
J. Parallel Distrib. Comput. 64 (2004) 498–506

ARTICLE IN PRESS
*Correspond

E-mail addr

ernes@eui.upm

0743-7315/$ - se

doi:10.1016/j.jp
On the interconnection of causal memory systems

Antonio Fernández,a Ernesto Jiménez,b and Vicent Cholvic,*
aUniversidad Rey Juan Carlos, 28933 Móstoles, Spain

bUniversidad Politécnica de Madrid, 28031 Madrid, Spain
c Universitat Jaume I, 12071 Castellón, Spain

Received 6 July 2001; revised 28 January 2003; accepted 11 March 2004
Abstract

In this paper, we look at the interconnection of propagation-based causal Distributed shared memory (DSM) systems. We present

extremely simple protocols to interconnect two such systems (possibly implemented with different algorithms), that only require the

existence of a bidirectional reliable FIFO channel connecting one process from each system. We show that the resulting DSM system

is also causal. This result can be used to interconnect any number of DSM propagation-based causal systems, by interconnecting

them in pairs with a tree topology.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Distributed systems; Distributed shared memory; Causal consistency; Interconnection of systems
1. Introduction

Shared memory (reading and writing of shared
variables) is a well-known mechanism for interprocess
communication in concurrent programs. However,
while the semantic of read and write operations in
sequential programs is clear, the situation is different
when there can be concurrent accesses to shared
variables. This is more evident if the shared memory is
not centralized but distributed among a number of
processors, i.e. we have distributed shared memory
(DSM). There has been a number of proposals and
implementations of DSM systems providing different
semantics, or consistency models [5,9].

The causal memory model has attracted the attention
of a number of researchers because it is considered to be
powerful enough to allow relatively easy programming
but, at the same time, it allows inexpensive implementa-
tions. As a consequence, a number of protocols
implementing the causal memory model have been
proposed in the literature (see for instance [2,6,8]). Most
protocols implementing causal memory, in order to
increase concurrency, support replication of data. With
replication, there are copies (replicas) of the same
ing author.

esses: afernandez@acm.org (A. Fernández),

.es (E. Jiménez), vcholvi@lsi.uji.es (V. Cholvi).

e front matter r 2004 Elsevier Inc. All rights reserved.

dc.2004.03.007
variables in the local memories of several processes of
the system, which allows these processes to use the
variables simultaneously. However, in order to guaran-
tee the consistency of the shared memory, the system
must control the replicas when the variables are
updated. That control can be done by either invalidating

outdated replicas or by propagating the new variable
values to update the replicas.

1.1. Our results

In this paper, we explore the interconnection of causal
DSM systems implemented with replication and propa-
gation. In particular, we introduce simple protocols for
interconnecting causal memory systems, possibly im-
plemented with different propagation-based protocols.
The interconnection protocols proposed only require the
existence of reliable FIFO channels connecting pro-
cesses from each system. We show that the resulting
system is also causal.

We first study the connection of two propagation–
based causal system. We assume the existence in each
system of a special process, called interconnecting system

(IS)-process, which will be in charge of actually running
the interconnection protocol. Those IS-processes
are connected by a reliable FIFO channel, which
will be used to exchange the data required by the

ARTICLE IN PRESS
A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506 499
interconnection. We present protocols that can be run
by the IS-processes in order to connect both systems (we
call them IS-protocols). Basically, these protocols
propagate the variable updates from one system to the
other. We then show that the system obtained by
connecting two systems with the IS-processes, running
the proposed IS-protocols, is causal. An interesting
property of our IS-protocols is that the reliable FIFO
channel used does not need to be available all the time.
If the channel is not available during some period of
time, the variable updates can be queued up to be
propagated at a later time. This makes the protocol
practical even with dial-up connections.

Next, we show that the interconnection scheme for
two systems can be used to interconnect a larger number
of systems. Hence, we show that several propagation-
implemented causal systems can be interconnected with
our IS-protocols to obtain a large causal system. To do
so, we interconnect the original systems in pairs
avoiding the creation of cycles, which results in a tree
interconnection topology.

Note that the sequential memory model, which is
maybe the most widely known, is in fact causal. Hence,
these results also apply to it, i.e., two sequential systems
(implemented, for instance, with the local read algo-
rithm proposed by Attiya and Welch [3]) can be
interconnected so that the overall resulting system is
causal. Clearly, the system obtained most possibly will
not be sequential. There are other stronger-than-causal
memory models (e.g., the atomic memory model) to
which this may apply as well.

There are mainly two reasons for interconnecting
causal systems with new protocols instead of using a
single protocol for the whole system. First, in this way
we can interconnect systems that are already running
without changing them. They can keep using their
protocols at their local level. Second, depending on the
network topology, it could be more efficient to imple-
ment several systems and interconnect them. An
example of this would be a causal system that has to
be implemented on two local area networks connected
with a low-speed point-to-point link. If the causal
protocol used broadcasts updates, in a single system
there could be a large number of messages crossing the
point-to-point link for the same variable update. In this
case, it would seem appropriate to implement one
system in each of the local area networks, and use an IS-
protocol via the link to connect the whole system. Then,
only one message crosses the link for each variable
update.

1.2. Related work

We do not know of any previous work on inter-
connection of DSM systems. However, in the context of
message passing systems, Rodrigues and Verissimo [10],
Adly and Nagi [1], and Baldoni et al. [4] have proposed
architectures and protocols to implement large causally
ordered message-passing systems by interconnecting
smaller causally ordered message-passing systems. Since
a causal DSM system can be easily implemented on a
causally ordered message-passing system [8], a large
causal DSM system could be obtained by implementing
smaller causally ordered message-passing systems, inter-
connecting them as any of the above papers proposes,
and then implementing the causal DSM system on the
resulting large causally ordered message-passing system.
However, if the processes are already grouped into
causal DSM systems, as we assume in this work, the
above approach does not seem to be practical anymore,
since it would imply to build causal message-passing
systems on top of causal DSM systems to build a larger
causal DSM system. In general, the goal of these
hierarchical causal ordering papers is to improve
performance in large-scale environments, while ours is
to interconnect existing systems.

The rest of the paper is organized as follows. In
Section 2, we introduce the basic framework and
provide a formal definition of causal DSM system. In
Section 3, we introduce the IS-protocols we propose for
interconnecting two causal DSM systems. In Section 4,
we show that the union of two causal DSM systems with
the IS-protocols proposed is causal. In Section 5, we
show that our approach can be used to connect more
than two causal DSM systems. Finally, in Section 6, we
briefly study the performance of the causal DSM system
obtained by the interconnection of several causal DSM
systems.
2. Definitions

A DSM system (system for short) consists of a set of
application processes that interact via a set of variables.
These variables constitute the shared memory. All the
process interactions with the memory are done through
read and write operations (memory operations) on
variables of the memory. Each memory operation acts
on a named variable and has an associated value. A
write operation by process i (within the system Sq),
denoted w

q
i ðxÞv; stores the value v in the variable x:

Similarly, a read operation, denoted r
q
i ðxÞv; reports to

process i (within the system Sq) that v is stored in the
variable x: To simplify the analysis, we assume that a
given value is written at most once in any given variable
and that the initial values of the variables are set by
using write operations.

An execution of a system Sq is the concurrent
execution of all its application processes. From the
execution of a process, all we care about are the memory
operations it issues. A computation aq of a system Sq

consists of a sequence of read and write operations

ARTICLE IN PRESS
A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506500
observed in some execution of Sq: We denote aq
i the

computation obtained by removing from aq all read
operations from processes other than i: Similarly, we
denote with !a

q

the order in which the operations in
aq happen. For operations of the same process i; !a

q

reflects the order in which these operations have been
executed by i: We now introduce the legal computation
concept.

Definition 1 (Legal Computation). A computation aq is

legal if 8op ¼ r
q
i ðxÞvð(op0 ¼ w

q
j ðxÞv : op0 !a

q

op and

)op00 ¼ w
q
kðxÞu : op0 !a

q

op00 !a
q

opÞ:

In order to capture ‘‘causality’’ (in the sense of [7]), we
need to define the causal order.

Definition 2 (Causal Order). Let op and op0 be two
operations in a computation aq: Then op!aq

op0 if some
of the following holds:

1. op and op0 are operations from the same process and
op!a

q

op0:
2. op ¼ w

q
i ðxÞv and op0 ¼ r

q
j ðxÞv:

From this, we define the causal order !!
aq

as the
transitive closure of the order !

aq

: By using the causal
order and the legal computation concept, we now define
both causal view, causal computation, and causal
system.

Definition 3. Let aq be a computation of system Sq: We
say that bq

i is a causal view of aq
i if it is a permutation of

aq
i ; it is legal, and it preserves the causal order !!

aq

:

Definition 4. We say that a computation aq of system Sq

is causal if, for each process i; the computation aq
i has a

causal view.

Definition 5. We say that the system Sq is causal if all its
computations are causal.

We use an architecture of DSM system proposed by
Attiya and Welch [6], in which the DSM is implemented
by a memory consistency system (MCS). The MCS is
formed by MCS-processes that cooperate following a
distributed protocol (MCS-protocol) to provide the
application processes with the impression of having a
shared memory. Each application process is attached
to one MCS-process. An application process issues
read or write operations on the shared variables by
sending (read or write) calls to its MCS-process. After
sending a call, the application process blocks until it
receives the corresponding response from its MCS-
process, which ends the operation. A write call carries
the value to be written and the variable in which to write
it. The response to a write call is the explicit acknowl-
edgment of the call by the MCS-process. A read call
carries the variable to be read, while its response
contains the value of the variable as seen by the MCS-
process.

Hence, interconnecting a set of DSM systems is, in
fact, interconnecting their respective MCS. We do so
with an (IS). After the interconnection, the overall
system has a global MCS formed by the MCSs of the
original systems plus the IS that interconnects them. An
IS is basically a set of processes (IS-processes), one in
each system to be interconnected (one IS-process could
belong to several systems), that execute some distributed
protocol (IS-protocol) and are connected by reliable
message passing FIFO channels. An IS-process is a
special kind of application process. It is attached to an
exclusive MCS-process, can issue read and write
operations, and exchanges information with other IS-
processes.

We only consider the interconnection of causal
systems in which the MCS-process of the IS-process is
implemented with replication and propagation. We
impose that this MCS-process has a local replica of
each of the variables of the shared memory. Every write
operation issued by an application process is eventually
propagated to this MCS-process, which updates the
corresponding local replica. We assume that the inter-
face between each IS-process and its MCS-process is
extended with two upcalls, sent by the MCS-process to
the IS-process when local replicas of variables are
updated. The update of a replica due to a write
operation issued by the IS-process does not generate
any upcall. Otherwise, the MCS-process sends a
pre updateðxÞ upcall immediately before its replica of
variable x is updated with some value v and a
post updateðx; vÞ upcall immediately after. (As we will
see, the pre updateðxÞ upcall is not always necessary. We
assume that it can be disabled by the IS-process.) When
the MCS-process sends an upcall, it must block until the
IS-process replies with a response.

In our IS-protocol, the MCS-processes of the
IS-processes, when they update the replica of a variable
x with a value v must operate in a way such that (a)
the value s held by the local replica of x when
the corresponding pre updateðxÞ upcall is sent, is not
modified until the update with v is done, and this value v

is not modified until the response to the post updateðx; vÞ
upcall is received. Furthermore, our IS-protocol also
needs to be able to issue read operations while
processing these upcalls. Then, (b) these read operations
must be guaranteed to finish, and (c) they must return
the value s or v when issued in the processing of the
pre updateðxÞ or post updateðx; vÞ upcalls, respectively.
The conditions (a) and (c) are needed for the correctness
of the IS-protocol, while condition (b) prevents
deadlocks.

ARTICLE IN PRESS

Fig. 1. The IS-protocol for systems that satisfy the Causal Updating

Property.

Fig. 2. Third task, used in systems that do not satisfy the Causal

Updating Property.

A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506 501
3. The IS-protocols for interconnecting causal systems

In this section, we introduce two IS-protocols for
interconnecting two causal systems S0 and S1 so that the
resulting system, ST ; is also causal. For generality, we
use Sk to denote any of these systems S0 and S1; and S

%k

(where %k implicitly means 1 � k) to denote the other. As
we described in the previous section, we have one IS-
process for each system Sk; denoted ispk: Such a process
is in charge of executing the IS-protocol of the
corresponding system.

In essence, the IS-protocols we propose simply
propagate the write operations issued in one system to
the other by means of the IS-processes. We first make
sure that write operations that are causally ordered in
system Sk are propagated to system S

%k in that order.
Otherwise, these operations would have a different
causal order in S

%k and it could never be guaranteed that
the overall system is causal. However, this condition is
not enough, since it does not guarantee that causal
dependencies are preserved by the propagations. For
instance, suppose wk

i ðxÞv is issued in Sk and that after its
propagation by isp

%k some process j in S
%k issues r

%k
j ðxÞv

and w
%k
j ðxÞu; in this order. Then, without violating the

causality of Sk; some process l in Sk could issue first
rk

l ðxÞu and then rk
l ðxÞv; which violates the causality of

the system ST : To prevent this, we force the IS-processes
to issue read operations on every value propagated
among systems, which creates causal relations between
write operations propagated in both directions.

We present two IS-protocols which can interact with
each other. They only differ in the code executed by the
IS-process, but their interface between IS-processes is
the same. Each IS-process will choose which one to use
depending on which class of causal MCS-protocol its
system is running. We consider two classes of causal
MCS-protocols, depending on whether they guarantee
the following property.

Property 1 (Causal Updating). In any computation ak of

system Sk; if application processes i and j issue the write

operations wk
i ðxÞv and wk

j ðyÞu; and wk
i ðxÞv!!

ak

wk
j ðyÞu;

then the MCS-process of ispk will update its replica of x

with the value v before updating its replica of y with the

value u:

We will first consider a system implemented with a
causal MCS-protocol that satisfies the Causal Updating
Property. (All the causal protocols we have found in the
literature fall within this class.) In this case, each IS-
process contains two tasks, Propagatek

out and
Propagatek

in: While Propagatek
out deals with transferring

write operations issued in Sk to the system S
%k;

Propagatek
in deals with applying within Sk the write

operations transferred from the system S
%k by

Propagate
%k
out: To work properly, Propagatek

out has to
guarantee that two causally ordered write operations are
transferred to S

%k following the causal order. To do so,
we use a reliable FIFO ordered communication channel.
Similarly, Propagatek

in must apply the write operations
transferred from Sk in exactly the same order they are
received.

Fig. 1 shows the code of tasks Propagatek
in and

Propagatek
out: Task Propagatek

out is activated with para-
meters x and v when the post updateðx; vÞ upcall is
received (i.e., immediately after the local replica of
variable x is updated with value v). As a result, it reads
the value v from x and sends the pair /x; vS to the isp

%k

process. Recall that the updates due to write operations
issued by ispk do not generate upcalls. Then, a pair
received from isp

%k cannot be sent back. On its turn, task
Propagatek

in is activated with parameters x and v

whenever the pair /x; vS is received from the process
isp

%k: As a result, its MCS-process performs a causal
write operation, thus causally propagating the value v to
all the replicas of variable x within Sk: Fig. 3 shows the
interaction of these tasks with their environment (the
MCS-process and the process isp

%k). In this first IS-
protocol ispk disables the MCS-process pre update

upcalls, since it does not need them.
Let us consider now the more general case in which

the Causal Updating Property is not necessarily satisfied
by the causal MCS-protocol of the system Sk: In this
case, the IS-protocol has a new task Pre Propagatek

outðxÞ
(see Fig. 2), which is executed immediately before the
local replica of variable x in the MCS-process of ispk is
updated with a new value v: This task issues a read
operation on x; rk

ispkðxÞs; which reads the value s

previously held in x: This task enforces that two
causally ordered write operations are propagated by
Propagatek

out following the causal order even if the MCS-
protocol does not enforce that the replicas are updated
in that order (as shown in Lemma 1 below). In Fig. 3 are

ARTICLE IN PRESS

pre_update(x)
read(x)

response(s)
response

post_update(x,v)
read(x)

response(v)

response

write(y,u)

response
Propagatek

in(y,u)

Propagatek
out(x,v)

PrePropagatek
out(x)

ispk

〈x,v〉

〈y,u〉

is
pk

M
C

S-
pr

oc
es

s

Fig. 3. Task scheme of the IS-protocols.

A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506502
pictured the tasks of this IS-protocol and their interac-
tions with the MCS-process and the isp

%k process.
The following lemma presents the fundamental

property satisfied by both IS-protocols.

Lemma 1. In any computation ak of system Sk (where

kAf0; 1g), if application processes i and j issue the write

operations wk
i ðxÞv and wk

j ðyÞu; and wk
i ðxÞv

!!
ak

wk
j ðyÞu; then Propagatek

out will send the pairs

/x; vS and /y; uS to system S
%k in this order.

Proof. All we need to show is that the local replicas of x

and y in the MCS-process of ispk are updated in that
order, since Propagatek

out sends the pairs in the same
order the updates are applied. The claim trivially follows
if the causal MCS-protocol used by Sk satisfies the
Causal Updating Property and the IS-protocol of Fig. 1
is used, since the local replica of x is updated with v

before the local replica of y is updated with u:
Now, we show by contradiction that, if we use the

second IS-protocol with the new task Pre Propagatek
out;

then the local replicas of x and y in the MCS-process of
ispk are also updated in that order, even if the MCS-
protocol does not satisfy the Causal Updating Property.
Let us assume, then, by way of contradiction, that the
local replica of y is updated with value u before the local
replica of x is updated with value v in computation ak:
Then, if we remove from ak all the read operations
not issued by ispk; and since the system Sk is causal,
the resulting computation ak

ispk must have a causal
view bk

ispk : From the description of the second IS-
protocol and our assumption, ispk has issued the
following operations, in this order: rk

ispkðyÞt; rk
ispkðyÞu;

rk
ispkðxÞs; and rk

ispk ðxÞv; where t and s are the previous
values of y and x; respectively (see Fig. 3). Hence,
from the first condition of the definition of !

ak

;

rk
ispkðyÞu!ak

rk
ispkðxÞs!ak

rk
ispkðxÞv: We have that wk

i ðxÞv!
!

ak

wk
j ðyÞu from the statement of the lemma. Finally,

from the second condition of the definition of !
ak

;
wk

j ðyÞu!ak

rk
ispk ðyÞu: Since bk

ispk must preserve the order
!!
ak

; the above operations on x must appear in bk
ispk

in the order wk
i ðxÞv �!

bk

ispk

rk
ispkðxÞs �!

bk

ispk

rk
ispkðxÞv: Let us

consider now the operation wk
l ðxÞs that writes s in x:

There are three possible cases, either there is no

such operation in bk
ispk ; wk

i ðxÞv �!
bk

ispk

wk
l ðxÞs; or

wk
l ðxÞs �!

bk

ispk

wk
i ðxÞv: In either case, the legality of bk

ispk is
violated and ak cannot be causal, which is a contra-
diction. Hence, the local replica of x must be updated
before that of y: &
4. The interconnection of two systems is causal

In this section we show that the system ST ; obtained
by connecting two systems S0 and S1 using our IS-
protocols, is causal. We consider that the set of
processes of ST includes all the processes in S0 and S1

except isp0 and isp1 (they are only used to interconnect
the systems S0 and S1).

In what follows, aT will denote a computation of ST

observed when executing all the processes of both
systems S0 and S1; interconnected through the IS-
processes running our IS-protocols. Similarly, ak will
denote the computation of Sk observed in the same
execution. Note that ak and aT have in common all the
operations issued by processes in Sk: Furthermore, write
operation w

%k
i ðxÞv in aT issued by some processes i in S

%k

appears in ak as the write operation wk
ispkðxÞv issued by

the process ispk in Sk: This is so because every write
operation issued by ispk in ak is, from our IS-protocols,
just the propagation of a write operation issued by a
process of S

%k: As we defined, aT
i (resp. ak

i) is the
computation obtained from aT (resp. ak) by removing
the read operations not issued by the process i: (For
simplicity, we assume that processes have unique
identifiers in ST ; and hence aT

i is properly defined.)
4.1. Auxiliary lemmas

The first set of lemmas (from Lemmas 2 to 6) that
follow show that if two operations of aT are causally
ordered, their corresponding operations in ak are also
causally ordered. By corresponding operation we mean
the same operation if it was issued in Sk; or its
propagation if it was a write operation issued in S

%k:
For these lemmas we need the following definition:

Definition 6. Let op and op0 be two operations in aT

such that op!!
aT

op0: A causal sequence between op

and op0 is a sequence of operations op1; op2;y; opm

such that op1 ¼ op; opm ¼ op0; and opc
!

aT

opcþ1 for
1pcom:

ARTICLE IN PRESS

op =

wk
ispk(x)vlast(subSeqk rk

first(subSeqk
d+1)=rk

l(x)v

first(subSeqk wk

ispk

last(subSeqk
d+1)=wk

i(y)u

op′ =

Sk Sk first(subSeqk

last(subSeqk

1)

d)=wk
j(xv)

d+2)=rk
s(y)u

d+2)

ispk(x)v

ispk(y)u

Fig. 4. Precedences for the proof of Lemma 3. Solid arrows represent

causal precedences and dashed arrows represent temporal precedences.

A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506 503
Note that at least one causal sequence always exists
between op and op0 if op!!

aT

op0: A causal sequence
Seq between op and op0 can be divided in n subsequences
subSeq1; subSeq2; y; subSeqn; such that all the opera-
tions in subsequence subSeqd ; 1XdXn; belong to the
same system Sk and the operations in consecutive
subsequences belong to different systems. We use
subSeqk

d to express that all the operations of the dth
subsequence belong to system Sk; for 1XdXn:

We use firstðsubSeqdÞ and lastðsubSeqdÞ to denote the
first and last operation of the subsequence subSeqd ;
respectively. Note that, in two consecutive subsequences
subSeqk

d and subSeq
%k
dþ1 of a given sequence,

lastðsubSeqk
dÞ ¼ wk

j ðxÞv and firstðsubSeq
%k
dþ1Þ ¼ r

%k
l ðxÞv;

i.e. the first operation of the later subsequence reads
the value written by the last operation of the former
subsequence.

Lemma 2. Let op and op0 be two operations in aT such

that op!!
aT

op0: If there is a causal sequence between op

and op0 with one single subsequence subSeqk
1 ; then

op!!
ak

op0:

Proof. The claim follows if we show that, for any two
consecutive operations opc and opcþ1 of subSeqk

1 ;

opc
!

ak

opcþ1: Since opc
!

aT

opcþ1; we must be in one of

two cases (from Definition 2): (1) opc !a
T

opcþ1 and both

operations are issued by the same process, or (2) opc ¼
wk

j ðxÞv and opcþ1 ¼ rk
l ðxÞv (where j and l are two

processes in Sk). Hence, from the respective cases of
Definition 2, opc

!
ak

opcþ1: &

Lemma 3. Let op and op0 be two operations in aT issued

by system Sk such that op!!
aT

op0: Then op!!
ak

op0:

Proof. Let Seq be a causal sequence between op and op0:
We use induction on the number of subsequences of Seq

to show the result. Note that this number has to be
odd. In the base case, the sequence Seq has only
one subsequence subSeqk

1 : Hence, from Lemma 2,

op ¼ firstðsubSeqk
1Þ!!

ak

op0 ¼ lastðsubSeqk
1Þ:

Assume the claim is true for sequences with d

subsequences. We show it also holds if Seq has d þ 2
subsequences. By induction hypothesis, we have that
op ¼ firstðsubSeqk

1Þ!!
ak

lastðsubSeqk
dÞ: Note that

lastðsubSeqk
dÞ ¼ wk

j ðxÞv is propagated to system S
%k by

process ispk: Before doing so, ispk issues the operation

rk
ispkðxÞv (see task Propagatek

out of Fig. 1). Later on, ispk

propagates lastðsubSeq
%k
dþ1Þ ¼ w

%k
i ðyÞu as wk

ispkðyÞu (see

task Propagatek
in in Fig. 1). Then, from the definition of

causal order, wk
j ðxÞv!!

ak

rk
ispk ðxÞv!!

ak

wk
ispkðyÞu (see

Fig. 4). From Lemma 2 we have that firstðsubSeqk
dþ2Þ ¼

rk
s ðyÞu!!

ak

op0 ¼ lastðsubSeqk
dþ2Þ: Also, wk

ispkðyÞu!
!
ak

firstðsubSeqk
dþ2Þ ¼ rk

s ðyÞu: Hence, by transitivity,

op ¼ firstðsubSeqk
1Þ!!

ak

op0 ¼ lastðsubSeqk
dþ2Þ: &

Let op be a write operation issued in S
%k: Let us denote

by propðopÞ the write operation issued by ispk as a result
of propagating op to Sk:

Lemma 4. Let op and op0 be two write operations in aT

issued by system S
%k: If op!!

aT

op0; then

propðopÞ!!
ak

propðop0Þ:

Proof. From Lemma 3, op!!
a %k

op0: Then, the result
follows from Lemma 1, the fact that the channel
connecting isp

%k to ispk is reliable and FIFO, and the
implementation of task Propagatek

in (see Fig. 1). &

Lemma 5. Let op and op0 be two operations in aT issued,
respectively, by systems S

%k and Sk; such that op ¼
w

%k
i ðxÞv!!

aT

op0: Then propðopÞ!!
ak

op0:

Proof. Let Seq be a causal sequence between op and op0:
Let us assume lastðsubSeq

%k
1Þ ¼ w

%k
j ðyÞu and

firstðsubSeqk
2Þ ¼ rk

l ðyÞu: From Lemma 4, propðopÞ!
!

ak

propðlastðsubSeq
%k
1ÞÞ ¼ propðw %k

j ðyÞuÞ ¼wk
ispk ðyÞu: From

Lemma 3 we have that firstðsubSeqk
2Þ ¼ rk

l ðyÞu!!
ak

op0:
From the definition of causal order wk

ispkðyÞu!!
ak

rk
l ðyÞu:

Hence, from transitivity, propðopÞ!!
ak

op0: &

Lemma 6. Let op and op0 be two operations in aT issued,
respectively, by systems Sk and S

%k; such that

op!!
aT

op0 ¼ w
%k
i ðxÞv: Then op!!

ak

propðop0Þ:

Proof. Let Seq be a causal sequence between op and op0

with m subsequences. Let us assume lastðsubSeqk
m�1Þ ¼

wk
j ðyÞu and firstðsubSeq

%k
mÞ ¼ r

%k
l ðyÞu: From Lemma 3,

op!!
ak

lastðsubSeqk
m�1Þ ¼ wk

j ðyÞu: From the imple-

mentation of task Propagatek
out (see Fig. 1) the value u

is read from y by ispk before propagating it. Hence, from

the definition of causal order, wk
j ðyÞu!!

ak

rk
ispkðyÞu:

Since r
%k
l ðyÞu has to be executed after the propagation of

wk
j ðyÞu; so has to be op0: Then, propðop0Þ ¼ wk

ispkðxÞv is

executed after rk
ispkðyÞu; and rk

ispkðyÞu!!
ak

propðop0Þ ¼
wk

ispkðxÞv (see Fig. 5). Hence, from transitivity,

op!!
ak

propðop0Þ: &

ARTICLE IN PRESS

op=first(subSeqk)1

last(subSeqk
m-1

)= wk
j
(y)u wk

ispk(y)u

first(subSeqk
m)=

last(subSeqk
m)=wk

i
(x)v

r k
ispk (y)u

SkSk

prop(op′)=wispk(x)vk

ispk r (y)u l
k

Fig. 5. Precedences for the proof of Lemma 6. Solid arrows represent

A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506504
4.2. Proof of correctness

Since Sk is a causal system, ak has to be causal.
Therefore, any ak

i (see Definition 3) has at least one
causal view. Let bk

i be one causal view of ak
i : Like in ak;

every write operation of the process ispk in bk
i is the

propagation of a write operation issued by a process of
S

%k: Let us denote by origðopÞ the original write
operation propagated as write operation op by process
ispk: From bk

i ; we derive a sequence gT
i which we will

show is a causal view of aT
i :

Definition 7. gT
i is the sequence obtained by replacing in

bk
i every write operation op from ispk by the write

operation origðopÞ:

Lemma 7. gT
i is a permutation of the operations in aT

i :

Proof. Note that aT
i contains all the write operations of

aT and the read operations of process i in system Sk: On
the other hand, ak

i contains all the write operations in aT

of processes in Sk; all the read operations of process i in
system Sk; and the propagation by ispk of all the write
operations in aT of processes in system S

%k: Then, the
difference in their respective sets of operations is that,
for each operation op issued by ispk in ak

i ; a
T
i contains

the original operation origðopÞ:
Since bk

i is a permutation of ak
i by definition of causal

view, both have the same operations. gT
i is obtained

from bk
i by replacing each op issued by ispk by origðopÞ:

Hence, the set of operations in gT
i is the same as that

of aT
i : &

Lemma 8. gT
i preserves the causal order !!

aT

:

Proof. Let us assume, by way of contradiction, that gT
i

does not preserve the order !!
aT

: Hence, there must
be at least two operations op and op0 such that
op!!

aT

op0 but op0 precedes op in gT
i : Let us consider

four possible cases.
Case 1: op and op0 have been issued by processes of

Sk: Then, from Lemma 3, we have that op!!
ak

op0:
Now note that since op0 precedes op in gT

i ; op0 also

precedes op in bk
i ; by definition of gT

i : Then, bk
i does not

preserve the order !!
ak

: Since bk
i is a causal view of

ak
i ; we have a contradiction.

causal precedences and dashed arrows represent temporal precedences.
Case 2: op and op0 have been issued by processes
of S

%k: Since both operations are in gT
i ; which only

contains read operations from process i of system Sk;
both must be write operations. Let op and op0 be
propagated as operations propðopÞ and propðop0Þ;
respectively, issued by process ispk: From Lemma 4,
we have that propðopÞ!!

ak

propðop0Þ: Observe now
that, by definition, operation propðopÞ in bk

i is
replaced by op and operation propðop0Þ is replaced
by op0 to obtain gT

i : Then propðop0Þ precedes propðopÞ
in bk

i ; and hence bk
i does not preserve the order

!!
ak

: Since bk
i is a causal view of ak

i we have a
contradiction.

Case 3: op has been issued by a process of S
%k and

op0 has been issued by a process of Sk: Note that op must
be a write operation, since gT

i only contains read
operations from process i of system Sk: Operation op

is propagated from S
%k to Sk as an operation propðopÞ

issued by process ispk: From Lemma 5,
propðopÞ!!

ak

op0: Observe now that, by definition,
operation propðopÞ in bk

i is replaced by op to obtain gT
i :

Then op0 must precede propðopÞ in bk
i ; and hence bk

i does

not preserve the order !!
ak

: Since bk
i is a causal view

of ak
i we have a contradiction.

Case 4: op has been issued by a process of Sk and op0

has been issued by a process of S
%k: Note that op0 must be

a write operation, since gT
i only contains read operations

from process i of system Sk: Operation op0 is propagated
from S

%k to Sk as an operation propðop0Þ issued by

process ispk: From Lemma 6, op!!
ak

propðop0Þ: Ob-

serve now that, by definition, operation propðop0Þ in bk
i is

replaced by op0 to obtain gT
i : Then propðop0Þ must

precede op in bk
i ; and hence bk

i does not preserve the

order !!
ak

: Since bk
i is a causal view of ak

i we have a

contradiction. &

Lemma 9. gT
i is legal.

Proof. By definition of causal view, bk
i is legal. Also by

definition, gT
i is obtained by replacing in bk

i every write
operation op from ispk by the write operation origðopÞ;
where both op and origðopÞ write the same value in the
same variable. Therefore, gT

i is legal. &

Theorem 1. The system ST is causal.

Proof. Let aT be a computation of ST and let aT
i be

obtained from aT : From Lemma 7, gT
i ; as defined in

Definition 7, is a permutation of the operations in aT
i :

Also, from Lemma 8, gT
i preserves the causal order

!!
aT

: Finally, from Lemma 9, gT
i is legal. Hence, from

Definition 3, gT
i is a causal view of aT

i : Since this holds
for each process iaispk of system Sk; for kAf0; 1g; we
have that aT is a causal computation. Hence any

ARTICLE IN PRESS
A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506 505
computation aT of ST is causal, and ST is a causal
system. &
5. Generalization to several systems

The following corollary shows that our IS-protocols
can be used to interconnect any number of systems to
obtain a large causal system.

Corollary 1. n propagation-based causal systems,
S0;S1;y;Sn�1; can be interconnected with our IS-

protocols to obtain a system ST causal.

Proof. Observe that the system obtained by interconnect-
ing two systems with our IS-protocols is a propagation-
based system. We use induction on n to show the result.
For n ¼ 1 the claim is trivially true. Then, if we have a
propagation-based causal system S0 by interconnecting the
systems S0;S1;y;Sn�2; then we can interconnect S0 and
Sn�1 to obtain the propagation-based causal system ST ;
from Theorem 1 and the above observation. &

Note that the system ST is obtained by connecting the
original systems in pairs without forming cycles. Hence,
the final interconnection topology is a tree.
6. Performance

We compare here the performance of a system obtained
using our IS-protocols with the performance of a system
that directly uses a causal MCS-protocol connecting all the
processes. We assume that the same MCS-protocol is used
in the global DSM system of reference and in each of the
systems interconnected with our IS-protocols. We also
assume that this protocol only implements causal con-
sistency (and not a stronger model).

First, observe that our IS-protocols should not affect
the response time a process observes when issuing a
memory operation, since its MCS-process is not affected
by the interconnection. Regarding the network traffic,
we assume that the MCS-protocol used generates x � 1
messages for each write operation in a system with x

MCS-processes and no message for a read operation.
Then, in a global DSM system with n MCS-processes
each write operation generates n � 1 messages. With our
interconnection protocols n þ 1 messages are generated
for two systems, since we add two MCS-processes (one
for each IS-process), and one message will be sent from
one IS-process to the other. Generalizing these results
for m systems, the number of messages for the
interconnected system becomes n þ m � 1: However,
observe that if we have two systems, each one with n=2
processes and in different networks, in the global DSM
system n=2 messages have to cross from one network to
the other for each write operation, which can generate a
bottleneck. With our protocol only one message has to
cross. Note that this bottleneck problem may get worse
as the number of networks increases. Finally, we
consider the latency, which is the time until a value
written is visible in any other process. For simplicity, we
will discard here local computation times at the IS-
processes and possible delays introduced by the condi-
tions at the MCS-processes of the IS-processes. Then, if
we have m systems, a system running the basic causal
protocol has latency l; the delay of a message between
two IS-processes is d; and we interconnect the systems in
a star fashion, the worst case latency is 3l þ 2d:
Acknowledgments

This work has been partially supported by the
Spanish Ministerio de Ciencia y Tecnologı́a under
grants TEL99-0582 and TIC2001-1586-C03-01. We
want to thank Sergio Arévalo and Francisco Ballesteros
for proposing us the ‘‘consistency islands’’ problem. We
also want to thank the anonymous referees for their
useful comments.
References

[1] N. Adly, M. Nagi, Maintaining causal order in large scale

distributed systems using a logical hierarchy, in: Proceedings of

the 12th IASTED International Conference on Applied Infor-

matics, 1995.

[2] M. Ahamad, G. Neiger, J. Burns, P. Kohli, P. Hutto, Causal

memory: definitions, implementation and programming, Distrib.

Comput. 9 (1) (1995) 37–49.

[3] H. Attiya, J. Welch, Sequential consistency versus linearizability,

ACM Trans. Comput. Systems 12 (2) (1994) 91–122.

[4] R. Baldoni, R. Beraldi, R. Friedman, R. van Renesse, The

hierarchical daisy architecture for causal delivery, Distrib.

Systems Eng. J. 6. (1999) 71–81.

[5] V. Cholvi, J. Bernabéu, Relationships between memory models,

Info. Process. Lett. 90 (2) (2004) 53–58.

[6] E. Jiménez, A. Fernández, V. Cholvi, A parametrized algorithm

that implements sequential, causal, and cache memory consis-

tency, in: Proceedings of the 10th Euromicro Workshop on

Parallel, Distributed and Network-Based Processing (Euro PDP

2002), IEEE Computer Society Press, Canary Islands, Spain,

2002.

[7] L. Lamport, Time, clocks and the ordering of events in a

distributed system, Comm. ACM 21 (7) (1991) 558–565.

[8] M. Raynal, M. Ahamad, Exploiting write semantics in imple-

menting partially replicated causal objects, in: Proceedings of the

Sixth EUROMICRO Conference on Parallel and Distributed

Computing, 1998, pp. 157–163.

[9] M. Raynal, M. Mizuno, How to find his way in the jungle of

consistency criteria for distributed shared memories (or how to

escape from minos’ labyrinth), in: Proceedings of the IEEE

International Conference on Future Trends of Distributed

Computing Systems, Lisboa, Portugal, 1993.

ARTICLE IN PRESS
A. Fern !andez et al. / J. Parallel Distrib. Comput. 64 (2004) 498–506506
[10] L. Rodrigues, P. Verissimo, Causal separators and topological

timestamping: an approach to support causal multicast in large-

scale systems, in: Proceedings of the 15th International Con-

ference on Distributed Systems, 1995.
Antonio Fernández is an associate profes-

sor at the Universidad Rey Juan Carlos in

Madrid, Spain, since 1998. Previously, he was

on the faculty of the Universidad Politécnica

de Madrid. He graduated in Computer

Science from the Universidad Politécnica de

Madrid in 1991, and got a Ph.D. in

Computer Science from the University of

Southwestern Louisiana in 1994. His research

interests include data communications, com-

puter networks, parallel and distributed
processing, algorithms, and discrete and applied mathematics.
Ernesto Jiménez graduated in Computer

Science from the Universidad Politécnica de

Madrid (Spain) and got a Ph.D. in Computer

Science from the University Rey Juan Carlos

(Spain) in 2004. He is currently an associate

professor at the Universidad Politécnica de

Madrid.
Vicent Cholvi graduated in Physics from

the Universitat de València (Spain) and

received his doctorate in Computer Science

in 1994 from the Polytechnic University of

Valencia (Spain). In 1995, he joined the

Jaume I University in Castelló (Spain) where

he is currently an associate professor. His

interests are in distributed and communica-

tion systems.

	On the interconnection of causal memory systems
	Introduction
	Our results
	Related work

	Definitions
	The IS-protocols for interconnecting causal systems
	The interconnection of two systems is causal
	Auxiliary lemmas
	Proof of correctness

	Generalization to several systems
	Performance
	Acknowledgements
	References

