsuccðcorr predrðpÞÞ; . . . ; predðpÞg will eventually be per-
manently in Lcorr predrðpÞ. After that, they will never be
monitored again by corr predrðpÞ. The situation then is
similar to the distance-1 case considered above and, by a
similar argument, p will eventually be permanently
included in Lcorr predrðpÞ. tu

Corollary 5. The algorithm of Fig. 2 provides weak completeness.

Observe that a process p will never suspect any process
beyond targetp. If p never suspects succðpÞ (i.e., targetp ¼
succðpÞ at all times) in some run r, and some other process q
(different from p and succðpÞ) fails, p will never suspect q
either.

Observation 1. The algorithm of Fig. 2 does not provide strong
completeness.

4.3 Extending the Basic Algorithm to Provide
Eventual Weak Accuracy

The algorithm presented in the previous section does not
satisfy any of the accuracy properties defined in Section 1.2.
It does not prevent the erroneous suspicion of any correct
process, and these incorrect suspicions, although not
permanent (if the suspected process is correct, the reply
message will eventually be received), can happen infinitely
often. This is due to the fact that the message delivery time
could be greater than the fixed default timeout (see Fig. 2). In
order to provide some useful accuracy, the timeout values
must be augmented when processes are aware of having
erroneously suspected a correct process. In this section, we
present an extension to the basic algorithm of Fig. 2, based
on augmenting the timeout values, which satisfies the
eventual weak accuracy property.
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Eventual weak accuracy requires that, eventually, some
correct process is never suspected by any correct process. In
order to provide it, it is enough that this is satisfied for only
one correct process. We propose an extension to the basic
algorithm that guarantees the existence of such a process,
for each run r, which we denote leaderr. Clearly, if we knew
beforehand the identity of a correct process, then eventual
weak accuracy could be obtained by making all processes
augment their timeout value with respect to this process
each time they suspect it. This correct process would be
leaderr. But, since we cannot know in advance the
correctness of any process, we need to devise another way
to eventually have a correct and not-suspected process.

In the extension of the algorithm of Fig. 2 that we
propose, processes behave as follows: Initially, every
process will consider a preagreed upon process (e.g. p1) as
an initial candidate to be leaderr. When a process p that
monitors this candidate suspects it, p considers the
successor of the candidate in the ring—succðcandidateÞ—
as new candidate and monitors it. This scheme is repeated
every time the current candidate is suspected. (Note that a
process not monitoring a candidate cannot suspect it.)
Finally, each time p suspects a candidate, the timeout value
of pwith respect to this candidate is increased. This way, for
a given run r, leaderr will be the first correct process in the
ring starting from the initial candidate (inclusive). All
processes monitoring it will eventually stop suspecting it,
and processes that do not monitor it will never suspect it.
This gives us the eventually weak accuracy property. Fig. 3
presents the extended algorithm in detail.

We now show that eventual weak accuracy holds with
this algorithm, i.e., eventually some correct process is never
suspected by any correct process.

Lemma 1. For every run r, after GSTr, any correct process p will
suspect leaderr for no more than �r

rtt time, each time it does.

Proof. Remember that, after GSTr, �
r
rtt is a bound on the

monitoring round-trip time. A correct process p suspects
leaderr after sending an ARE-YOU-ALIVE? message to it
at time t and not receiving an I-AM-ALIVE reply message
in �p;leaderrðtÞ time. Since, by definition, leaderr is a
correct process, the I-AM-ALIVE message will arrive at
most at time tþ�r

rtt (GSTr þ�r
rtt if t < GSTr). At this

moment, leaderr is removed from Lp, the list of suspected
processes of p. tu

Lemma 2. 8r, any correct process p will suspect leaderr a finite
number of times.

Proof. The proof is by contradiction. Let p be some correct
process. Let us assume that p suspects leaderr an infinite
number of times. From the algorithm, each time p
suspects leaderr, the value of �p;leaderr is incremented
by one. Since GSTr and �r

rtt are finite (although
unknown), after suspecting leaderr a finite number of
times, �p;leaderr will be greater than �r

rtt. After this
moment, p never suspects leaderr anymore and, thus, we
reach a contradiction. tu

Theorem 6.

8r : 9t1 : 8p 2 correctr; 8t > t1; leaderr =2 LpðtÞ:

Proof. Let tp1 be the instant at which a correct process p stops
suspecting leaderr for the last time. (If p never suspects
leaderr, t

p
1 ¼ 0.) Such an instant exists from Lemma 1 and

Lemma 2. Then, after instant t1 ¼ max
p2correctr

ftp1g no correct
process p has leaderr in its list Lp. tu
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Corollary 6. The algorithm of Fig. 3 provides eventual weak
accuracy.

Observation 2. The only difference between the algorithm of
Fig. 3 and the algorithm of Fig. 2 is that in the former the
values of�p;q can change. Clearly, this does not affect the proof
of Theorem 5. Hence, Corollary 5 also applies to this algorithm.

Corollary 7. The algorithm of Fig. 3 implements a failure
detector of class �W.

Proof. Follows from Corollary 6, Observation 2, and
Corollary 5. tu

Since Observation 1 still applies to this algorithm, we
have that the failure detector it implements does not satisfy
strong completeness and, hence, is not in �S. On the other
hand, in some run r, we may have two processes p and
succðpÞ beyond leaderr, such that both are correct but p
keeps suspecting succðpÞ over and over. This can happen if
the default timeout is smaller than �r

rtt. Then, the eventual
strong accuracy is not satisfied in r and, hence, the failure
detector implemented is not in �Q.

4.4 Extending the Basic Algorithm to Provide
Eventual Strong Accuracy

Eventual strong accuracy requires that, eventually, no
correct process is ever suspected by any correct process.
In this section, we propose another extension to the basic
algorithm of Fig. 2 which provides this property. Broadly,
the extension consists in each process augmenting its
timeout values with respect to all processes it incorrectly
suspects. This way, every process will augment the timeout
value with respect to its closest correct successor in the ring,
and will thus eventually stop suspecting it (and, hence, any
other correct process). This gives us the eventually strong
accuracy property. Fig. 4 presents the extended algorithm in
detail.

We now show that eventual strong accuracy holds with

the algorithm in Fig. 4. We start with two lemmas, whose

proofs are very similar to those of Lemma 1 and Lemma 2,

respectively, and are omitted.

Lemma 3. For every run r, after GSTr, any correct process p will

suspect corr succrðpÞ for no more than �r
rtt time, each time it

does.

Lemma 4. For every run r, any correct process p will suspect

corr succrðpÞ a finite number of times.

Theorem 7.

8r : 9t2 : 8p 2 correctr; 8q 2 correctr; 8t > t2; q =2 LpðtÞ:

Proof. Let tp2 be the instant at which a correct process p stops

suspecting corr succrðpÞ for the last time. (If p never

suspects corr succrðpÞ, tp2 ¼ 0.) Such an instant exists

from Lemma 3 and Lemma 4. Then, after instant

t2 ¼ max
p2correctr

ftp2g;

no correct process p has corr succrðpÞ in its list Lp. Then,

after t2, each correct process p only suspects processes in

succðpÞ; . . . ; predðcorr succrðpÞÞ, which are not correct by

the definition of corr succrðpÞ. Therefore, no correct

process q is in Lp after t2. tu

Corollary 8. The algorithm of Fig. 4 provides eventual strong

accuracy.

Note that Observation 2 still applies to the algorithm of

Fig. 4. Hence, the following corollary, that follows from

Corollary 8, Observation 2, and Corollary 2.
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Corollary 9. The algorithm of Fig. 4 implements a failure
detector of class �Q.

Observation 1 still applies to this algorithm and, hence, it
does not implement a �P failure detector.

4.5 Extending the Previous Algorithms to Provide
Strong Completeness

In this section, we present an extension to the previous
algorithms to provide strong completeness, while preser-
ving accuracy. By combining this extension with the
algorithms that implement failure detectors of classes �W
and �Q of Fig. 3 and Fig. 4, we obtain implementations of
failure detectors of classes �S and �P, respectively.

Strong completeness requires that, eventually, every
process that crashes is permanently suspected by every
correct process. In [6], Chandra and Toueg presented a
distributed algorithm that transforms weak completeness
into strong completeness. Broadly, in their algorithm, every
process periodically broadcasts (sends to every other
process) its local list of suspected processes. Upon reception
of these lists, each process builds a global list of suspected
processes, which provides strong completeness. Clearly, in
this algorithm, each correct process periodically sends n

messages, with the total number of messages exchanged
being at least nCr (with Cr being the number of correct
processes for a given run r).

We propose an extension that follows a similar approach.
Besides its local list Lp of suspected processes, each process
p has a global list Gp of suspected processes. While Lp only
holds the suspected processes between p and the process p

is monitoring (targetp), Gp holds all the processes that are

being suspected in the system. Now, the global lists are the

ones providing strong completeness.
Inorder to correctly build theglobal lists, processesneed to

propagate their local lists. However, instead of periodically

broadcasting its local list, every process will only send its

global list (which contains the local list) to the process it is

monitoring. This process, upon reception of that list, updates

its global list and furtherpropagates it.Note that, sinceweuse

the ring arrangement of processes, each process, at most,

sends and receives one message periodically, and the total

number of messages exchanged in a period is OðnÞ in the

worst case, which eventually becomes OðCrÞ. Furthermore,

instead of using specific messages to send the global lists, we

can piggyback the global lists in the ARE-YOU-ALIVE?

messages inherent to the monitoring mechanism. This way,

there is no increment inmessageexchanges from theprevious

algorithms. Fig. 5 presents the extended algorithm in detail.

We now show that strong completeness holds, while

accuracy is preserved, with this algorithm.

Observation 3. The only difference between this algorithm and

the previous ones is the handling of the global lists of suspected

processes Gp, while the local lists Lp are handled as before.

Hence, Theorem 5 and whichever corresponds to Theorem 6

and Theorem 7 are still applicable to this algorithm.

Observation 4. 8p 2 �; 8r;8t; LpðtÞ � GpðtÞ.
Observation 5. 8r; 8p 2 correctr; 8t, p will eventually receive

ARE-YOU-ALIVE? messages after t (unless it is the only

correct process).
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Lemma 5.

8r : 9t3 : 8q 2 crashedr; 8p 2 correctr; 8t � t3; q 2 GpðtÞ:

Proof. Let us assume we are at least at instant t0 as defined

in Theorem 5. We know that at this instant any process

q 2 crashedr has already failed and has been perma-

nently included in Lcorr predrðqÞ.
Let us assume now that we have a process q 2

crashedr and a process p 2 correctr. We claim that q will
eventually be permanently included in Gp. We use
strong induction on the number of correct processes in
the set

fcorr predrðqÞ; . . . ; pg:

For the base case, we assume there is only one correct

process in the set, i.e., p ¼ corr predrðqÞ: Hence, from

Theorem5, q is permanently inLp and, fromObservation4,

q will be permanently in Gp in this case.
We will now prove that, if the claim holds for any

number 1 � c � i� 1 of correct processes in the set
fcorr predrðqÞ; . . . ; pg, it also holds when the number of
correct processes in the set is i. To do so, we show first that
there is a time t0 after which p receives ARE-YOU-ALIVE?
messages and all of them carry global lists containing q.
From that, it is immediate to see in the algorithm that, after
receiving the first such ARE-YOU-ALIVE? message, q will
be permanently included inGp. Let us assume the number
of correct processes in the set fcorr predrðqÞ; . . . ; pg be
i > 1. By induction hypothesis, there is a time t00 at which
any correct process r 2 fcorr predrðqÞ; . . . ; corr predrðpÞg
permanently contains q in its global listGr. Also, there is a
time t0 ¼ maxðt00; GSTrÞ þ�r

msg at which all the ARE-YOU-

ALIVE? messages sent to p before t00 have been received.
FromObservation 5, process pwill receive newARE-YOU-

ALIVE? messages after t0. Let be an ARE-YOU-ALIVE?
message received by p from a process s at a time t > t0.
There are two cases to consider:

. s 2 fcorr predrðqÞ; . . . ; corr predrðpÞg. In this case,
from the induction hypothesis and the definition
of t0, we know that the global list Gs carried by the
ARE-YOU-ALIVE? message contains q.

. s 2 fp; . . . ; corr predrðcorr predrðqÞÞg. In this case,
it canbeseenfromthealgorithmthat, ifp receivesan
ARE-YOU-ALIVE?message from s, thennecessarily,
at the time of sending themessage, p ¼ targets and
Ls contained q. Therefore, from Observation 4, the
Gs carried by the ARE-YOU-ALIVE? message con-
tains q. tu

The following lemma states that the algorithm of Fig. 5

preserves eventual accuracy.

Lemma 6. Let p be any correct process for a given run r. If there

is a time after which no correct process q contains p in Lq in r,

then there is a time after which no correct process q contains p

in Gq in r.

Proof. Let us assumewe are at least at instant t0 as defined in

Theorem 5. We know that, at this instant, any process in

crashedr has already failed. Let p be a correct process and
t000 � t0 be an instant such that

8t � t000; 8q 2 correctr; p =2 Lq:

Let us assume now that we have a process
q 2 correctr. We claim that there is a time after which p
is never in Gq. We use strong induction on the number of
correct processes in the set fp; . . . ; qg. For the base case,
we assume there is only one correct process in the set,
i.e., p ¼ q. It is easy to observe from the algorithm that p
will never include itself in Gp.

We will now prove that, if the claim holds for any
number 1 � c � i� 1 of correct processes in the set
fp; . . . ; qg, it also holds when the number of correct
processes in the set is i. To do so, we show first that there
is a time t0 after which q receives ARE-YOU-ALIVE?
messages and all of them carry global lists not containing
p. From that, it is immediate to see in the algorithm that,
after receiving the first such ARE-YOU-ALIVE? message, p
will be removed (if needed) and never included again in
Gq. Let us assume the number of correct processes in the
set fp; . . . ; qg be i > 1. By induction hypothesis, there is a
time t00 after which any correct process

r 2 fp; . . . ; corr predrðqÞg

does not contain p in its global list Gr. Also, there is a
time t0 ¼ maxðt00; GSTrÞ þ�r

msg at which all the ARE-

YOU-ALIVE? messages sent to q before t00 have been
received. From Observation 5, process q will receive new
ARE-YOU-ALIVE? messages after t0. Let an ARE-YOU-

ALIVE? message be received by q from a process s at a
time t > t0. There are two cases to consider:

. s 2 fp; . . . ; corr predrðqÞg. In this case, from the
induction hypothesis and the definition of t0, we
know that the global list Gs carried by the ARE-

YOU-ALIVE? message does not contain p.
. s 2 fq; . . . ; corr predrðpÞg. This case cannot hap-

pen because it would imply that p is in the local
list Ls. tu

Combining both lemmas it is immediate to derive the
following theorem:

Theorem 8. The algorithm of Fig. 5 provides strong completeness
while preserving accuracy.

Corollary 10. The algorithm of Fig. 5, combined with the
algorithm of Fig. 3, implements a failure detector of class �S.

Corollary 11. The algorithm of Fig. 5, combined with the
algorithm of Fig. 4, implements a failure detector of class �P.

4.6 Performance Analysis

In this section, we will evaluate the performance of the
presented algorithms in terms of the number and size of the
exchangedmessages. Observe that failure detection is an on-
goingactivity that inherently requires anunboundednumber
of messages. Furthermore, the pattern of message exchange
between processes can vary over time (and need not be
periodic), and different algorithms can have completely
different patterns. For these reasons, we have to make some
assumptions in order to use the number of messages as a

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004



meaningful performance measure. We will first assume that
the algorithms execute in a periodic6 fashion, so that we can
count thenumberofmessages exchanged inaperiod. Second,
to be able to compare the number of messages exchanged by
different algorithms, we must assume that their respective
periods have the same length.

Under the above assumptions, in our algorithms each
correct process periodically polls only one other process.
Each polling involves two messages. Thus, a total of no
more than 2n messages would be periodically exchanged.
Eventually, in a run r, this amount becomes 2Cr since there
will be only Cr correct processes remaining in the system.
This compares favorably with Chandra and Toueg’s
algorithm, which requires a periodic exchange of at least
nCr messages.

Concerning the size of the messages, our algorithms
implementing failure detectors with weak completeness,
i.e., �W and �Q, require messages of �ðlognÞ bits (to
identify the sender). On the other hand, the algorithms
implementing failure detectors with strong completeness,
i.e., �S and �P, require messages of �ðnÞ bits since we can
code the global list Gp of suspected processes in n bits (one
bit per process).

Chandra and Toueg’s algorithm, which implements �P,
requiresmessagesof�ðlognÞbits. This size is smaller than the
size needed by our algorithm implementing �P. However,
the total amount of information periodically exchanged in
our algorithms is �ðn2Þ bits, while in Chandra-Toueg’s it is
�ðn2 lognÞ bits. Furthermore, each message that is sent
involves a fixed overhead. In this sense, our algorithms
present an edge since they involve less messages.

A drawback of our algorithms satisfying strong com-
pleteness is that the use of the ring to propagate the
information about crashes in order to obtain strong
completeness delays the detection of faulty processes
(relative to the use of direct message exchanges between
all pairs of processes). Intuitively, this time increases
linearly with the number of processes in the system, while
in the case of the algorithm of Chandra and Toueg remains
practically constant. Clearly, there is a trade off between the
number of extra messages sent and the latency of failure
information propagation. For example, we could propagate
the list of suspects following the two directions of the ring.
This would reduce the latency approximately to the half, at
the price of increasing the number of messages.

5 CONCLUSIONS

In this paper, we have first shown the impossibility of
implementing several classes of unreliable failure detectors
in partially synchronous systems. The models of partially
synchronous systems we consider are at least as strong as
those proposed in [6], [10] and, hence, our results apply to
those as well. We show that no perpetual failure detector
from those proposed by Chandra and Toueg in [6] can be

implemented, and that to implement a failure detector of

class � a majority of correct processes is required.
Then, we have proposed several algorithms to imple-

ment failure detectors of classes �W, �Q, �S, and �P. These
algorithms are efficient alternatives to the algorithm

implementing �P proposed by Chandra and Toueg [6].
One line of work derived from this paper is the

investigation of more efficient implementations of the

eventual failure detectors than those presented here. In

fact, after the algorithms presented here appeared in

conference paper form [16], more efficient algorithms for

the classes �S [17] and �P [1], [18] have been proposed.
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Failure Detectors,” Proc. 10th Euromicro Workshop Parallel, Dis-
tributed, and Network-Based Processing (PDP ’02), pp. 91-98, Jan.
2002. Also in Brief Announcements of the 14th Int’l Symp. DIstributed
Computing (DISC 2000), Oct. 2000.

[19] A. Mostefaoui, E. Mourgaya, and M. Raynal, “Asynchronous
Implementation of Failure Detectors,” Technical Report 1484,
Institut de Recherche en Informatique et Systémes Aléatoires
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Politécnica de Madrid. He was an invited

researcher at AT&T Bell Laboratories, Murray Hill, New Jersey, in
1997 and 1988. He was a postdoctoral research fellow in 1989 at the
European Space Agency, Nordwijk, The Netherlands. His research
interests include distributed languages and systems, fault tolerance, and
operating systems. He has been a member of the ACM since 1983.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 6, JUNE 2004


