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Abstract. In this paper we start the study of generalizing the Adver-
sarial Queueing Theory (aqt) model towards a continuous scenario in
which the usually assumed synchronicity of the evolution is not required
anymore. We consider a model, named continuous AQT (caqt), in which
packets can have arbitrary lengths, and the network links may have dif-
ferent speeds (or bandwidths) and propagation delays. We show that,
in such a general model, having bounded queues implies bounded end-
to-end packet delays and vice versa. From the network point of view,
we show that networks with directed acyclic topologies are universally
stable, i.e., stable independently of the protocols and the traffic patterns
used in it, and that this even holds for traffic patterns that make links
to be fully loaded. Concerning packet scheduling protocols, we show that
the well-known lis, sis, ftg and nfs protocols remain universally stable
in our model. We also show that the caqt model is strictly stronger than
the aqt model by presenting scheduling policies that are unstable under
the former while they are universally stable under the latter.

1 Introduction

The Adversarial Queueing Theory (aqt) model [2,3] has been used in the latest
years to study the stability and performance of packet-switched networks. The
aqt model, (like other adversarial models) allows to analyze the system in a
worst-case scenario, since it replaces traditional stochastic arrival assumptions
in the traffic pattern by worst-case inputs. In this model, the arrival of packets to
the network (i.e., the traffic pattern) is controlled by an adversary that defines,
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for each packet, the place and time in which it joins the system and, additionally
it might decide the path it has to follow. In order to study non-trivial overloaded
situations, the adversary is restricted so that it can not overload any link (in an
amortized sense). Under these assumptions, we study the stability of network
systems (G,P ,A), which are represented by three elements: the network topology
G, the protocol P used for scheduling the packets at every link, and the adversary
A, which defines the traffic pattern. Stability is the property that at any time
the maximum number of packets present in the system is bounded by a constant
that may depend on system parameters.

The original aqt model assumes a synchronous behavior of the network,
that evolves in steps. In each step at most one packet crosses each link. Implic-
itly, this assumption means that all the packets have the same size and all the
links induce the same delay in each packet transmission. There have been gen-
eralizations of the aqt model to dynamic networks, like networks with failures
[4,5,6,7] and networks with links with different and possibly variable capacities
or delays [8,9,10]. These works still assume a synchronous network evolution,
to the point that, for instance in [8] all capacities and slow-downs must have
an integral value. To the best of our knowledge, the work included in [11] is the
only generalization of the aqt model considering packets of arbitrary lengths
(up to a maximum) or links of arbitrary (not integral) speeds and propagation
delays. In that model the adversary is more powerful than in the aqt model,
and a sufficient condition on the adversary injection rate for assuring network
stability is presented.

In this paper we propose a generalization of the aqt model allowing arbitrary
packet lengths, link speeds (bandwidths), and link propagation delays. The net-
work traffic flow is considered to be continuous in time. Since we do not restrict
a synchronous system evolution anymore, we call this model continuous aqt
(caqt). Note that all the results for the aqt model which are concerned with
instability, also hold for our caqt model, e.g., the instability of the fifo protocol
at any constant rate [12]. The caqt model is inspired in the traffic conditions
of the session oriented model proposed by Cruz [13], which is widely studied
in the communication networks literature. The synchronous assumptions of the
aqt model limit the capacity of the adversary as well. In the caqt model the
adversary is more powerful, and any instability result shown in the aqt model
can be reproduced in ours.

We show that several results from the aqt model still hold in the caqt
model. First, we show that having bounded queue size implies having bounded
packet end-to-end delays and vice versa. Then, we show that networks with a
directed acyclic graph (DAG) topology are always stable even if the links are fully
loaded. Concerning packet scheduling protocols, we show that the well-known
lis, sis, ftg and nfs protocols remain universally stable in our model. Finally,
we show that some protocols whose policies are based on criteria concerning the
length of the packets, the bandwidth of the links or their propagation delay, can
configure unstable systems.
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2 System Model

Like aqt, the caqt model represents a network as a finite directed graph G
in which the set of nodes V (G) represent the hosts, and the set of edges E(G)
represent the links between those hosts. Each link e ∈ E(G) in this graph has
associated a positive but not infinite transmission speed (a bandwidth), denoted
as Be. The bandwidth of a link establishes how many bits can be transmitted
in the link per second. Instead of considering the bandwidth as a synonym for
parallel transmission, we relate the bandwidth to the transmission velocity. We
consider that only one bit can be put in a link e ∈ E(G) at each time, and that
conceptually the sender puts the associated signal level to the corresponding bit
for 1/Be seconds for each bit. This means that a bit can be partially transmitted
or partially received at a given time. Let us denote as Bmin = mine∈E(G) Be and
as Bmax = maxe∈E(G) Be the minimum and maximum bandwidth, respectively,
of the edges in G.

Each link e ∈ E(G) has also associated a propagation delay, denoted here as
Pe, being Pe ≥ 0. This delay, measured in seconds, establishes how long it takes
for a signal (the start of a bit, for instance) to traverse the link. This parameter
has to do with the propagation speed of the changes in the signal that carry
the bits along the physical medium used for the transmission. We will denote
as Pmin = mine∈E(G) Pe and Pmax = maxe∈E(G) Pe the minimum and maximum
propagation delay, respectively, of the edges in G.

Like in the aqt model, we assume the existence of an adversary that defines
the traffic pattern of the system by choosing when and where to inject packets
into the system, and the path to be followed by each of them. We assume that a
packet path is edge-simple, in the sense that it does not contain the same edge
more than once (it can visit the same vertex several times, though). Again, we
restrict the adversary so that it can not trivially overload any link. To do so, we
also define two system-wide parameters: the injection rate r (with 0 < r ≤ 1),
and the burstiness b (with b ≥ 1). For every link e ∈ E(G), if we denote by Ne(I)
the total size (in bits) of the packets injected by the adversary in the interval I
whose path contains link e, it must be satisfied that

Ne(I) ≤ r|I|Be + b.

We call an adversary A that satisfies this restriction an (r, b)-adversary. The
injection rate r is sometimes expressed alternatively as (1 − ε), with ε ≥ 0.

Regarding packet injections, we assume that the adversary injects packets
instantaneously. From the above restriction, this implies that packets have a
maximum size of b bits. In general, we will use Lp to denote the length (in bits)
of a packet p, and Lmax = maxp Lp ≤ b to denote the maximum packet length.
Once a packet p starts being transmitted through a link e ∈ E(G), it will only
take Pe + Lp/Be units of time more until it crosses it completely.

Let us now look at the packet switching process. We assume that each link
has associated an output queue, where the packets that have to be sent across
the link are held. The still unsent portion of a packet that is being transmitted
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Fig. 1. Elements involved in the nodes and links of the network in the caqt model

is also held in this queue. In fact, if a bit has only been partially sent, we assume
that the still unsent portion of the bit still resides in this queue. A packet can
arrive to a node either by direct injection of the adversary or by traversing some
incoming link. In the latter case we assume that only full packets are dispatched
(moved to an output queue). Hence, we assume that each link has a reception
buffer in the receiving node where the portion of a partially received packet is
held. As soon as the very last bit of a packet is completely received, the packet is
dispatched instantaneously (by a packet dispatcher) to the corresponding output
queue (or removed, if this is the final node of the packet). Figure 1 shows these
network elements.

The definition of stability in the caqt model is analogous to the definitions
stated under other adversarial models.

Definition 1. Let G be a network with a bandwidth and a propagation delay
associated to each link, P be a scheduling policy, and A an (r, b)-adversary, with
0 < r ≤ 1 and b ≥ 1. The system (G,P ,A) is stable if, at every moment, the
total number of packets (or, equivalently, the total number of bits) in the system
is bounded by a value C, that can depend on the system parameters.

We also use common definitions of universal stability. We say that a schedul-
ing policy P is universally stable if the system (G,P ,A) is stable for each network
G and each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1. Similarly, we say that
a network G is universally stable if the system (G,P ,A) is stable for each greedy
scheduling policy1 P and each (r, b)-adversary A, with 0 < r < 1 and b ≥ 1.

Some additional notation is needed to describe the state of the queues and
the packets at a specific time step. We will use Qt(e) to denote the queue size
(in bits) of edge e ∈ E(G) at time t, and define Qmax(e) = maxt Qt(e). Similarly,

1 Greedy (or work-conserving) protocols are those forwarding a packet across a link e
whenever there is at least one packet waiting to traverse e. Three types of packets
may wait to traverse a link in a particular instant of time: the incoming packets
arriving from adjacent links, the packets injected directly into the link, and the
packets that could not be forwarded in previous steps. At each time step, only one
packet from those waiting is forwarded through the link; the rest are kept in a queue.
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we will use Rt(e) to denote the number of bits at time t that are crossing link e,
or already crossed it but are still in its reception buffer at the target node of e.
Then, we define Rmax(e) = maxt Rt(e). Observe that Rmax(e) < PeBe + Lmax

and is hence bounded. At(e) will denote the number of bits in the system that
require to cross e and still have to be transmitted across link e at time t. The
bits in Qt(e) are included in At(e), but those in Rt(e) are not.

3 General Results

We point out some general results that apply to every system (G,P ,A) in the
caqt model, independently of which is the network topology, the protocol used
and the traffic pattern.

3.1 Relation Between Maximum Queue Size and Maximum Delay

We show that for injection rate r < 1, having bounded queues is equivalent to
having bounded end-to-end packet delay. This generalizes a result from the aqt
model to the stronger caqt model.

Theorem 1. Let G be a network, P a protocol, and A an (r, b)-adversary with
r ≤ 1 and b ≥ 1. If the maximum end-to-end delay is bounded by D in the system
(G,P ,A), then the maximum queue size of an edge e is bounded by (D −Pe)Be.

Theorem 2. Let G be a network with m = |E(G)| links, P a greedy protocol, and
A an (r, b)-adversary, with r = 1 − ε < 1 and b ≥ 1. If the maximum queue size
is bounded by Q in the system (G,P ,A), then the end-to-end delay of a packet p
with path e1, ...., ed is bounded by

d∑

i=1

mQ +
∑

e∈E(G) Rmax(e) + b

εBei

+ Pei .

Then, the following corollary follows from the above two lemmas.

Corollary 1. Let G be a network, P a greedy protocol, and A an (r, b)-adversary,
with r < 1 and b ≥ 1. In the system (G,P ,A) the maximum end-to-end delay
experienced by any packet is bounded if and only if the maximum queue size is
bounded.

3.2 Initial Configurations

The moment in which a system (G,P ,A) starts its dynamics is usually denoted
as t0, and usually t0 = 0. The system can start either with no packet placed at
any element of the network or with some kind of initial configuration. Usually,
an initial configuration C0 consists of a set S of packets located in the output
queues of the network links. Trivially, any such initial configuration for a system
(G,P ,A) can be built from an empty initial configuration at time 0 if we allow
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a large enough burstiness. Thus, any system (G,P ,A) that starts with a non-
empty initial configuration as described can be simulated by another system
(G,P ,A′) that starts with an empty one.

Theorem 3. Let AS = maxe A0(e) be the maximum number of bits that have
to be transmitted across any given edge in the paths of the set S of packets. A
system (G,P ,A), where G is a network, P a greedy protocol, and A an (r, b)-
adversary with r ≤ 1 and b ≥ 1, that starts with an initial configuration C0

consisting of a set S of packets in the network output queues can be simulated
by a system (G,P ,A′) starting from an empty configuration, where A′ is an
(r, AS + b)-adversary.

Corollary 2. A policy or network that is universally stable for systems with
empty initial configurations is also universally stable for initial configurations in
which there are initially packets in the network output queues.

4 Stability of Networks

We focus first on the study of stability of networks. We show that networks with
a directed acyclic graph topology are universally stable, even when the traffic
pattern can fully load the links, i.e., even for the injection rate r = 1. Note
that this proof is not a direct adaptation of the one in [2] for the corresponding
analogous result in the aqt model.

Theorem 4. Let G be a directed acyclic graph, P any greedy protocol, and A
any (r, b)-adversary with r ≤ 1 and b ≥ 1. The system (G,P ,A) is stable.

Proof: Let us first denote with Te the node at the tail of link e (i.e., the node
that contains the output queue of e), for every edge e ∈ E(G). Let us also denote
with in(v) the set of incoming links to node v, for all v ∈ V (G). Let us define
the function Ψ on the edges of G as

Ψ(e) = Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

Ψ(e′).

If we call nodes without incoming links sources, we will show that At(e)+Rt(e) is
bounded by Ψ(e), for all e and all t ≥ 0, by induction on the maximum distance
of Te to a source (i.e., the length of the longest directed path from any source
to Te). Then, stability follows.

The base case of the induction is when Te is a source. In this case, At(e) =
Qt(e) and Ψ(e) = Q0(e)+b+Rmax(e). Let us fix a time t and consider two cases,
depending on whether in the interval [0, t] the output queue of e was empty at
any time. If it was never empty, then by the restriction on the adversary and the
fact that P is greedy we have that

Qt(e) ≤ Q0(e) + rtBe + b − tBe ≤ Q0(e) + b.
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Otherwise, if time t′ was the last time in interval [0, t] that the queue of e was
empty (i.e., Qt′(e) = 0), by the same facts,

Qt(e) ≤ Qt′(e) + r(t − t′)Be + b − (t − t′)Be ≤ b.

Clearly, in either case,

At(e) + Rt(e) ≤ Qt(e) + Rmax(e) ≤ Q0(e) + b + Rmax(e) = Ψ(e).

Now, let us assume that the maximum distance of Te to any source is
k > 0. Note that for any edge e′ ∈ in(Te), the maximum distance of Te′

to a source is at most k − 1. Then, by induction hypothesis, we assume that
(At(e′) + Rt(e′)) ≤ Ψ(e′) for all t ≥ 0 and all e′ ∈ in(Te). Note that At(e) ≤
Qt(e) +

∑
e′∈in(Te) (At(e′) + Rt(e′)). Again, we fix t and consider separately the

case when the output queue of e was never empty in the interval [0, t] and the
case when it was. In the first case we have that

At(e) ≤ Q0(e) + rtBe + b − tBe +
∑

e′∈in(Te)

(A0(e′) + R0(e′))

≤ Q0(e) + b +
∑

e′∈in(Te)

Ψ(e′).

In the second case, if time t′ was the last time in interval [0, t] that the queue of
e was empty (i.e., Qt′(e) = 0), we have that

At(e) ≤ Qt′(e) + r(t − t′)Be + b − (t − t′)Be +
∑

e′∈in(Te)

(At′(e′) + Rt′(e′))

≤ b +
∑

e′∈in(Te)

Ψ(e′).

In either case, we have that

At(e) + Rt(e) ≤ Q0(e) + b + Rmax(e) +
∑

e′∈in(Te)

Ψ(e′) = Ψ(e).

5 Stability of Queueing Policies

Stability can also be studied from the point of view of the protocols. Unstable
protocols in the aqt model are also unstable in the caqt model. In the following,
we show that the so-called lis, sis, ftg and nfs protocols are universally stable
in the caqt model, as they were in the aqt model [3].

5.1 Universal Stability of LIS

The lis (longest-in-system) protocol gives priority to the packet which was ear-
liest injected in the system. Independently of the network topology and the
(r, b)-adversary, any system (G, lis,A) is stable.
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Theorem 5. Let G be a network, A an (r, b)-adversary with r = 1− ε < 1, and
d the length of the longest simple directed path in G. Then all packets spend less
than ( b

Bmin
+ Pmax)/(rεd) time in the system (G, lis,A).

Corollary 3. Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1,
and d the length of the longest edge-simple directed path in G. Then, the system
(G, lis,A) is stable, and there are always less than ( b

Bmin
+ Pmax) ε−dBmax + b

bits trying to cross any edge e.

5.2 Universal Stability of SIS

The sis (shortest-in-system) protocol gives priority to the packet which was
injected the latest in the system. In the case of the sis protocol, bounding the
size of the packets recently injected is related to bounding the time that a packet
packet p requires to cross the edge e. The following lemma provides us with such
a bound:

Lemma 1. Let p be a packet that, at time t, is waiting in the queue of edge
e ∈ E(G). At that instant, let k − 1 be the total size in bits of the packets in
the system that also require e and that may have priority over p (i.e., that were
injected later in the system). Then p will start crossing e in at most (k + b)/(εBe)
units of time.

Observe that, once the packet p starts being transmitted through the link e,
it will only take Pe + Lp/Be units of time more until it crosses it completely.
Using the bound obtained in Lemma 1 in a recursive way, we can derive more
general bounds, thus proving the universal stability of the sis protocol.

Theorem 6. Let G be a network, A an (r, b)-adversary with r = 1 − ε < 1 and
b ≥ 1, and d the length of the longest edge-simple directed path in G. The system
(G,sis,A) is stable and, moreover:

– no queue ever contains kd + Lmax bits, and
– no packet spends more than (d(b + εLmax) +

∑d
i=1 ki)/(εBmin)+dPmax time

in the system.

where ki is defined according to the following recurrence:

ki =

{
b for i = 1
ki−1 + (1 − ε)

(
ki−1+b
εBmin

+ Lmax
Bmin

+ Pmax

)
Bmax + b for 1 < i ≤ d

5.3 Universal Stability of FTG

The ftg (farthest-to-go) protocol gives priority to the packet which still has to
traverse the longest path until reaching its destination. We show that ftg is
universally stable by using the fact that all the packets have to traverse at least
one edge, and that all the packet go at most d edges further.
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Theorem 7. Let G be a network with m = |E(G)| links, A an (r, b)-adversary
with r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path
in G. The system (G,ftg,A) is stable and:

– there are never more than k1 bits in the system,
– no queue ever contains more than k2 + b bits, and
– no packet spends more than dPmax +(d(b + εLmax) +

∑d
i=2 ki)/(εBmin) time

in the system.

where ki is defined according to the following recurrence:

ki =

{
0 for i > d
mki+1 + mb +

∑
e∈E(G)

Rmax(e) for 1 ≤ i ≤ d

5.4 Universal Stability of NFS

The nfs (nearest-from-source) protocol gives priority to the packet which is
closest to its origin, i.e., which has traversed the less portion of its whole path.
We show that nfs is universally stable by using a similar argument as the one
used for ftg; however the bounds will be provided now taking the length of the
longest path as a reference point.

Theorem 8. Let G be a network with m = |E(G)| links, A an (r, b)-adversary
with r < 1 and b ≥ 1, and d the length of the longest edge-simple directed path
in G. The system (G,nfs,A) is stable and:

– there are never more than kd bits in the system,
– no queue ever contains more than kd−1 + b bits, and
– no packet spends more than dPmax+(d(b + εLmax) +

∑d−1
i=1 ki)/(εBmin) time

in the system.

where ki is defined according to the following recurrence:

ki =

{
0 for i = 0
mki−1 + mb +

∑
e∈E(G)

Rmax(e) for 1 ≤ i ≤ d

6 Instability of Queueing Policies

In this section we introduce some new protocols that base their policies in
the main features of the caqt model, namely, the length of the packets, the
edge bandwidths and the edge propagation delays. We show that the caqt
model is strictly stronger than the aqt model by presenting scheduling poli-
cies that are unstable under the former while they are universally stable un-
der the latter.
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Fig. 2. Baseball network GB presented in [3]

6.1 Instability by Difference in Packet Length

Consider the lpl (longest-packet-length) protocol which gives priority to the
packet with longest length. Let us denote as lpl-lis the same protocol when ties
are broken according to the lis policy. Note that lpl-lis is universally stable
under the aqt model, since in this model all packets have the same length
and hence the policy simply becomes lis [3]. However, we show here that lpl-
lis is unstable in an extension of aqt with multiple packet lengths just by
considering two different packet lengths (1 and 2). For simplicity we will assume
that time advances in synchronous steps (as in aqt). Packets of length 2 take
2 steps to cross each link. In the lpl-lis protocol, these double packets will
have priority over the single packets. Note that this model is trivially included
in caqt. To show the instability of the lpl-lis protocol, we use the baseball
network presented in [3] (see Figure 2).

Theorem 9. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1}, and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. All the
edges in E(GB) have bandwidth 1 and null propagation delay. For r > 1/

√
2

there is an (r, b)-adversary A that makes the system (GB , lpl-lis,A) to be un-
stable only with packets of length 1 and 2.

6.2 Instability by Difference in Bandwidth

Consider the spl (slowest-previous-link) protocol which gives priority to the
packet whose last crossed link was the slowest, i.e., had the smallest bandwidth.
This policy aims to equilibrate the lost in transmission velocity suffered in previ-
ous links. Let us denote as spl-nfs this protocol, when ties are broken according
to the nfs protocol. Observe that the spl-nfs protocol is equivalent to nfs in
the aqt model and thus universally stable [3]. However, we show that in a sim-
ilar way as shown for the lpl-lis protocol, the spl-nfs protocol can be made
unstable in the caqt model.
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Theorem 10. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1} and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be
the graph obtained from GB whose set of nodes is V (G) = V (GB) ∪ {v′0, v′1, w′

0,
w′

1}, and whose set of edges is E(G) = E(GB) ∪ {(v′0, v0), (v′1, v1), (w′
0, w0),

(w′
1, w1)}. Those edges inciding to v0 and v1 have bandwidth 2, while the rest

have bandwidth 1. All the edges have null propagation delays. For r > 1/
√

2 there
is an (r, b)-adversary A that makes the system (G, spl-nfs,A) to be unstable.

6.3 Instability by Difference in Propagation Delays

Consider the spp (smallest-previous-propagation) protocol which gives priority to
the packet whose previously traversed edge had smallest propagation delay, and
combine it with nfs to break ties. Let us denote this protocol as spp-nfs. Observe
that the spp-nfs protocol is equivalent to nfs in the aqt model and thus univer-
sally stable [3]. However, we show with the spp-nfs protocol as example, that just
the fact of considering propagation delays can make a policy unstable in caqt.

Theorem 11. Let GB be the graph with nodes V (GB) = {v0, v1, w0, w1} and
edges E(GB) = {(v0, w0), (v1, w1), (w1, v0), (w1, v0), (w0, v1), (w0, v1)}. Let G be
the graph obtained from GB whose set of nodes is V (G) = V (GB)∪{v′0, v′1, w′

0, w
′
1},

and whose set of edges is E(G) = E(GB) ∪ {(v′0, v0), (v′1, v1), (w′
0, w0), (w′

1, w1)}.
Those edges inciding to v0 and v1 have propagation delay 1, while the rest have
null propagation delay. All the edges have unary bandwidth. For r > 1/

√
2 there

is an (r, b)-adversary A that makes the system (G, spp-nfs,A) to be unstable.

7 Conclusions and Open Questions

We consider a networking scenario in which packets can have arbitrary lengths,
and the network links may have different speeds and propagation delays. Taking
into account these features, we have presented a generalization of the well-known
Adversarial Queueing Theory (aqt) model which does not assume anymore syn-
chronicity in the evolution of the system, and makes it more appropriate for more
realistic continuous scenarios. We called it the caqt model.

We have shown that, in the caqt model having bounded queues is equivalent
to having bounded packet end-to-end delays. From the network point of view, we
show that networks with a directed acyclic topologies are universally stable even
when the traffic pattern fully loads the links. From the protocol point of view,
we have also shown that the well-known lis, sis, ftg and nfs protocols remain
universally stable in the caqt model. New protocols have also been proposed
which are universally stable in the aqt model but unstable in the caqt model.

Many interesting questions remain still open in the caqt model. More results
are needed concerning the stability of networks, starting from simple topologies
like the ring, to finally tackle the universal stability of networks. It would be of
interest to know the queue sizes to be expected (as is was studied in [3,14] for
the aqt model), as well as which conditions guarantee that all the packets are
actually delivered to destination (as it was studied in [15] for aqt).
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11. Echagüe, J., Cholvi, V., Fernández, A.: Universal stability results for low rate
adversaries in packet switched networks. IEEE Communication Letters 7 (2003)
578–580

12. Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrarily low rates
in the adversarial queueing model. SIAM Journal on Computing 34 (2004) 318–332

13. Cruz, R.: A calculus for network delay. Part I (network elements in isolation) and II
(network analysis). IEEE Transactions on Information Theory 37 (1991) 114–141

14. Weinard, M.: The necessity of timekeeping in adversarial queueing. In: 4th In-
ternational Workshop on Efficient and Experimental Algorithms. Volume 3503 of
Lecture Notes in Computer Science., Springer-Verlag (2005) 440–451

15. Rosén, A., Tsirkin, M.: On delivery times in packet networks under adversarial
traffic. In: 16th ACM Symposium on Parallel Algorithms and Architectures, ACM
Press (2004) 1–10


	Introduction
	System Model
	General Results
	Relation Between Maximum Queue Size and Maximum Delay
	Initial Configurations

	Stability of Networks
	Stability of Queueing Policies
	Universal Stability of LIS
	Universal Stability of SIS
	Universal Stability of FTG
	Universal Stability of NFS

	Instability of Queueing Policies
	Instability by Difference in Packet Length
	Instability by Difference in Bandwidth
	Instability by Difference in Propagation Delays

	Conclusions and Open Questions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




