
Information Processing Letters 100 (2006) 60–63

www.elsevier.com/locate/ipl

Implementing unreliable failure detectors
with unknown membership ✩

Ernesto Jiménez a,∗, Sergio Arévalo b, Antonio Fernández b

a EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain
b LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain

Received 15 July 2005; received in revised form 24 April 2006; accepted 9 May 2006

Available online 12 June 2006

Communicated by A.A. Bertossi

Keywords: Failure detectors; Crash failures; Membership; Fault tolerance
1. Introduction

Unreliable failure detectors [3] are useful devices
to solve several fundamental problems in fault-tolerant
distributed computing, like consensus or atomic broad-
cast. In their original work [3], Chandra and Toueg pro-
posed 8 different classes of unreliable failure detectors,
and showed that all of them can be used to solve consen-
sus in a crash-prone asynchronous system with reliable
links. All these detectors have at least a property called
Weak Completeness: eventually, every process that fails
is permanently suspected by some correct process. In a
follow up work with Hadzilacos [2], they proposed an-
other type of failure detector, Ω , which guarantees that
eventually all correct processes permanently choose the
same correct process as leader. They show in [2] that Ω

is the weakest detector that can be used for solving con-
sensus in this type of systems. When the membership is
known, an Ω failure detector trivially also implements a�S failure detector (�S is one of the 8 original classes).

✩ Partially supported by the Spanish MEC under grants TIN2005-
09198-C02-01, TIN2004-07474-C02-02, and TIN2004-07474-C02-
01, and the Comunidad de Madrid under grant S-0505/TIC/0285.

* Corresponding author.
E-mail address: ernes@eui.upm.es (E. Jiménez).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.05.009
A number of papers propose algorithms to imple-
ment these failure detectors. Most of the effort in these
papers has gone to reduce the level of reliability and
synchrony of the system. For instance, let us consider
systems with crash failures and whose links can be lossy
asynchronous (in which messages can be lost or arbi-
trarily delayed). Aguilera et al. [1] have proposed an
algorithm that implements Ω in these systems as long
as at least the outgoing links from some unknown cor-
rect process are eventually timely (in which, once the
link is stable, all messages are delivered within an un-
known time bound).

Our contributions. To our knowledge, all algorithms
proposed implementing failure detectors require every
process to know the identity of the rest of processes of
the system (the membership). In this paper we show that
this assumption is not trivial, since we show here that,
without it, no failure detector class with weak complete-
ness can be implemented, even in a fully synchronous
system with reliable links. Since the original 8 classes
proposed by Chandra and Toueg have at least weak
completeness, none of them can be implemented with-
out membership knowledge. Note that it is very com-
mon in today’s distributed systems (peer-to-peer, ad-hoc



E. Jiménez et al. / Information Processing Letters 100 (2006) 60–63 61
networks, etc.) to have partial or no knowledge of the
membership.

Surprisingly, we show that Ω can be implemented
without membership knowledge. This implies, for in-
stance, that an Ω failure detector cannot be transformed
into a �S detector anymore. The fact that Ω can be
implemented, while classical detector classes cannot, is
mainly caused by the different approaches taken. While
in Ω it is enough to know one alive process, in classical
detectors it is necessary to know every faulty process to
provide completeness.

Then, we present here an algorithm that implements
an Ω failure detector even if the membership is un-
known. Interestingly, our algorithm requires very weak
reliability and synchrony assumptions for correctness.1

2. Impossibility without membership knowledge

We show in this section that even in a synchronous
system, some knowledge of the system membership is
required to provide weak completeness. Furthermore,
the result holds even if the number of processes is
known.

Theorem 1. Let S be a synchronous system with reliable
links in which at least one process can crash. If there is
some process in S such that the rest of processes have
no knowledge whatsoever of its identity, there is no al-
gorithm that implements a failure detector with weak
completeness in S.

Proof. Let us assume there is an algorithm A that im-
plements a failure detector with weak completeness in
these systems. Let us consider first a system S0 with
a process q whose identity is unknown for the rest of
processes. Consider a run R0 of A in S0 in which q fails
at time 0 without sending any message (and hence it will
be eventually suspected). Let p be a process that is not
in system S0. Clearly, in R0, p cannot be in any of the
lists of suspected processes. Let us consider now a sys-
tem S1 obtained from S0 by replacing process q with
process p, whose identity is also unknown for the rest
of processes. Consider a run R1 of the algorithm A in
S1 in which process p fails at time 0 without sending
any message, and the rest of processes behave like in
R0. Note that this can be so because no process knows
the identity of p and q . Then, no process suspects p in
R1 and weak completeness is not achieved. �

1 In fact, from the results in [4], these assumptions are minimal in
systems whose links are either eventually timely or lossy asynchro-
nous.
3. Implementation of Ω without membership
knowledge

3.1. Definitions

We consider a system S composed by a finite set Π

of n processes. The process identifiers are totally or-
dered, but need not be consecutive. Furthermore, the
processes have no knowledge about Π whatsoever, and
in particular they have no knowledge of n. Processes
communicate only by sending and receiving messages.
To send messages they have a broadcasting primitive.
This primitive allows a process p to simultaneously
send the same message m to the rest of processes in the
system (e.g., like in Ethernet networks or IP-multicast).

A process can fail by permanently crashing. We say
that a process is correct if it does not fail, and we say
a process is crashed if it fails. We denote by correct
the set of correct processes. We consider that in sys-
tem S there may be any number of crashed processes,
and that this number is not known. Processes execute by
taking steps. We assume the existence of a lower bound
σ on the number of steps per unit of time taken by any
non-faulty process. For simplicity, we assume that each
line of our algorithm represents one step. Processes have
timers that accurately measure intervals of time.

We assume that every pair of processes is connected
by a pair of directed links (with opposite directions).
We consider that S has only two types of links: eventu-
ally timely and lossy asynchronous. In eventually timely
links, there is an unknown bound Δ on message delays
and an unknown (system-wide) global stabilization time
T , such that if a message is sent through any of these
links at a time t � T , then this message is received
by time t + Δ. In lossy asynchronous links, messages
can be lost or arbitrarily delayed. Every message sent
through a lossy asynchronous link may be lost, but every
message that is not lost is eventually delivered. We con-
sider that no link in S modifies its messages nor gener-
ates spontaneous messages. However, it may duplicate
messages (a finite number of times) or deliver them out
of order. For simplicity, we assume that messages are
unique, in the sense that we can determine whether a
message received is a duplicate of a previously received
message. One way to achieve this is, for example, to
consider that each message contains the sender process
identifier and a sequence number.

The following is the property required by our al-
gorithm to implement Ω2. Let us denote by G(S) the
directed graph, obtained from S, with the vertex set

2 Nicely, this property is minimal in this class of systems [4].



62 E. Jiménez et al. / Information Processing Letters 100 (2006) 60–63
init:
(1) mshipp ← {p}
(2) punishp ← {(0,p)}
(3) leaderp ← p

(4) start Tasks 1 and 2
Task 1:
(5) broadcast (p,punishp) every η time

Task 2:
(6) upon expiration of timerp(q) do
(7) Timeoutp[q] ← Timeoutp[q] + 1
(8) remove (·, q) from punishp

(9) broadcast (p,punishp)

(10) leaderp ← process in min{punishp}

(11) upon reception of message (q, setq): q �= p do
(12) if (message (q, setq) has not been received before) then
(13) broadcast (q, setq)

(14) if (q /∈ mshipp) then
(15) mshipp ← mshipp ∪ {q}
(16) create timerp(q) and Timeoutp[q]
(17) Timeoutp[q] ← η

(18) reset timerp(q) to Timeoutp[q]
(19) if (∃(v, q) ∈ punishp) then
(20) replace in punishp (v, q) by (max{v, v′}, q): (v′, q) ∈ setq
(21) else
(22) include in punishp (v′, q): (v′, q) ∈ setq
(23) if ((·,p) /∈ setq ) then
(24) replace in punishp (v,p) by (v + 1,p)

(25) leaderp ← process in min{punishp}

Fig. 1. Implementation of Ω in system S. The code is for process p.
correct and the set of eventually timely links that con-
nect processes in correct as edge set.

Property 1. There is some process p ∈ correct such
that every process q ∈ correct can be reached from p

in G(S).

In an Ω failure detector, each process chooses some
process in the system as leader. The detector must guar-
antee that all correct processes eventually agree on a
single correct process as leader. More formally, Ω fail-
ure detectors must satisfy the following property.

Property 2. There is a time after which every process
p ∈ correct permanently has the same process l ∈
correct as leader.

3.2. The Ω algorithm and its proof

Fig. 1 presents the algorithm that implements Ω

in system S. Processes send messages periodically to
show they are alive. These messages are re-broadcast to
attempt reaching all processes. Each process p main-
tains a set mshipp which contains all processes it cur-
rently knows (initially only itself). It also maintains a
set punishp of pairs (v, q), where q is a process that p

“believes” is alive, and v � 0 is roughly the number of
times processes have “suspected” q . Every message sent
by p contains this set punishp . A process p holds in a
variable leaderp its current leader, which is the process
q whose pair (v, q) in punishp has the smallest value v,
using the process id to break ties.

Since the algorithm proposed by Aguilera et al.
in [1] is the closest to the algorithm of Fig. 1, we
briefly compare them. In [1], each process p periodi-
cally and permanently broadcasts heartbeats to the rest
of processes of the system, and also sends accusations
to each process q from which it did not receive heart-
beats recently, even if p never received any message
from q . Processes choose as leader the least accused
alive process, choosing the process with smallest iden-
tifier to break ties. This algorithm does not work if p

does not know q even in a system with only these two
processes. To see this, assume q < p and consider an
execution in which all p’s heartbeats are received on
time by q and no heartbeat from q is received by p.
Clearly, p chooses itself as leader. Since no accusation
is sent (note that p does not know q and hence it can-
not send accusations to q), q uses process identifiers to
break ties and chooses itself as leader.

As we have previously mentioned, in Fig. 1 each
process p periodically and permanently broadcasts
heartbeats (line 5), which include the processes it con-
siders alive (those from which it received a heartbeat
recently). Then, q punishes itself every time it receives
a heartbeat whose list of alive processes does not con-
tain q (lines 23–24). A process chooses as leader the
least punished process among those it considers alive
(lines 25 and 10). Note that this algorithm works in the
above example in which the algorithm in [1] failed be-
cause every heartbeat from p received by q will make q

to punish itself. Hence, now q will correctly choose p

as leader.
The proof of correctness follows.

Lemma 1. For every process q /∈ correct, there is a time
after which no process p ∈ correct has a pair (·, q) in
punishp .

Proof (Sketch). Consider a time at which q has already
failed. Note first that eventually all messages sent by q

disappear from the system, because there can be only



E. Jiménez et al. / Information Processing Letters 100 (2006) 60–63 63
a finite number of duplicates of a message, messages
are not held forever in any link, messages are processed
at a minimum rate, and the same message is broadcast
at most once by each process. Then, either p never re-
ceived a message sent by q , and hence a pair (·, q) was
never included in punishp , or p eventually stops re-
ceiving messages from q . In the second case, the timer
timerp(q) will eventually expire, and the pair (·, q) is
permanently removed from punishp . �

We will concentrate now on correct processes only.
Observe in the algorithm that every process p ∈ correct
always holds a pair (·,p) in its set punishp . We will de-
note by Vp the largest value v in a pair (v,p) ever held
in punishp . We define the set B as the subset of correct
that contains every process p whose Vp is bounded. We
define the set R as the subset of correct that contains
every process p from which all correct processes can be
reached in G(S). Note that R �= ∅ by Property 1. For the
rest of the section we will assume that any time instant
t is larger than the stabilization time T . Note that, from
Property 1, a message sent at time t > T and (re-)broad-
cast by a process in R at time t ′ will reach all correct
processes by t ′ + n(Δ + 2/σ) time.

Lemma 2. ∅ �= R ⊆ B .

Proof (Sketch). Let p ∈ R. After time T a correct
process q receives new messages from p with inter-
vals of at most η + n(Δ + 2/σ) time. Then, eventually
timerq(p) never expires and (·,p) ∈ punishq perma-
nently. All messages sent by q will contain a pair (·,p).
This is true for all correct processes. Hence, there is a
time after which p will stop increasing its local value v

in the pair (v,p) ∈ punishp (line 24). �
Lemma 3. For every process p ∈ B , there is a time af-
ter which every process q ∈ correct permanently has
(Vp,p) in punishq .

Proof (Sketch). Let us consider that p /∈ R. Once p

has included (Vp,p) in punishp , every process s ∈ R

must receive (and rebroadcast) new messages from p

within bounded intervals. Otherwise, timers(p) would
expire, s would remove any pair (·,p) from punishs ,
and s would send a message with this set punishs .
This message would reach p, which would have to in-
crease (Vp + 1,p) in punishp (line 24). Then, inde-
pendently of whether p ∈ R, messages from p with
(Vp,p) are (re-)broadcast within bounded intervals by
some process in R. Hence, eventually every process
q ∈ correct receives the message, and includes/replaces
the pair (Vp,p) in punishq . �
We define Vmin = minp∈correct{Vp}.
Lemma 4. For every correct process p /∈ B , there is a
time after which no correct process q has a pair (v,p)

with v � Vmin in its set punishq .

Proof (Sketch). Consider the time t at which process
p inserts the pair (Vmin + 1,p) in its set punishp . All
messages sent by p before t eventually disappear from
the system, say at time t ′. If process q ∈ correct receives
after t ′ some message sent by p after t , it inserts a pair
(v,p) in punishq with v > Vmin. If q does not receive
after t ′ any such message, eventually punishq will not
contain a pair (·,p), either because it was not there at
time t ′ or because timer timerq(p) expired and the pair
was removed. �
Theorem 2. There is a process l ∈ correct and a time
after which every process p ∈ correct permanently has
leaderp = l.

Proof. The variable leaderp of process p always holds
the process q whose pair (v, q) is minimal in punishp .
From Lemma 1, there is a time after which only cor-
rect processes have pairs in punishp . Then, if we look
at the set B , Lemma 2 shows that B is not empty, and
Lemma 3 shows that for each s ∈ B , eventually punishp

will contain (Vs, s) forever. Finally, Lemma 4 shows
that for each correct process s /∈ B , there is a time af-
ter which no correct process q has a pair (v, s) with v �
Vmin in its set punishq . Hence, there is a time after which
leaderp permanently holds the process l ∈ correct such
that l = min{q ∈ B: Vq = Vmin}. �
Corollary 1. The algorithm of Fig. 1 implements an Ω

failure detector without knowledge of the membership
in any system S that satisfies Property 1.

References

[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On im-
plementing omega with weak reliability and synchrony assump-
tions, in: PODC 2003, July 2003, pp. 306–314.

[2] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure de-
tector for solving consensus, Journal of the ACM 43 (4) (1996)
685–722.

[3] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable
distributed systems, Journal of the ACM 43 (2) (1996) 225–
267.

[4] A. Fernández, E. Jiménez, S. Arévalo, Brief announcement: Min-
imal system conditions to implement unreliable failure detec-
tors, in: PODC 2005, Las Vegas, Nevada, July 2005. Full ver-
sion available at http://gsyc.escet.urjc.es/publicaciones/tr/RoSaC-
2005-3.pdf.


