
A Methodological Construction of an Efficient Sequential Consistency Protocol�

Vicent CHOLVIÆ Antonio FERNÁNDEZ� Ernesto JIMÉNEZ� Michel RAYNAL�

Æ Universidad Jaume I, Castellón, Spain
� Laboratorio de Algoritmia Distribuida, Universidad Rey Juan Carlos, 28933 Móstoles, Spain

� EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
� IRISA, Université de Rennes, Campus de Beaulieu, 35 042 Rennes, France

vcholvi@lsi.uji.es anto@gsyc.escet.urjc.es ernes@eui.upm.es raynal@irisa.fr

Abstract

A concurrent object is an object that can be concurrently
accessed by several processes. Sequential consistency is a
consistency criterion for such objects. Informally, it states
that a multiprocess program executes correctly if its results
could have been produced by executing that program on a
single processor system. (Sequential consistency is weaker
than atomic consistency -the usual consistency criterion-
as it does not refer to real-time.) The paper proposes a
simple protocol that ensures sequential consistency when
the shared memory abstraction is supported by the local
memories of nodes that can communicate only by exchang-
ing messages through reliable channels. Differently from
other sequential consistency protocols, the proposed proto-
col does not rely on a strong synchronization mechanism
such as an atomic broadcast primitive or a central node
managing a copy of every shared object. From a method-
ological point of view, the protocol is built incrementally
starting from the very definition of sequential consistency.
It has the noteworthy property of providing fast writes oper-
ations (i.e., a process has never to wait when it writes a new
value in a shared object). According to the current local
state, some read operations can also be fast. An experimen-
tal evaluation of the protocol is also presented. The pro-
posed protocol could be used to manage Web page caching.

1 Introduction
Sequential consistency The definition of a consistency
criterion is crucial for the correctness of a multiprocess pro-
gram. Basically, a consistency criterion defines which value
has to be returned when a read operation on a shared ob-
ject is invoked by a process. The strongest (i.e., most con-
straining) consistency criterion is atomic consistency [15]
(also called linearizability [10]). It states that a read re-
turns the value written by the last preceding write, “last”

�This work is partially supported by the CICYT under grant TIC2001-
1586-C03-01 and TIC2001-1586-C03-02.

referring to real-time occurrence order (concurrent writes
being ordered). Causal consistency [3, 5] is a weaker cri-
terion stating that a read does not get an overwritten value.
Causal consistency allows concurrent writes; consequently,
it is possible that concurrent read operations on the same
object get different values (this occurs when those values
have been produced by concurrent writes). Other consis-
tency criteria (weaker than causal consistency) have been
proposed [1, 21].

This paper focuses on sequential consistency [12]. This
criterion lies between atomic consistency and causal con-
sistency. Informally it states that a multiprocess program
executes correctly if its results could have been produced
by executing that program on a single processor system.
This means that an execution is correct if we can totally
order its operations in such a way that (1) the order of op-
erations in each process is preserved, and (2) each read ob-
tains the last previously written value, “last” referring here
to the total order. The difference between atomic consis-
tency and sequential consistency lies in the meaning of the
word “last”. This word refers to real-time when we consider
atomic consistency, while it refers to a logical time notion
when we consider sequential consistency (namely the log-
ical time defined by the total order). The main difference
between sequential consistency and causal consistency lies
in the fact that (as atomic consistency) sequential consis-
tency orders all write operations, while causal consistency
does not require to order concurrent writes.

Atomic consistency is relatively easy to implement in a
distributed message-passing system. Each process �� main-
tains in a local cache the current value � of each shared
variable �, and such a cached value � is systematically in-
validated (or updated) each time a process �� writes �. The
conflicts due to multiple accesses to a shared variable � are
usually handled by associating a manager �� with every
shared variable �. One of the most known atomic consis-
tency protocols is the invalidation-based protocol due to Li
and Hudak [13] that has been designed to provide a dis-

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

tributed shared memory on top of a local area network. An
update-based atomic consistency protocol is described in
[8].

Due to its very definition, atomic consistency requires
that the value of a variable � cached at �� be invalidated (or
updated) each time a process �� issues a write on �. In that
sense, the atomic consistency criterion (that is an abstract
property of a computation) is intimately related to an eager
invalidation (or update) mechanism (that concerns the oper-
ational side). Said in another way, atomic consistency is a
consistency criterion that can be too conservative for some
applications.

Differently, sequential consistency can be seen as a form
of lazy atomic consistency [19]. A cached value has not
to be systematically invalidated each time the correspond-
ing shared variable is updated. Old and new values of a
shared variable can coexist at different processes as long as
the resulting execution could have been produced by run-
ning the multiprocess program on a single processor sys-
tem. Of course, a protocol implementing sequential consis-
tency can be more involved than a protocol implementing
atomic consistency, as it has to keep track of global infor-
mation allowing it to know, for each process � �, which old
values currently used by �� have to be invalidated (or up-
dated) and which ones have not. This global information
tracking, which is at the core of sequential consistency pro-
tocols, is the additional price that has to be paid to replace
eager invalidation by lazy invalidation, thereby providing
the possibility for efficient runs of multiprocess programs.

Related work: Sequential consistency protocols. Sev-
eral protocols providing a sequentially consistent shared
memory abstraction on top of an asynchronous message
passing distributed system have been proposed. The pro-
tocol described in [2] implements a sequentially consistent
shared memory abstraction on top of a physically shared
memory and local caches. It uses an atomic �-queue update
primitive. Attiya and Welch [7] present two sequential con-
sistency protocols. Both protocols assume that each local
memory contains a copy of the whole shared memory ab-
straction. They order the write operations using an atomic
broadcast facility: all the writes are sent to all processes and
are delivered in the same order by each process. Read op-
erations issued by a process are appropriately scheduled to
ensure their correctness.

The protocol described in [17] considers a server site that
has a copy of the whole shared memory abstraction. The
local memory of each process contains a copy of a shared
memory abstraction, but the state of some of its objects can
be invalid. When a process wants to read an object, it reads
its local copy if it is valid. When a process wants to read an
object whose state is invalid, or wants to write an object, it
sends a request to the server. In that way the server orders
all write operations. An invalidation mechanism ensures

that the reading by �� of an object that is locally valid is
correct. A variant of this protocol is described in [4]. The
protocol described in [18] uses a token that orders all write
operations and piggybacks updated values like one of the
protocols described [7] it provides fast (i.e., purely local)
read operations [9]�.

Most of the previous protocols rely on a strong synchro-
nization mechanism that has a scope spanning the whole
system (atomic broadcast facility, navigating token, or cen-
tral manager�). Differently, the protocol described in [19]
is fully distributed in the sense that it does not rely on an
underlying global mechanism: each object � is managed by
its own object manager �� and there is no synchronization
primitive whose scope is the entire system.

Content of the paper. This paper presents a method-
ological construction of a sequential consistency protocol.
A variant of this protocol has first been presented in [11],
where a dynamically adaptive and parameterized algorithm
that implements sequential consistency, cache consistency
or causal consistency, according to the setting of some pa-
rameter. This parameterized algorithm is presented “from
scratch”, without exhibiting or relying on basic underly-
ing principles. Here, we show that a variant of its sequen-
tial consistency instantiation can be obtained from a sim-
ple derivation starting from the very definition of sequential
consistency.

The algorithm we obtain from the derivation not only is
surprisingly simple, but -as it is based on the very essence
of sequential consistency- it reveals to be particularly effi-
cient for some classes of applications. The protocol has the
nice property to allow the write operations to be fast, i.e., a
write operation is always executed locally without involv-
ing global synchronization. Differently, some read opera-
tions can be fast, while other cannot. The fact that a read
operation is fast or not depends on the variable that is read
and the set of variables that have been previously written
by the process issuing the read operation, so it is context-
dependent.

The paper is made up of five sections. Section 2 presents
the computation model, and defines sequential consistency.
Then, Section 3 derives the protocol from the sequential
consistency definition. Section 4 presents experimental re-
sults that show the protocol performance. Finally, Section 5
concludes the paper.

2 The Sequentially Consistent Shared Mem-
ory Abstraction

A parallel program defines a set of processes interact-
ing through a set of concurrent objects. This set of shared

�As shown in [7] atomic consistency does not allow protocols in which
all read operations (or all write operations) are fast [10, 16]. Differently,
causal consistency allows protocols where all operations are fast [3, 5, 20].

�E.g., an atomic broadcast facility allows ordering all the write opera-
tions, whatever the processes that issue them.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

objects defines a shared memory abstraction. Each object
is defined by a sequential specification and provides pro-
cesses with operations to manipulate it. When it is running,
the parallel program produces a concurrent system [10]. As
in such a system an object can be accessed concurrently by
several processes, it is necessary to define consistency cri-
teria for concurrent objects.

A shared memory system is composed of a finite set of
sequential processes ��� � � � � �� that interact via a finite set
� of shared objects. Each object � � � can be accessed
by read and write operations. A write into an object defines
a new value for the object; a read allows to obtain a value
of the object. A write of value � into object � by process
�� is denoted ������; similarly a read of � by process ��
is denoted ������ where � is the value returned by the read
operation; �� will denote either � (read) or � (write). To
simplify the analyses, as in [3, 15, 20], we assume all val-
ues written into an object � are distinct�. Moreover, the
parameters of an operation are omitted when they are not
important. Each object has an initial value (it is assumed
that this value has been assigned by an initial fictitious write
operation).

History concept Histories are introduced to model the ex-
ecution of shared memory parallel programs. The local his-
tory (or local computation) �	� of �� is the sequence of op-
erations issued by ��. If ��� and ��� are issued by �� and
��� is issued first, then we say “��� precedes ��� in ��’s
process-order”, which is noted ��� �� ���. Let 	� denote
the set of operations executed by ��; the local history �	� is
the total order �	�����.

Definition 1 An execution history (or simply history, or
computation) �
 of a shared memory system is a partial or-
der �
 � �
��� � such that:

�
 �
�
� 	�

� ����� ��� if:

i) � �� � ��� �� ��� (in that case, �� is called
process-order relation),

or ii) ��� � ������ and ��� � ������ (in that case
�� is called read-from relation),

or iii) ���� � ����� ��� and ����� ���.

Two operations ��� and ��� are concurrent in �
 if we have
neither ����� ��� nor ����� ���.

Legality notion The legality concept is the key notion on
which are based definitions of shared memory consistency
criteria [3, 5, 16, 21]. From an operational point of view, it
states that, in a legal history, no read operation can get an
overwritten value.

�Intuitively, this hypothesis can be seen as an implicit tagging of each
value by a pair composed of the identity of the process that issued the write
plus a sequence number.

Definition 2 A read operation ����� is legal if: (i)
� ����� � ����� �� ����� and (ii) � � ������ � �� ��

�� � ������ �� �������� ������. A history �
 is legal
if all its read operations are legal.

Sequential consistency has been proposed by Lamport
in 1979 to define a correctness criterion for multiprocessor
shared memory systems [12]. A system is sequentially con-
sistent with respect to a multiprocess program, if “the result
of any execution is the same as if (1) the operations of all
the processors were executed in some sequential order, and
(2) the operations of each individual processor appear in
this sequence in the order specified by its program.”

This informal definition states that the execution of a
program is sequentially consistent if it could have been
produced by executing this program on a single proces-
sor system�. More formally, we define sequential consis-
tency in the following way. Let us first recall the definition
of linear extension of a partial order. A linear extension
�� � ������ of a partial order �
 � �
��� � is a topo-
logical sort of this partial order. This means we have the
following: (i) � �
 , (ii) ��� �� ��� � ��� �� ��� (��
maintains the order of all ordered pairs of �
) and (iii) ��

defines a total order.
Definition 3 A history �
 � �
���� is sequentially con-
sistent if it has a legal linear extension.

3 Methodological Construction of a Sequen-
tial Consistency Protocol

3.1 Underlying Distributed System

Our aim is to implement the sequentially consis-
tent shared memory abstraction on top of an underlying
message-passing distributed system. Such a system is a dis-
tributed system made up of reliable sites, one per process
(hence, without ambiguity, �� denotes both a process and
the associated site). Each �� has a local memory. The pro-
cesses communicate through reliable channels by sending
and receiving messages. There are no assumptions neither
on process speed, nor on message transfer delay. Hence, the
underlying distributed system is reliable but asynchronous.

3.2 The Methodology
The usual approach to design sequential consistency pro-

tocols consists in first defining a protocol and then proving
it is correct. The approach we adopt here is different, in
the sense that we start from the very definition of sequential
consistency and derive from it a sequential consistency pro-
tocol. More precisely, to ensure that a distributed execution

�In his definition, Lamport assumes that the process-order relation de-
fined by the program (point � of the definition) is maintained in the equiva-
lent sequential execution, but not necessarily in the execution itself. As we
do not consider programs but only executions, we implicitly assume that
the process-order relation displayed by the execution histories are the ones
specified by the programs which gave rise to these execution histories.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

�� � ������ has an equivalent legal sequential history
�� � ������, we (1) first, define a base legal sequential
history ��, and (2) then, design a protocol that controls the
execution of the multiprocess program in order to produce
an actual distributed execution �� equivalent to the base his-
tory ��.

The first subsection that follows derives a trivial sequen-
tial consistency protocol that works for a very particular
type of multiprocess programs; these particular multipro-
cess programs have the nice property that all operations can
be executed locally. Then, by observing that the history
of each sequential process can be decomposed in segments
such as those considered in the previous type of multipro-
cess programs, a new sequential consistency protocol is de-
rived that works for the general case. Finally, the last sub-
section shows how to enhance such a general protocol in
order to achieve higher efficiency.

3.3 Step 1 of the Construction: Considering a
Trivial Case

Let us start with a multiprocess program where the se-
quential history ��� of each process �� has the following very
particular structure; namely, ��� is ��

� followed by ���

�

where ��

� is a (possibly empty) sequence containing only
read operations, and ���

� is a (possibly empty) sequence
starting with a write operation and followed by write opera-
tions on any variable and read operations only on variables
that have been previously written by � � (i.e., if ����� appears
in���

� then ����� appears previously in���

�).
Figure 1 shows an example of program as described in

the above paragraph (in order to facilitate the presentation
and without loss of generality, the figures that illustrate the
construction consider a multiprocess program made up of
	 � � processes).

��

��

��

��
�

�

��
�

�

��
�

�

��

�

��

�

��

�

Figure 1. A (very) simple case
As we can see from the very definition of sequential con-

sistency, the parallel execution described in Figure 1 could
have been produced by executing sequentially, first � �

�
, ��

�
,

and ��

�
in any order (they contain only read operations that

obtain the initial values of the shared variables), and then
��

�

�
,���

�
, and���

�
in any order (as any read operation

appearing in ���

� reads only variables that �� has previ-
ously written)�.

If follows that, if all the multiprocess programs had the
structure previously described (��� being ��

� followed by
�Let us observe that sequential consistency does not require that all the

caches containing a copy of a shared variable � have to be equal at the end
of the computation.

��
�

�), an implementation would simply consist in provid-
ing each process �� with a local cache containing all the
shared variables. No additional protocol would be neces-
sary. So, we assume in the following that each process � �
has a local cache denoted
���� associated with each shared
variable �.

3.4 Step 2 of the Construction: (General Case)
Looking for Correctness

Let us first observe that, in the general case, the history
��� of a sequential process �� can always be decomposed
into consecutive “segments” (subsequences), each segment
being of the form ��

� or���
� , namely (“,” stands for “fol-

lowed by”):

��� � ��

� � ��
�

� � �
�

� � ��
�

� � �
�

� � � � � � ��
�
� � �

�
� � � � �

where, as before, ��
� is a (possibly empty) sequence of only

read operations,���
� is a (possibly empty) sequence start-

ing with a write operation and followed by write operations
on any shared variable or read operations on shared vari-
ables previously written in ���

� . It is important to notice
that, for � �, ��

� starts (and consequently ���
� ends)

when �� reads a shared variable not written in���
� .

Controlling a distributed execution will consist in two
types of actions. The first concerns the safety of read oper-
ations, namely it consists in blocking the read of a shared
variable � issued by a process �� when the current value of

���� would produce a non-legal read. The second concerns
liveness, namely it consists in propagating the new values to
ensure that no read can block forever.

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��

��

��

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

Figure 2. An execution

The decomposition of each process history into segments
and the particular case of a single segment examined in Sec-
tion 3.3, provides us with some hint on how to define a base
legal sequential history ��. Let us consider the execution de-
scribed in Figure 2. A base legal sequential history �� that
benefits from the segment decomposition of process histo-
ries can be the following:

�� � ��

�
� ��

�
� ��

�
� ���

�
� ��

�
� ���

�
� ��

�
� ���

�
� ��

�
� ���

�
� ��

�
�

��
�

�
� ��

�
� ���

�
� ��

�
� � � �

This base sequential execution can be produced by a
mono-processor system whose scheduler provides the con-
trol first to �� to execute ��

�
, to �� to execute ��

�
, and to

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��

��

��

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

Figure 3. A base sequential execution ��

�� to execute ��

�
, and then to �� to execute���

�
� ��

�
, then

to �� to execute���

�
� ��

�
, etc. (This execution is indicated

with the dotted arrows in Figure 3.)
As indicated, designing a sequential consistency proto-

col consists of ensuring that the actual distributed execution
�� is equivalent to the base sequential execution ��. Let us
observe that, in ��, when �� executes ��

�
, it can read the

value of a variable � that has been written by �� when it ex-
ecuted���

� . Hence, �� must be informed of these writes
before it executes ��

�
. A simple way to attain this goal con-

sists of using a token (traveling along a logical ring so that
no process misses updates, e.g., ��, ��� � � �,��, ��) and car-
rying the last value it knows of each shared variable. To
carry the new values written in ���

� , the token has to be
sent after���

�
. Moreover, as ��

�
modifies no shared vari-

ables, it can be sent by �� before ��

�
. So, when a process ��

has the token, it ends a segment���

� , sends the token and
starts a segment ��

� .

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��
�

�

��

��

��

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

Figure 4. Using a token to disseminate the
updates and prevent deadlock

The travel of the token is indicated by the bold arrows in
Figure 4. Let us observe that for �� (the distributed execu-
tion) to be equivalent to ��, the values carried by the token
when it arrives at a process (say �� in Figure 4) have to be
considered only if they have not been overwritten by�� �

�
.

This means that we have to manage the token exactly as if
it was received by �� just after �� has executed ��

�
and was

sent by �� to �� just after �� has terminated ��

�
: logically,

the token follows the dotted arrows so that �� is equivalent
to ��.

The resulting protocol is described in Figure 5. As al-
ready indicated, � denotes the set of shared variables, and
����� is ��’s local cache containing the value of the shared
variable �. Each process �� maintains a boolean array
	�
��
� such that 	�
��
���� is true iff �� has updated
� since the last visit of the token. The boolean �� ������

is a synonym for ������	�
��
����� (�� ������ is true
iff no shared variable has been updated since the last visit
of the token at ��). The write operation and the statements
associated with the token reception are executed atomically.
(Let us observe that the arrival of the token at a process al-
ways corresponds to the beginning of a new segment for
that process.)�

init:
for each � � � do

������ initial value of �;�������� ���� ������
end do;
	
 ���	�� � ����;
The token (with initial values) is initially at �� that simulates its
arrival at the end of �	�

�
;

operation ������: % ������ always belongs to some segment �	�

�
%

������ �;
������������ ����; 	
 ���	�� � �����;
return()

operation �����:
wait until �	
 ���	�� � ������������;
% 	
 ���	�� � ����� � 	�

�
� ������������ ����� ��	�

�
%

return �������

upon reception of �
��	���:
for each � � � such that ������������ do

������ �
��	���;
end do;
for each � � � such that ������������ do

�
��	���� �����; ������������ ������
end do;
send �
��	��� to the next process on the logical ring;
	
 ���	�� � ����;
% we have here: �� � � � ����������� � ����� %

Figure 5. Protocol for process ��: token-
based version

3.5 Step 3 of the Construction: (General Case)
Looking for Efficiency

When we look carefully at the way the token is used in
the previous protocol, we observe that it plays actually two
distinct roles. On one side, when it is at a process ��, the
token gives �� the right to disseminate the updates of the
shared variables. That is the “control part” associated with
the token: it provides an exclusive right to its current owner
(a single process at a time can disseminate updates), and
establishes an order among the processes to exploit this ex-
clusive right. On another side, when it is sent by � � to �� ,
the token carries updates. That is the “communication” part

�The reader familiar with token-based termination detection protocols
[14] can see that the protocol described in Figure 5 and these termination
detection protocols share the same underlying mechanism combining to-
ken and flags (here, the flags 	
 ���	��). The corresponding flags in
a termination detection protocol are usually called �
	� ��������, and
are used to know if a process �� stayed continuously passive between two
consecutive visits of the token. This flag is set to ����� when �� receives a
message. It is reset to ���� when �� owns the token, becomes passive and
sends the token to its successor.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

init:
for each � � � do

������ initial value of �; ������������ ������
end do;
	
 ���	�� � ����;
	���� � ��

operation ������: % ������ always belongs to some segment �	�
� %

������ �;
������������ ����; 	
 ���	�� � �����;
return()

operation �����:
wait until �	
 ���	�� � ������������;
% 	
 ���	�� � ����� � 	�

� � ������������ ����� ��	�
� %

return �������

Task � :
(1) loop case �	���� � �� then let ��� � ���� ������ � ������������;
(2) for each � �� � do send UPDATES(���) to �� end do;
(3) for each ��� ��� � ��� do ������������ ����� end do;
(4) 	
 ���	�� � �����
(5) �	���� �� �� then wait (UPDATES(���) from 	����);
(6) for each ��� ��� � ��� do
(7) if �	������������ then ������ �� end if
(8) end do;
(9) end case;
(10) 	���� � �	���� ��	 	�
 �;
(11) end loop

Figure 6. Efficient protocol (for process ��)

associated with the token. This section shows that it is pos-
sible to dissociate these two distinct roles to get a more ef-
ficient protocol.

Let us first introduce a local variable �����, such that
����� � � means that �� (knows that it) has the token and is
consequently allowed to disseminate updates. More gen-
erally, ����� � � means that, from ��’s point of view,
�� is the process that is currently allowed to disseminate
updates. So, circulating the token along the logical ring
��� ��� � � � � ��� ��� � � �, is realized by having each �����
variable taking successively the values �� �� � � � � �� �� � � �

To dissociate the two roles of the token, the token itself is
suppressed (as just indicated, it is replaced by the variables
�����) and the statement associated with its management
is replaced by a task denoted 	 (see Figure 6). (The write
and read operations and the task 	 are executed atomically.)
This task defines two distinct behaviors for a process � � ac-
cording to the token role. More precisely, when � � has the
token (case ����� � �), it is allowed to send to the rest of
processes all the updates it has done since the previous visit
of the token (lines 1-2). These updates are carried by the
message UPDATES(
��). After it has sent its updates, ��
resets its local control variables (lines 3-4).

There are two main differences with respect to the previ-
ous token-based protocol. First, a process broadcasts only
its own updates, and second, this broadcast is done eagerly.

(In the previous protocol, the token accumulates and dis-
seminate the updates in a sequential way, following the log-
ical ring.) This eager update dissemination, described in
Figure 7, allows a process to be informed of new values
earlier than what is done by the protocol of Figure 5 (in this
figure, the UPDATES() messages “simulating” the token are
described in bold arrows).

For a process ��, the token passes from �� to ����
when, ����� being equal to �, �� executes ����� � ������
��� ���� (line 10). All the processes have the same view
of the order in which the token visits the processes. Conse-
quently, after it has received and processed an UPDATES()
message from ����, the process �� knows that it has the to-
ken: no explicit message is necessary to represent the token.

When �� has not the token (case ����� �� �), it waits
for an UPDATES() message from the next process allowed
to broadcast its updates (������). When it receives that mes-
sage (line 5), �� updates accordingly its local cache (as in
the previous protocol, lines 6-7). This constitutes an early
refreshing of its local cache with the new values provided
by ������ .

UPDATES() sent by ��

UPDATES() sent by ��

UPDATES() sent by ��

�
�

�
��

�

�

��
���

�
�
���

���
�

� �
�

�

��
���

�
�
�

�

Figure 7. Eager dissemination of the updates

It is important to notice that all the processes update
their local caches (with the new values coming from the
other processes) in the same order. This is an immediate
consequence of the fact that each process � � delivers the
UPDATES() messages in the order defined by the succes-
sive values of �����. As in the base token-based protocol,
��’s own updates are done at the time �� issues the corre-
sponding write operations and tracked with the boolean ar-
ray
�������. These boolean flags are used to maintain the
consistency of ��’s local cache each time it receives and pro-
cesses an UPDATES() message. More precisely, let us con-
sider �� that receives an UPDATES() message from �� . There
are two cases: (1) �� is executing a ���

� segment when it
receives an UPDATES() message from �� . In that case, ��
updates its local cache, but as the updates overwritten by � �

are discarded (line 7), the resulting behavior is exactly the
same as if all the updates included in the UPDATES() mes-
sage had been applied to ��’s local cache before���

� . (2)
�� is executing a �

� segment when it receives an UPDATES()
message from �� . Let���

� be the segment that terminated
just before �� sent the UPDATES() message. (Let us remind

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

that such a message is always sent after a ��
�
� segment and

before the ��
� segment that follows it.) Then, ��

� can be di-
vided in two sub-segments ���

� and ���� separated by the
processing of ��’s UPDATES() message. The base sequential
execution �� is now refined as follows: ���� appears before
��

�
� (as �� does not yet know the new values carried by the

UPDATES() message), while ���� appears after��
�
� (as, af-

ter it has processed the UPDATES() message, �� knows these
values).

Finally, it is possible, from an engineering point of view,
to adapt this protocol to particular environments. A simple
adaptation would consist in allowing some processes � � to
keep the token for some time when they have it (i.e., when
they are such that ����� � �). The benefit of such a possi-
bility depends on the read/write access pattern of the upper
layer application program.

4 Performance Evaluation
This section presents experiments that show the effi-

ciency of the proposed protocol. Its performance is also
compared with that of the popular sequential protocols pro-
posed by Attiya and Welch [7]. The protocol described in
Figure 6 is denoted CFJR in the following.

processes FD MM FFT

2 99.53% 99.93% 99.35%
4 99.94% 99.99% 99.95%
8 99.86% 99.99% 99.97%

Figure 8. Ratio of fast read operations per pro-
cess

Context of the experiment Note first that in our proto-
cols all memory operations are fast except some read oper-
ations. (Recall that a memory operation is fast if it can be
completed based only on the local state of the process that
issued it.) An operation ����� is blocking if, since the last
visit of the token, �� has not updated � (i.e., 	�
���
����
is false) while no other variable has been updated (i.e.,
�� ������ is true). Such a read operation blocks until
the process receives the token in the first protocol, or un-
til ����� � � in the second.

An analytic evaluation of how many read operations the
protocol allows to be are fast is not possible as it depends
on the read/write patterns of the upper layer distributed
application. Hence, we have used real benchmark imple-
mentations to estimate the number of fast reads and, more
generally, to evaluate the protocol performance. Our ex-
perimental study has considered the protocol of Figure 6.
We have implemented this protocol and three typical paral-
lel processing applications: finite differences (FD), matrix
multiplication (MM), and fast Fourier transform (FFT). We
have implemented FD and MM (as in [22]), and FFT (as
in [6]). The code, written in C, uses the sockets interface

DD MM
2 4 8 2 4 8

CFJR 2228.3 2360.0 1450.8 3760.0 3307.5 2813.3
AW-����� 14133.3 19100.0 22591.7 4816.7 10346.7 8718.3
AW-����� 12141.7 16400.0 21008.3 4348.3 9720.8 7512.5

FFT
2 4 8

CFJR 554.2 512.5 437.5
AW-����� 1371.7 14070.0 11304.2
AW-����� 1227.5 10215.8 9093.3

Figure 9. Execution time of DD, MM and FFT
(in seconds)

with UDP/IP for computer intercommunication�.

Experimental results on the protocol efficiency The re-
sults that follow concern the protocol described in Figure 6
(denoted CFJR, in short) running with the following appli-
cation programs: (1) FD with ���	
� ���
 elements, (2)
MM with ����� ���� matrices, and (3) FFT with 262144
coefficients. The executions have been done in an experi-
mental environment formed by a cluster of 2, 4 and 8 com-
puters connected with a network. Each computer is a PC
running Linux Red-Hat with a 1.5GHz AMD CPU, and
512Mbytes of RAM memory. The network is a switched,
full-duplex 1Gbps Ethernet. We have mapped one process
to each computer and have restricted our implementation to
a maximum of 100 memory operations carried in one sin-
gle message. Figure 8 shows the percentage of fast read
operations in each process for the previously described FD,
MM, and FFT application programs. As it can be observed,
almost all read operations are fast in each case.

Comparing the protocol with other protocols We com-
pare our protocol with two sequential consistency protocols
proposed by Attiya and Welch [7]. The comparison is done
with respect to two important performance measures: (1)
the time used to run an application (i.e., its execution time),
and (2) the number of messages sent through the network.
Attiya and Welch have proposed a sequential consistency
protocol where all read operations are fast while the write
operations are not fast, which we denote by AW-����� . They
have also proposed a sequential consistency protocol with
all write operations are fast while the read operations are
not fast, which we denote by AW-����� . We have executed
these protocols with the same set of parallel applications
(namely, FD, MM, and FFT), and in the same experimenta-
tion cluster.

Figure 9 presents the execution time (in seconds) of run-
ning FD, MM, and FFT using each sequential consistency
protocol. It can seen that, whatever the case, the execution

�The source code can be found at http://luna.dat.escet.urjc.es/˜ernes.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

DD
2 4 8

CFJR 2667/50 960/29 579/11
AW-����� 366361/190201 352321/264241 312321/308281
AW-����� 346613/170453 342284/254204 338782/294742

MM
2 4 8

CFJR 3004/63 396/0.4 208/1.5
AW-����� 110400/51520 110080/76800 109847/89367
AW-����� 110080/51200 106587/73307 108239/87590

FFT
2 4 8

CFJR 5206/3357 376/87 194/15
AW-����� 19922/4980 20970/8388 21068/9731
AW-����� 19546/4604 19766/7184 19559/8426

Figure 10. Total number (in thousands) of
messages+acks sent by each process

time provided by our protocol is much lower than with the
other protocols.

Figure 10 presents the total number of messages and ac-
knowledgments (in thousands) sent by each process when
executing FD, MM, and FFT. By acknowledgments we
mean all the messages sent to preserve the correct behavior
of the protocol but without containing write operations. We
can see that our protocol reduces in two orders of magnitude
the total number of messages sent by each process. This is
due to the fact that while our protocol pieces together sev-
eral write operations in a single message (in our implemen-
tation, up to 100), each other protocol issues one message
per write operation. Figure 10 also show that almost each
message contains write operations in our protocol. Differ-
ently, more than 50% of the messages are acknowledgments
in AW-����� and AW-����� .

5 Conclusion
This paper has presented a new sequential consistency

protocol. Differently from the previous protocols we are
aware of, this one has been derived from the very defini-
tion of the sequential consistency criterion. Due to its de-
sign principles, the protocol we have obtained is particularly
simple. It provides fast write operations: these operations
are always executed “locally” (i.e., without requiring any
form of global synchronization). Read operations can also
be fast when they are on a variable that has just been previ-
ously updated by the same process. An experimental study
has been done. It shows that the proposed protocol is partic-
ularly efficient for a large class of multiprocess programs.

References

[1] Adve S.V. and Garachorloo K., Shared Memory Models: a Tutorial.
IEEE Computer, 29(12):66-77, 1997.

[2] Afek Y., Brown G. and Merritt M., Lazy Caching. ACM Trans-
actions on Programming Languages and Systems, 15(1):182-205,
1993.

[3] Ahamad M., Hutto P.W., Neiger G., Burns J.E. and Kohli P.,
Causal memory: Definitions, Implementations and Programming.
Distributed Computing, 9:37-49, 1995.

[4] Ahamad M. and Kordale R., Scalable Consistency Protocols for
Distributed Services. IEEE Transactions on Parallel and Dis-
tributed Systems, 10(9):888-903, 1999.

[5] Ahamad M., Raynal M. and Thia-Kime G., An Adaptive Protocol
for Implementing Causally Consistent Distributed Services. Proc.
18th IEEE Int. Conf. on Distributed Computing Systems, IEEE Com-
puter Society Press, pp. 86-93, Amsterdam (Netherland), 1998.

[6] Akl S.G., The design and analysis of parallel algorithms. Prentice-
Hall, 1989.

[7] Attiya H. and Welch J.L., Sequential Consistency versus Lineariz-
ability. ACM Transactions on Computer Systems, 12(2):91-122,
1994.

[8] Bal H. and Tanenbaum A.S., ORCA: a Language for Parallel Pro-
gramming of Distributed Systems. IEEE Transactions on Software
Engineering, 18(3):190-205, 1992.

[9] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124-149, 1991.

[10] Herlihy M.P. and Wing J.L., Linearizability: a Correctness Condi-
tion for Concurrent Objects. ACM Transactions on Programming
Languages and Systems, 12(3):463-492, 1990.

[11] Jimenez E., Fernandez A. and Cholvi V., A parameterized Algo-
rithm that Implements Sequential, Causal and Cache Consistency.
Proc. 10th EUROMICRO Workshop on Parallel, Distributed and
Network-Based Processing (PDP’02), Islas Canarias (Spain), 2002.

[12] Lamport L., How to Make a Multiprocessor Computer that Cor-
rectly Executes Multiprocess Programs. IEEE Transactions on
Computers, C28(9):690-691, 1979.

[13] Li K. and Hudak P., Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7(4):321-359,
1989.

[14] Mattern F., Algorithms for Distributed Termination Detection. Dis-
tributed Computing, 2:161-175, 1987.

[15] Misra J., Axioms for Memory Access in Asynchronous Hardware
Systems. ACM Transactions on Programming Languages and Sys-
tems, 8(1):142-153, 1986.

[16] Mizuno M., Nielsen M.L. and Raynal M., An Optimistic Proto-
col for a Linearizable Distributed Shared Memory System. Parallel
Processing Letters, 6(2):265-278, 1996.

[17] Mizuno M., Raynal M. and Zhou J.Z., Sequential Consistency in
Distributed Systems. Proc. Int. Workshop on Theory and Practice
of Distributed Systems, Springer Verlag LNCS #938, pp. 224-241,
Dagsthul Castle (Germany), 1994.

[18] Raynal M., Token-Based Sequential Consistency. Int. Journal of
Computer Systems Science and Engineering, 17(6):359-366, 2002.

[19] Raynal M., Sequential Consistency as Lazy Linearizability. Proc.
14th ACM Symposium on Parallel Algorithms and Architectures
(SPAA’02), pp. 151-152, Winnipeg, 2002.

[20] Raynal M. and Schiper A., ¿From Causal Consistency to Sequential
Consistency in Shared Memory Systems. Proc. 15th Int. Conf. on
Foundations of Software Technology and Theoretical Computer Sci-
ence (FST&TCS’95), Springer-Verlag LNCS #1026, pp. 180-194,
Bangalore (India), 1995.

[21] Raynal M. and Schiper A., A Suite of Formal Definitions for Con-
sistency Criteria in Distributed Shared Memories. Proc. 9th Int.
IEEE Conference on Parallel and Distributed Computing Systems
(PDCS’96), IEEE Computer Society Press, pp. 125-131, Dijon
(France), 1996.

[22] Wilkinson B. and Allen M., Parallel Programming: Techniques and
Applications using Networked Workstations and Parallel Comput-
ers. Prentice-Hall, 1999.

Proceedings of the Third IEEE International Symposium on Network Computing and Applications (NCA’04)
0-7695-2242-4/04 $ 20.00 IEEE

	footer1:

