
Accepted Manuscript

On the Interconnection of Message Passing Systems

A. Álvarez, S. Arévalo, V. Cholvi, A. Fernández, E. Jiménez

PII: S0020-0190(07)00270-0
DOI: 10.1016/j.ipl.2007.09.006
Reference: IPL 3741

To appear in: Information Processing Letters

Received date: 13 March 2007
Revised date: 18 July 2007
Accepted date: 5 September 2007

Please cite this article as: A. Álvarez, S. Arévalo, V. Cholvi, A. Fernández, E. Jiménez, On the
Interconnection of Message Passing Systems, Information Processing Letters (2007), doi:
10.1016/j.ipl.2007.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ipl.2007.09.006


AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

On the Interconnection of Message Passing

Systems

A. Álvarez, S. Arévalo, V. Cholvi, A. Fernández and E. Jiménez

Abstract

One of the most important abstractions for designing distributed programs is the
broadcast facility. In this paper, we study the interconnection of distributed message
passing systems. We have shown that totally ordered systems cannot be properly
interconnected in any form. However, we have provided a simple protocol to properly
interconnect FIFO ordered systems.

1 Introduction

One of the most important abstrac-
tions for designing distributed pro-
grams is the broadcast facility, with
which a process sends a message to
all the processes in the system. Such
a facility provides one-to-all commu-
nication, and can be seen equivalent
to sending point-to-point messages
from the sender to the rest of pro-
cesses. However, by itself, the above
definition of broadcast does not im-

� A. Álvarez and E. Jiménez are with
the Polytechnic University of Madrid
(Spain). S. Arévalo and A. Fernández
are with the Universidad Rey Juan Car-
los (Spain). V. Cholvi is with the Uni-
versitat Jaume I (Spain).∗ Corresponding author: Vicent
Cholvi, Departamento de Lengua-
jes y Sistemas Informáticos, Uni-
versitat Jaume I, Campus de Riu
Sec, 12071 Castellón (Spain). Email:
vcholvi@uji.es

pose any ordering restriction. This
may lead to problems in its use since,
for instance, messages may not be
necessarily received in the order they
were sent, or different processes may
receive them in different order.

Then, typically, the above broadcast
semantics is completed with restric-
tions on the order messages are de-
livered. The most popular ordering
requirements imposed to broadcast
primitives are the FIFO, the totally,
and the causal orderings [1–8]. The
first one requires that all messages
sent by the same process are received
in the order they were sent. The sec-
ond one requires that all messages are
received in the same order, irrespec-
tive of the sender. The third one en-
forces the receiving order of messages
that are causally related [9].

In this paper, we study the intercon-
nection of distributed message pass-
ing systems. By this, we mean the
addition, to several existing message

Preprint submitted to Elsevier Science 18 September 2007



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

passing systems with a given ordering
requirement, of a simple interconnec-
tion system to obtain a single system
with the same ordering requirements
as the original ones. There are mainly
two reasons for interconnecting mes-
sage passing systems with new proto-
cols instead of using a single protocol
for the whole system:

• First, in this way we can intercon-
nect systems that are already run-
ning without changing them. They
can keep using their protocols at
their local level.

• Second, depending on the network
topology, it could be more efficient
to implement several systems and
interconnect them than having a
single large system. An example of
this would be a system that has to
be implemented on two local area
networks connected with a low-
speed point-to-point link. In a sin-
gle system with many popular pro-
tocols there would be a large num-
ber of messages crossing the point-
to-point link for the same broad-
cast. In this case, it would seem
appropriate to implement one sys-
tem in each of the local area net-
works, and use an interconnecting
protocol via the link to connect the
whole system. With the appropri-
ate interconnecting protocol, only
one message crosses the link for
each broadcast.

Some work has already been done re-
garding the interconnection of mes-
sage passing systems [10–12]. How-
ever, all of these papers have just fo-
cussed on causally ordered systems.

Here, we extend these previous works

to the case of systems that are ei-
ther totally or FIFO ordered. We
show that whereas totally ordered
systems cannot be interconnected in
the model of interconnection we con-
sider, in the case of FIFO ordered sys-
tems interconnection is always possi-
ble. In this latter situation, we give
a simple protocol to interconnect
fully general heterogeneous systems,
in contrast with the existing inter-
connecting protocols for causally or-
dered systems which are especially
designed for concrete architectures as
a mean of improving their perfor-
mance. At this point, we note that
since any causal system is also FIFO,
and taking into account that causal
ordered systems have been intercon-
nected in the past [10–12], this im-
plies that some particular FIFO sys-
tems (i.e., FIFO systems that are also
causal) have been previously inter-
connected. In turn, here we show that
any FIFO system, regardless if it is
causal or not, can be interconnected.
Finally, we would like to remark that
our aim here is not centered on hav-
ing a very efficient protocol, but on
proving that in fact it is possible to
interconnect FIFO systems.

The rest of the paper is organized
as follows. In Section 2, we intro-
duce our framework for the intercon-
nection of message passing systems.
In Section 3, we show the impossi-
bility of interconnecting totally or-
dered systems. In Section 4, we study
the interconnection of FIFO systems,
and show how to interconnect them.
Finally, in Section 5, we present some
concluding remarks.

2



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

application
process

application
process

application
process process

Network

application

Local
Broadcast
Service

Local
Broadcast

Service

Broadcast
Service

Fig. 1. System architecture.

2 Model and Definitions

From a physical point of view, we
consider distributed systems formed
by a set of nodes connected by a
communication network. The logi-
cal system we consider is formed
by processes(executed in the nodes
of the system) which interact by
exchanging messages among them
(using the communication network).
The interface between the processes
and the network has two types of
events [1]: by using bc-send i(m), pro-
cess i broadcasts the message m to
all processes of the system. Similarly,
by using bc-recv i(m, j), process i re-
ceives the message m from process j.
Figure 1 illustrates the above men-
tioned system architecture.

The basic broadcast service especi-
fication for n processes consists of
sequences of bc-send i and bc-recv i

events, 0 ≤ i ≤ n − 1. In these
sequences, each bc-recv i(m, j) event
is mapped to an earlier bc-send j(m)
event, every message received was
previously sent, and every message
that is sent is received once and only
once at each process. For simplicity,
we also assume that any given mes-
sage is sent at most once. This as-
sumption does not introduce any new
restriction, since it can be forced by
associating a (bounded) timestamp

with every send operation [13].

Following, we define totally ordered
andFIFOordered systems, according
to the ordering requirements of the
broadcast services they implement.

Definition 1 We say that a system
is totally ordered if for all messages
m1 and m2 and all processes pi and pj,
if m1 is received at pi before m2, then
m2 is not received at pj before m1.

Definition 2 We say that a system
is FIFO ordered if for all messages
m1 and m2 and all processes pi and pj,
if pi sends m1 before it sends m2, then
m2 is not received at pj before m1.

We consider systems in which each
message sent must be eventually re-
ceived in every process of the sys-
tem. This is a very natural property
(usually known as Liveness) which is
preserved by every system that we
have found in the literature. In our
terminology it means that for each
bc-send i(m) event, a bc-recv j(m, i)
event will eventually occur for every
process j in the system.

Now, we define what we understand
by properly interconnecting sev-
eral totally/FIFO systems. Roughly
speaking, it consists of interconnect-
ing these systems (without modify-
ing any of them) by using an inter-
connection system (denoted IS ), so
that the resulting system behaves as
a single one and is also totally/FIFO
ordered. Such an interconnection sys-
tem is formed by a set of intercon-
necting system processes (denoted IS
processes) that execute some dis-
tributed algorithm or protocol. Each

3



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Network

application
process

application
process

application
process

application
process

application
process process

application

Interconnection System

Network Network

Broadcast
Service

process
IS IS

process

Broadcast
Service

BroadcastLocal

Service

Local Local Local
Broadcast Broadcast Broadcast

Service Service Service

Fig. 2. Interconnection System.

of these processes is an application
process of some of the original sys-
tems, and hence receives all the mes-
sages broadcast in that system and
can itself broadcast new messages.
In particular, the only way a value
broadcasted by an application pro-
cess in some system can be received
by an application process in another
system is if the interconnecting pro-
cess of the latter system broadcasts
it. The interconnecting processes can
communicate among themselves via
message passing. However, they can-
not interfere with the protocol at
their local original message passing
system implementing the broadcast.
Figure 2 presents an example of an
IS interconnecting two systems.

3 Impossibility of Intercon-
necting Totally Ordered
Systems

In this section we show that totally
ordered systems cannot be properly
interconnected. To do so, we first
show that in a totally ordered system,
a message sent by a process pi cannot
be locally delivered (i.e., to pi itself)
in less time than the delay needed
to transfer the message to any other
process. Then, we use this result to
show, by contradiction, the impossi-

bility result.

Let us first consider a totally ordered
system S, and assume that local com-
putations take neglibible (zero) time.
Assume also that the delays of trans-
ferring messages between processes
are in the range [d′, d], being d′ and d
two nonnegative constants such that
d′ ≤ d. Let tlocal be the smallest delay
since a process sends a message until
the message is locally delivered. The
following result gives a lower bound
for tlocal.

Lemma 1 For any totally ordered
system S with at least two processes,
we have that tlocal ≥ d.

PROOF. Assume the claim is not
true and that messages are deliv-
ered locally in less than d time (i.e.,
tlocal < d). Consider a run in which
some process pi of the system sends a
message m1 at time 0, and that some
other process pj sends another mes-
sage m2 at the same time. Assume
that the delay of both messages is d.
Hence, m1 is delivered to pi before re-
ceiving m2, and m2 is delivered to pj

before receiving m1. Since both mes-
sages must be eventually delivered,
m1 and m2 will be received in dif-
ferent order in pi and in pj . Conse-
quently, by definition, the system is

4



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

not totally ordered, reaching a con-
tradiction. �

Now, by using the previous lemma,
we obtain the following result.

Theorem 1 Totally ordered systems
cannot be properly interconnected.

PROOF. Consider a protocol that
implements a totally ordered system
in a single node (i.e., a single ma-
chine) but with, maybe, multiple pro-
cesses. In this system, when a process
executes bc-send operation, the pro-
tocol immediately delivers the mes-
sages to all processes of the node (by
copying them into the processes re-
ceiving queues). This system has neg-
ligible time tlocal, but since d is also
negligible, the previous lemma holds.

Let us now assume the existence of a
protocol that properly interconnects
several totally ordered systems. By
definition, the resulting system must
be totally ordered. However, if we use
the above protocol to implement the
systems to interconnect, one in each
node, and the network connecting
the nodes has message delay d > 0,
Lemma 1 is violated, since tlocal =
0. Therefore, we reach a contradic-
tion. �

4 Interconnection of FIFO Or-
dered Systems

In this section we show that, con-
trary to what happens with totally

ordered systems, FIFO ordered sys-
tems can always be properly inter-
connected. First, we consider the case
when there are only two systems.
Later, we will consider the case of sev-
eral systems.

Let us denote each of the FIFO
ordered systems as Sk (with k ∈
{0, 1}). The interconnecting proto-
col consists of two processes, denoted
ispk (with k ∈ {0, 1}), that are part
of each of the two systems. These in-
terconnecting processes are only in
charge of the interconnecting proto-
col. It is worthwhile to remark that
each ispk is part of the system Sk and,
for that reason, can use the commu-
nication system implemented in Sk.
Note also that the introduction of
those processes does not require any
modification of the original systems.

We consider that the set of processes
of the resulting system ST includes
all the processes in S0 and S1 com-
bined, with the exception of isp0 and
isp1, which are only used to intercon-
nect S0 and S1.

Each ispk process executes two con-
current atomic tasks, Propagatek

out

and Propagatek
in (atomicity is

needed in order to avoid race con-
ditions). Propagatek

out transfers

messages issued in Sk to Sk (we use
k to denote 1 − k), and Propagatek

in

forwards within Sk the messages
transferred by Propagatek

out. Fig. 3
shows the implementation of the
Propagatek

in and Propagatek
out tasks.

It must be noted that the link be-
tween isp0 and isp1 needs to be FIFO
ordered. However, nothing has been

5



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Propagatek
out(m) :: task which is Propagatek

in(m) :: task which is

activated immediately after activated immediately after

bc-recv ispk(m, i) is executed message m is received from ispk

begin begin

if m was not received from ispk then bc-send ispk(m)

transfer m to ispk end

end

Fig. 3. The interconnecting protocol in ispk. Task Propagatek
out(m) is activated im-

mediately after message m is received in ispk. As a result, it transfers such a message
to ispk, but only if it was not received from ispk. This condition prevents messages
going back and forth between ispk and ispk. On its turn, task Propagatek

in(m) is
activated whenever the message m is received from the process ispk. As a result, it
issues a bc-send ispk(m) operation, thus propagating the message m to all processes
within Sk.

said about how to implement it. In
a practical case, this channel could
be implemented in a number of ways,
either by using shared memory or
by using message passing. A scheme
of how the interconnecting protocol
works is shown in Fig. 4.

The following theorem shows that
the system ST , obtained by connect-
ing any two FIFO ordered systems
S0 and S1 by using the above men-
tioned interconnecting protocol, is
also FIFO ordered.

Theorem 2 Any two FIFO ordered
systems can be properly intercon-
nected by using the protocol in Fig-
ure 3.

PROOF. By contradiction. As-
sume there are two messages, m1

and m2, sent in that order by, say,
process pi in system S0. Now, assume
they are received by, say, process pj

in system S1 in reverse order.

Since S1 is a FIFO ordered system,
m2 must have been sent by isp1 be-
fore m1. Therefore, since the two
systems are connected by a FIFO
ordered communication channel, we
have that m2 must have been sent
by isp0 before m1. This implies that,
since S0 is a FIFO ordered system
system, m2 must have been sent (by
pi) before m1. Thus, we reach a con-
tradiction. �

Now, in the following corollary, we
show that the same interconnecting
protocol can be used to properly in-
terconnect any number of FIFO or-
dered systems.

Corollary 1 Let S0, S1, ..., Sn−1 be
n FIFO ordered systems. They can be
properly interconnected by using the
protocol in Figure 3.

PROOF. We use induction on n
to show the result. Let ST denote

6



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

isp0

bc-recv isp1(m, i)

isp1

bc-send isp1 (m′)

S0 S1

Propagate0
in(m)

Propagate0
out(m

′) Propagate1
in(m′)

bc-recv isp0(m′, j)

transfer m to isp0

transfer m′ to isp1

bc-send isp0(m)
Propagate1

out(m)

Fig. 4. Scheme of the interconnecting protocol.

the resulting system. For n = 1 the
claim is clearly true, since ST = S0.
For n = 2 it is immediate from
Theorem 2. Now, assume that we
can obtain a FIFO ordered system
S ′ by properly interconnecting the
systems S0, S1, ..., Sn−2. Then, from
Theorem 2, we can properly intercon-
nect S ′ and Sn−1 to obtain a FIFO
ordered system ST . �

Performance. As it has been
pointed in the Introduction, the aim
of the proposed interconnecting pro-
tocol is not centered on efficiency, but
on the fact that it is possible to in-
terconnect FIFO systems. Anyhow,
here we compare the performance of
a system obtained using our inter-
connecting protocol with the perfor-
mance of a system that directly uses
a broadcast protocol connecting all
the processes. We assume that the
same broadcast protocol is used in
the global system of reference and
in each of the subsystems intercon-
nected with our interconnecting pro-
tocol.

First, observe that our interconnect-
ing protocol should not affect the re-

sponse time a process observes when
issuing a broadcast operation, since
its broadcast protocol is not affected
by the interconnection.

Regarding the network traffic, we as-
sume that the broadcast protocol
used generates one message per re-
ceiving process for each broadcast
operation. Then, in a global system
with n processes, each broadcast op-
eration generates n − 1 messages.
With our interconnection protocol
n + 1 messages are generated for two
subsystems, since we add two inter-
connecting processes, and one mes-
sage will be sent from one process to
the other. Generalizing these results
for m subsystems, the number of mes-
sages for the interconnected system
becomes n + m − 1. Clearly, as m
increases, this could generate bottle-
neck problems.

Finally, we consider the latency,
which is the time until a broadcast
value is visible in any other process.
For simplicity, we will discard here
local computation times at the in-
terconnecting processes. Then, if we
have m subsystems, a system running
the basic protocol has latency l, the
delay of a message between two inter-

7



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

connecting processes is d, and we in-
terconnect the systems in a star fash-
ion, the worst case latency is 3l + 2d.

5 Concluding Remarks

In this paper, we have studied the in-
terconnection of distributed message
passing systems that are either to-
tally ordered or FIFO ordered. We
have shown that totally ordered sys-
tems cannot be properly intercon-
nected in any form. However, we have
provided a simple protocol to prop-
erly interconnect FIFO ordered sys-
tems.

References

[1] H. Attiya, J. Welch, Distributed
Computing Fundamentals,
Simulations and Advanced Topics,
McGraw Hill, 1998.

[2] N. A. Lynch,
Distributed Algorithms, Morgan
Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[3] R. van Renesse, K. P. Birman,
S. Maffeis, Horus: a flexible group
communication system, Commun.
ACM 39 (4) (1996) 76–83.

[4] P. M. Melliar-Smith, L. E. Moser,
V. Agrawala, Broadcast protocols
for distributed systems, IEEE
Trans. Parallel Distrib. Syst. 1 (1)
(1990) 17–25.

[5] M. Raynal, A. Schiper, S. Toueg,
The causal ordering abstraction
and a simple way to implement it,

Inf. Process. Lett. 39 (6) (1991)
343–350.

[6] A. Schiper, K. Birman,
P. Stephenson, Lightweight causal
and atomic group multicast, ACM
Trans. Comput. Syst. 9 (3) (1991)
272–314.

[7] H. Garcia-
Molina, A. Spauster, Ordered and
reliable multicast communication,
ACM Trans. Comput. Syst. 9 (3)
(1991) 242–271.

[8] M. F. Kaashoek, A. S. Tanenbaum,
S. F. Hummel, An efficient reliable
broadcast protocol, SIGOPS Oper.
Syst. Rev. 23 (4) (1989) 5–19.

[9] L. Lamport, Time, clocks, and the
ordering of events in a distributed
system, Commun. ACM 21 (7)
(1978) 558–565.

[10] R. Baldoni,
R. Beraldi, R. Friedman, R. van
Renesse, The hierarchical daisy
architecture for causal delivery,
Distributed Systems Engineering
6 (2) (1999) 71–81.

[11] L. E. T. Rodrigues, P. Verissimo,
Causal separators for large-scale
multicast communication,
in: ICDCS ’95: Proceedings of the
15th International Conference on
Distributed Computing
Systems, IEEE Computer Society,
Washington, DC, USA, 1995, p. 83.

[12] N. Adly, M. Nagi,
Maintaining causal order in large
scale distributed systems using a
logical hierarchy, in: Proc. IASTED
Int. Conf. on Applied Informatics,
1995, pp. 214–219.

[13] S. Haldar, P. M. B. Vitányi,
Bounded concurrent
timestamp systems using vector

8



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

clocks, Journal of the ACM 49 (1)
(2002) 101–126.

9


