
Using Random Walks to Find Resources in Unstructured Self-Organized P2P
Networks∗

Vicent Cholvi
Universitat Jaume I

12071, Castellón, Spain
Email: vcholvi@lsi.uji.es

Antonio Fernández, Luis López, Luis Rodero-Merino
LADyR, Universidad Rey Juan Carlos

28933, Móstoles, Spain
Email: {anto,llopez,lrodero}@gsyc.es

Abstract

In this paper we present on-going work on the use of ran-
dom walks as the basic mechanism to locate resources in
Peer-to-Peer (P2P) systems. In this work we combine ran-
dom walks with a self-organization of the overlay network,
which dynamically adapts the topology of the network to
the load of the system. We present the self-organization
techniques we have proposed, and show by empirical eval-
uation that in fact they lead to topologies in which random
walks perform very efficiently. We conclude by describing
our current and future lines of research to complete this
work.

1 Introduction

Peer-to-Peer (P2P) systems [2] are a new paradigm in
which any member (peer or node) of the system can both
offer and request resources (such as files, services, etc.).
This contrasts with the traditional client-server approach,
in which each participant has a well-defined (either server
or client) role. P2P systems are usually implemented with-
out centralized control, which leads to interesting prop-
erties like flexibility, scalability and fault-tolerance. The
nice properties of P2P systems, and the growing impact of
P2P-based systems on the Internet (e.g. for massive file-
sharing), has driven the research community to invest an
important amount of effort in attempts to improve the effi-
ciency of P2P systems.

One of the fundamental problems in a P2P system is the
efficient location of the resources requested by peers. P2P
systems can be mainly grouped into two classes by consid-
ering the techniques used for resource location:

• Structured Systems. These systems assign responsabil-
ity of each resource to specific peers. Then, directed
routing algorithms allow to locate a given resource by

∗This work was partially supported by the Comunidad de Madrid un-
der grant S-0505/TIC/0285 and the Spanish MEC under grants TSI2004-
02940, TIN2005-09198-C02-01, and TSI2006-07799.

directing the search to some peer responsible of the
resource.

• Unstructured Systems. These systems do not have
strict control on where (the information about) a re-
source is placed. Then, the search of a resource cannot
be directed to the appropriate peer, and mechanisms
like flooding or random walks have to be used to lo-
cate it.

Most structured systems are very efficient, since they are
able to find a resource in only O(log n) steps (where n is
the number of peers in the network). Additionally, they
do not suffer of false negatives (i.e., a resource present in
the system is always found). Unstructured systems, on the
other hand, usually adapt better to situations of high churn1,
and allow to perform searches by keywords or regular ex-
pressions (instead of exact matching) in a simpler way than
structured systems. A description and comparison of sev-
eral P2P systems of both classes can be found in [2].

Most unstructured P2P systems locate resources by
flooding part of the underlying overlay network. In the sim-
plest case, the location algorithm simply floods the network
up to a certain distance from the peer that started the search.
This leads to scalability problems (the network quickly sat-
urates as the number of searches increase) and may suf-
fer of false negatives (if the desired resource is beyond the
search range). An improvement of this technique is to se-
lect a set of super-peers among the peers (ideally, the peers
with higher computational and communication capacities).
Then, every peer provides at least one super-peer with in-
formation about the resources it offers, and resource loca-
tion is performed only among the super-peers, typically via
flooding. This approach reduces the scalability problems,
but increases the vulnerability of the system to targeted at-
tacks.

An alternative technique for resource location in un-
structured P2P systems is the use of random walks. A ran-
dom walk is a path in a network such that at each point in
the path the next link has been chosen uniformly at ran-

1Rate at which peers enter and leave the system.

1

dom from the outgoing edges of the current node. With
this technique, a peer that wants to find a resource sends a
search message that traverses a random walk in the overlay
network, until either the resource is found or the search is
dropped. Typically, a peer informs all its neighbors in the
network about the resources it holds2. Hence the resource
is found as soon as the random walk reaches a neighbor of
any peer holding it. Random walks introduce less load into
the network than flooding, but in general they need longer
paths (and hence more time) to find a resource. Addition-
ally, since it is difficult to predict in advance how long a
random walk can take to find a resource, there is no way to
know if a failed search is a false negative.

However, some studies [5, 8] have shown that random
walks are a promising technique for resource location, pro-
viding scalability. It is also known that the performance
of this technique strongly depends on the topology of the
overlay network [1, 7]. This has led us to start lines of work
for devising effective ways to improve the performance of
random walks. One of these lines, for instance, attempts to
improve the performance by adapting the topology of the
overlay network to the load of the system.

Related Work. There are other works that have proposed
to combine dynamic overlay topologies with random walks
for resource location. For instance, Lv et al. [9] have pro-
posed a distributed flow-control and topology-maintenance
algorithm, by which every node monitorizes the traffic ex-
changed with each of its neighbors. When some peer i re-
ceives too many search messages from some neighbor j, it
tells j to reconnect their common link to some other neigh-
bor k of i, which is chosen considering the spare capacities
of all neighbors of peer i.

A second relevant proposal is the system Gia, by
Chawathe et al. [3], which is a refinement of [9]. In Gia, ev-
ery peer periodically sends some amount of tokens to each
of its neighbors. A token represents a search message that
the corresponding neighbor can forward to the peer. The
more capacity some peer has, the more tokens it will send to
its neighbors. The distribution of tokens is not necessarily
even among neighbors, and depends on the neighbor’s ca-
pacity: the larger the neighbor’s capacity, the more tokens
it will receive. Peers implement a flow-control mechanism,
so if they start to receive too many search messages, they
reduce the token sending rate. At the same time, all peers
continuously run an adaptation algorithm, which is used to
converge to states in which peers send the same number of
tokens they receive.

It is interesting to note that in the two above proposals,
search messages do not follow pure random walks. Instead,
at each hop a search message is resent to the neighbor of
greatest degree. This decision is inspired by the work of
Adamic et al. [1], and follows the intuition that, if a peer
has greater degree, it also has a better knowledge of the

2This is usually termed one-hop replication.

resources in the system, and hence will be able to finish a
search with higher probability.

The line of research presented in this paper builds on
the work of Guimerá et al. [7], which characterizes the net-
work topologies that minimize the average time needed to
complete a search if messages follow a shortest path. They
assumed a homogeneous system3 and found out that, when
the system is not congested, the optimal topology is a star-
like structure (since central nodes know about all the re-
sources, all searches are completed in only one hop). On
the other end, when the load grows, the optimal topology is
a random-like one. Moreover, they showed by simulation
that the transition is very sharp. Their results are not con-
structive, since they do not describe how these topologies
can be obtained.

Results. Keeping the results of [7] in mind, our initial at-
tempts to improve the performance of random walks pro-
pose techniques to adapt the topology of the overlay net-
work. These techniques make the network evolve to a cen-
tralized star-like topology when the P2P system is under-
loaded, and evolve to a random-like topology as the load
increases. Unlike Gia, the techniques proposed will not
require that nodes maintain updated information of their
neighbors’ state, and can in fact lead to optimal centralized
topologies in lightly loaded systems.

Our first contribution has been a reconnection mecha-
nism that is able to achieve these goals without central co-
ordination. Unfortunately, the mechanism assumes knowl-
edge of the load in every node of the network. Then, we
have proposed a second algorithm which is able to converge
to the desired topologies in the extreme cases while remov-
ing the total knowledge requirement. This is achieved re-
placing the total knowledge by random samples obtained
with random walks. Finally, a third algorithm has been pro-
posed that is, additionally, able to properly deal with dy-
namic heterogeneous systems in which peers may have very
different processing capacities and upload bandwidth. This
algorithm has the desirable feature that it is very robust in
the presence of directed attacks.

Structure. The structure of the rest of the paper is as fol-
lows. In the next section we present the technique that al-
lows to adapt the topology if total knowledge of load levels
is available. Then, in Section 3 the algorithm that removes
this requirement is presented. Section 4 presents the algo-
rithm that properly deals with heterogeneous systems. Fi-
nally, in Section 5 future lines of work are presented.

2 Removing the Central Coordinator

As we said, Guimerá et al. showed that a centralized
overlay topology is the most appropriate when a system is

3All nodes have similar processing capacity.

2

lightly loaded and that a random-like is more convenient
when it is congested. However, applying these results to
real P2P systems is not direct. There are two main obstacles
to it. First, in their model search messages traverse a short-
est path to the peer holding the resource. This is clearly
not possible in an unstructured P2P systems, in which peers
have little knowledge of the overlay topology beyond their
own neighborhood. Second, and more importantly, with-
out centralized control it is not clear how to identify when
a P2P system switches between loaded and underloaded
states, and how to change its topology accordingly.

In [4] we have partially removed the second obstacle, by
proposing a reconnection mechanism that is able to adapt
the topology without centralized control. In our system, the
overlay network is formed as follows. Each node handles a
set of native connections. When some node i links one of
its native connections to some other node j, that connection
becomes a foreign connection for j. Thus, each node can
have both native and foreign connections, each one linking
it with other peers of the network. The proposed recon-
nection mechanism describes how a nodes can change its
native connections. To do so, it takes local decisions that
depend on the load of every peer in the system. From these
local decisions a global behavior emerges, that drives the
network to the intended topologies. Thanks to this recon-
nection mechanism, there is not need of a central coordina-
tor for the topology change.

These are the details of the reconnection mechanism. We
assume that the load `i of every peer i is known and that
there is also a known threshold τ that can be used to dis-
criminate whether a node is congested (i.e., node i is con-
gested iff `i ≥ τ). Every peer i is assigned either a weight
of wi = 1 if it is congested or a weight of wi = δ2

i if it
is not, where δi is the current degree of the peer. Finally,
every node i is assigned a probability pi proportional to its
weight, pi = wi/

∑
j wj . Then, a peer j chooses the peers

to connect its native connections randomly with probabili-
ties pi.

In a real P2P system this mechanism would be executed
periodically. It is shown in [4] that in the extreme cases
in which either none or all nodes are congested, the over-
lay network quickly converges to the desired corresponding
topology. See [4] for details.

Note that this reconnection mechanism still assumes
global knowledge, since all nodes know the load of the rest.
Additionally, the evaluation of the mechanism done in [4]
still assumes that messages follow shortest paths. Thus, we
still have to modify the reconnection mechanism proposed
in [4] to make it work when nodes only have local knowl-
edge and searches follow random walks.

3 Sampling with Random Walks

To remove the need of knowing the load of each peer in
order to use the reconnection algorithm, we have proposed

the following simple technique [10]. When the reconnec-
tion mechanism is run, peer i chooses its new native neigh-
bors only from a set of candidates Ci, instead of consider-
ing all the peers in the system. This set represents a random
sample of all the peers in the system. Then, the probabil-
ity of i choosing j is pi,j = wj/

∑
k∈Ci

wk if j ∈ Ci and
pi,j = 0 otherwise.

Each peer collects its set of candidates by sending a
special sampling message with a bounded TTL (maximum
number of hops) to traverse the network, following a ran-
dom walk. When the TTL expires, the list of nodes tra-
versed and their load is sent back to the source peer. The
peers in that list become the set of candidates. This way of
collecting candidates has two features: (1) it demands few
resources, and (2) with high probability nodes of high de-
gree (potentially the most interesting as candidates, as they
know much about the network) will be part of the set of
candidates, as it its very likely that they will be visited by
the random walk. The results of Gkantsidis et al. [6] show
that sampling with random walks provides a high degree of
randomness to the sample.

To evaluate this and the previous techniques in a real
system, we implemented a first version of a system that we
call DANTE4. DANTE is a P2P system whose peers run
the reconnection mechanism proposed. This mechanism is
triggered periodically at each node, and decides to which
other peers that node must connect. In DANTE the load of
a node is measured as the number of search messages re-
ceived by the node during some recent period of time. If
the load is greater than the threshold τ , the node is said to
be congested. As proposed, the system performs peer sam-
pling by using special search messages that follow a pure
random walk, bounded by a TTL mechanism. DANTE also
uses search messages following pure random walks for re-
source location. The implementation of DANTE has con-
firmed the applicability of the techniques proposed in a real
network, but also allowed us to detect some limitations of
the proposal.

To test the performance of this system, several experi-
ments were run in a small cluster of 7 PCs. Each exper-
iment consisted on a small network of 42 peers (6 peers
per PC). The system was homogenous, since all peers were
identical. Several values for the threshold τ were tested:
0, 10, 50, 100, 1000 and 10000. As expected, threshold
τ = 0 forced the network to form a random topology, and
the threshold τ = 10000 forced the network to form a star-
like topology. Each threshold was tested under different
loads. The loads were due to the nodes, which sent a cer-
tain amount of search messages (queries) per unit of time.
These amounts were of 2, 4, 6, 8, 10 and 12 queries per
minute. Each query looked for a uniformly chosen resource
held at only one node (no replication).

Some of the results obtained are shown in Fig. 1, where
it can be compared how the performance for each threshold

4From Dynamic Adaptable Network TopologiEs

3

 10

 100

 1000

 10000

 100000

 1e+06

 12 10 8 6 4 2 0

Av
er

ag
e

Se
ar

ch
 T

im
e

in
 M

illi
se

co
nd

s

Load (queries per minute and node)

Capacity Threshold 0
Capacity Threshold 10
Capacity Threshold 50

Capacity Threshold 100
Capacity Threshold 1000

Capacity Threshold 10000

Figure 1. Average time to complete a search
in DANTE.

evolved as the load was increased. As expected, the central-
ized networks (τ = 10000) perform better than the random
one (τ = 0) for low loads. Yet, for high loads, the central-
ized topology has the worst performance, while the random
topology gives the lowest search times. Besides, we see that
for middle thresholds the topology is adapted to the load, so
they tend to build centralized topologies for low loads and
random topologies for high loads.

While the results obtained seemed promising, they were
obtained in a very small system of homogeneous peers with
no churn. It was still an unsolved problem how to deal
with size, churn and heterogeneity. Additionally, the ex-
periments showed that it was difficult to find the right value
of the threshold τ for optimal performance.

4 Dealing with Heterogeneity

In an attempt to deal with some of the deficiencies of
the first version of DANTE, a second version of the system
has been proposed [11]. The main difference in this version
is the way the weights assigned to the different peers are
computed. As before, a sample of peers Ci is obtained by
each peer i using a random walk. However, the weight of a
peer j ∈ Ci is computed as

wi,j = δ
γi,j

j ,

where γi,j is computed as

γi,j = 2cjnorm(1− tjnorm).

Note that no threshold is used anymore. Instead, two new
magnitudes, cjnorm and tjnorm are used. The former is the nor-
malized processing capacity of node j, while the latter is the
normalized average time spent by a search message at node
j (processing time plus time in queue). The normalization
of cjnorm is computed as follows. Let cj be the capacity of

Table 1. Capacities and upload bandwidths
distribution for simulations

Capacity level Percentage
of nodes

Processing
capacity ci

Bandwidth bi

1x 20 % 0.1 0.01
10x 45 % 1 0.1
100x 30 % 10 1

1000x 4.9 % 100 10
10000x 0.1 % 1000 100

node j, and cmax = maxk∈Ci
{ck}. Then

cjnorm =
cj

cmax
.

Similarly, let tmax = maxk∈Ci
{tk} and tmin =

mink∈Ci
{tk}. Then,

tjnorm =
tj − tmin

tmax − tmin
,

It is easy to observe that the normalized magnitudes take
values in the interval [0, 1]. A value of cjnorm close to one
means that the node j has more processing capacity than
most others in Ci. Similarly, a small tjnorm implies that
queries spend less time in j that in other peers in Ci. All
this justifies the choices of γi,j and wi,j . From these values
the probabilities pi,j are defined as in the previous section

Simulation Results. To study this second version of
DANTE in a large-scale heterogeneous system, we have
implemented the corresponding algorithms and tested them
in a simulated system. The simulator developed allows to
set the capacity of each peer by two parameters: bandwidth
and processing capacity. Searching for a resource in the
lists of known resources of a node i takes a time propor-
tional to the number of resources checked m and the node’s
processing capacity ci, as tproc = m

ci
. The time to send a

message depends on the node’s bandwidth bi and the packet
size s, tsend = s

bi
. Processing and message transmission

are assumed to overlap. Nodes capacities and bandwidths
are assigned following the distribution presented in Table 1.
This distribution is derived from the bandwidth distribution
measured in Gnutella reported by Sariou et al. [12].

In the simulations each node starts a new search for a re-
source chosen uniformly at random periodically. The time
between searches, tbs, is a parameter of the simulation that
allows to set the load of the system. Each node holds 100
resources. All resources have the same popularity (no re-
source is more likely to be looked for than other). The repli-
cation rate r is another simulation parameter, that states the
ratio of nodes that hold each resource (in percent).

Nodes manage 10 native connections each. Reconnec-
tions are triggered every 30 seconds of virtual time. Nodes

4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

Av
er

ag
e

Se
ar

ch
 L

en
gt

h
in

 H
op

s

Virtual Time (Minutes)

Average Number of Hops r=0.01
Average Number of Hops r=0.05

Figure 2. Number of hops to complete a
search.

change 5 native connections at each reconnection. We as-
sume that there is an external service that provides peers,
at start-up time, with a list of some other nodes present in
the system. When some peer is started, it chooses its ini-
tial neighbors uniformly at random from the list provided
by that service. Hence, all experiments start with a ran-
dom topology. Similarly, if a native connection points to
some node that leaves the network (is attacked or deacti-
vated), that connection is redirected to another peer chosen
uniformly at random from a list obtained from the external
service. Finally, the node sampling messages use a TTL
of 30 while resource search messages use a TTL of 1000.
Both values were chosen empirically. The first one proved
to be enough to get a good sampling of the network, and the
second one allowed to achieve a high success rate.

Figure 2 presents the evolution of the number of hops
that are required to complete a search since the system is
started. These simulations have been run for 60 minutes of
virtual time with 10000 nodes, a value of tbs of one sec-
ond, and two levels of replication, r = 0.01 and r = 0.05.
Since the experiments start from a random topology and
the system is not fully loaded, it should converge to a cen-
tralized topology. This behavior can, in fact, be observed,
since the number of hops decreases rapidly as time passes,
until it is stabilized at 1 after some minutes (tens of recon-
nections). This means that the network has reached a cen-
tralized topology, and all searches are solved in just one
hop. Figure 3 shows how the topology evolution makes
the average search time to decrease in the same two simu-
lations. This figure shows that DANTE builds a very effi-
cient topology, in which searches are completed in very lit-
tle time (about 30 milliseconds). Additionally, simulations
that explore the behavior of DANTE under churn have been
presented in [11].

To conclude this section, we present Figures 4 and 5,
which show how the system behaves under a targeted at-
tack. Since at the simulated load levels the system con-

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 10 20 30 40 50 60

Av
er

ag
e

Se
ar

ch
 T

im
e

(M
illi

se
co

nd
s)

Virtual Time (Minutes)

Average Search Time for r=0.01
Average Search Time r=0.05

Figure 3. Time to complete a search.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90

Av
er

ag
e

Se
ar

ch
 L

en
gt

h
in

 H
op

s

Virtual Time (Minutes)

Average Number of Hops 1 query/5 seconds
Average Number of Hops 1 query/2.5 seconds

Figure 4. Number of hops to complete a
search in a system under attack.

verges to a centralized topology, the attack will remove the
central nodes of the topology. The simulations presented
here were run with 10000 nodes, and replication r = 0.01.
Two different loads were tested. Each simulation lasts for
90 minutes of virtual time. At minute 30, when the network
has moved to a starlike topology, an attack is performed: the
10 best connected nodes (central nodes) are forced to leave
the network. Those are also the 10 nodes with the greatest
capacities (see Table 1). 30 minutes later, those nodes are
back in the system.

Figure 4 shows how the average number of hops to find
resources decreases sharply in a few reconnections until it
reaches a value close to 1. At that moment the network
has a starlike topology. When the attack is performed at
minute 30, the remaining nodes redirect their connections
randomly, so a random topology appears again. From that
moment on, nodes will try to connect to the remaining peers
with highest capacity (in this case, nodes of the fourth Ca-
pacity Level at Table 1). The network does not become
centralized, since these nodes do not have enough capac-
ity to become central. Yet, highly connected nodes appear,

5

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

Av
er

ag
e

Se
ar

ch
 T

im
e

(M
illi

se
co

nd
s)

Virtual Time (Minutes)

Average Search Time 1 query/5 seconds
Average Search Time 1 query/2.5 seconds

Figure 5. Time to complete a search in a sys-
tem under attack.

so the average number of hops decreases sharply in a few
minutes. Finally, when the high capacity nodes are back,
the network evolves again to a starlike topology.

In Figure 5 we see how the attack affects the search com-
pletion times. As expected, those times increase to val-
ues close to those obtained at the beginning of the exper-
iment. Then, as nodes adapt their connections, the topol-
ogy is adapted again, lowering the average search time to
a fair value. Finally, when the 10 nodes attacked are back,
the search times gradually return to the values before the
attack.

We can conclude that DANTE can be temporarily af-
fected by well-targeted attacks. However, even in a scenario
where nodes that have become central are all successfully
attacked at the same time, and no other nodes of the same
capacity remain in the system, the network adapts again to
reach another efficient state. The system is never fully shut
down, because it is not dependant on any particular subset
of nodes.

5 Future Work

The results presented seem to indicate that the combina-
tion of random walks and self-organizing overlay networks
may lead to very efficient unstructured P2P systems. How-
ever, we believe that more work has to be invested to fully
understand the behavior of these systems and hence to be
able to fine tune them.

Among the problems we are currently studying, a very
important one related to our reconnection mechanisms is
when and how to reconnect. The reader possibly noticed
that from the first to the second version of DANTE we
moved form changing all the native connections at once
to change only half of them. That has given some stabil-
ity to the networks, which has proven to be beneficial. We
plan to explore other ways to do this reconnection. Re-
garding when to reconnect, we have only explored periodic

reconnections, but it is natural to ask whether a different
approach, like state-driven reconnections, could be more in-
teresting.

Another of our current lines of work is to identify the
right values for the different TTLs used. For that, we have
done an analysis of the average length of a random walk in a
network of given degree distribution. Hopefully we should
be able to use this analysis to tune the values of the TTLs
and, maybe, even the topology of the network.

Finally, we plan to explore alternatives to pure random
walks, like biased random walks (that, for instance, have
a preference for neighbors with high degree), or random
walks that try to avoid revisiting the same nodes again. We
have high hopes in these alternatives.

References

[1] L. A. Adamic, B. A. Huberman, R. M. Lukose, and A. R.
Puniyani. Search in power law networks. Physical Review
E, 64:46135–46143, October 2001.

[2] S. Androutsellis-Theotokis and D. Spinellis. A survey of
peer-to-peer content distribution technologies. ACM Com-
puting Surveys, 36(4):335–371, December 2004.

[3] Y. Chawathe, S. Ratnasamy, N. Lanham, and S. Shenker.
Making Gnutella-like P2P systems scalable. In SIGCOMM
2003, pages 407–418, Karlsruhe, Germany, August 2003.

[4] V. Cholvi, V. Laderas, L. López, and A. Fernández. Self-
adapting network topologies in congested scenarios. Physi-
cal Review E, 71(3):035103, 2005.

[5] G. H. L. Fletcher, H. A. Sheth, and K. Borner. Unstructured
peer-to-peer networks: Topological properties and search
performance. In AP2PC 2004, New York, New York, United
States, July 2004.

[6] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks
in peer-to-peer networks. In INFOCOM 2004, volume 1,
pages 120–130, Hong Kong, March 2004.

[7] R. Guimerà, A. Dı́az-Guilera, F. Vega-Redondo,
A. Cabrales, and A. Arenas. Optimal network topologies
for local search with congestion. Physical Review Letters,
89, November 2002.

[8] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Pro-
ceedings of the 16th international conference on Supercom-
puting, pages 84–95, New York, New York, United States,
June 2005.

[9] Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity
make Gnutella scalable? In Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 94–
103, Cambridge, United States, March 2002.

[10] L. Rodero-Merino, L. López, A. Fernández, and V. Cholvi.
Dante: A self-adapting peer-to-peer system. In AP2PC
2006. Springer-Verlag, 2006.

[11] L. Rodero-Merino, L. López, A. Fernández, and V. Cholvi.
A topology self-adaptation mechanism for efficient resource
location. In ISPA 2006, pages 660–671. Springer-Verlag,
2006.

[12] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A mea-
surement study of peer-to-peer file sharing systems. In
MMCN’02, volume 4673, pages 156–170, 2002.

6

