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Abstract

In this paper we generalize the Continuous Adversarial
Queuing Theory (CAQT) model [5] by considering the pos-
sibility that the router clocks in the network are not syn-
chronized. Clearly, this new extension to the model only af-
fects those scheduling policies that use some form of timing.
First, if all clocks run at the same speed, maintaining con-
stant differences, we show that all universally stable poli-
cies in CAQT that use the injection time and the remaining
path to schedule packets remain universally stable. These
policies include, for instance, Shortest in System (SIS) and
Longest in System (LIS). Then, if clock differences can vary
over time, but difference is bounded, we show the universal
stability of SIS and a family of policies related to LIS. The
bounds we obtain in this case depend on the maximum dif-
ference between clocks. We then present a new policy that
we call Longest in Queues (LIQ), which gives priority to
the packet that has been waiting the longest in edge queues.
This policy is universally stable and, if clocks maintain con-
stant differences, the bounds do not depend on them. To fin-
ish, we provide with simulation results that compare the be-
havior of some of these protocols in a network with stochas-
tic injection of packets.
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1. Introduction

Stability is a requirement in a packet switched network
in order to be able to provide some quality of service. Sta-
bility means that the amount of traffic that is being routed
in the network is always bounded. It is well known that an
appropriate scheduling of packets is fundamental in order to
guarantee stability [2]. A fundamental question is to iden-
tify scheduling policies that are able to guarantee stability,
and among these, policies that guarantee good quality of
service (e.g., latency).

The study of the capability of scheduling policies to
guarantee stability under worst-case situations has been
done with adversarial models [6, 9, 10, 2, 7]. In these mod-
els, the arrival of packets to the network is controlled by
an adversary which defines, for each packet, the instant and
node in the network where it is injected, and very often, its
path in the network. To avoid the overload of links in the
network, the number of packets that the adversary can in-
ject is bounded. As we said, the main objective of these
models is to explore the ability of scheduling policies at the
routers to maintain the system stable or provide good qual-
ity of service even in the worst conditions.

Adversarial models. In this general framework two main
adversarial models have been defined. In the Permanent
Session Model [9, 10, 7], also known as the(σ, ρ)-regulated
injection model, all the traffic in the network is grouped in
sessions, whose route and maximum packet injection rate
are defined by the adversary. The adversary is restricted on
the ratesσi that it can assign to sessions in the sense that
the total rate of the sessions that cross a link does not sat-
urate the link. Additionally, the adversary is in control of
the arrival of packets. The adversary always tries to create
instability or to increase the maximum latency experienced
by packets. There have been many works exploring this
model, and proposing stable policies with different guaran-
tees of quality of service (e.g., [9, 10, 11, 12, 7]). It is also



interesting to observe that, in this model, FIFO (or FCFS),
which is the most popular scheduling policy by far, can be
made unstable at any constant network load [1].

The Temporary Session Model, commonly known as the
Adversarial Queuing Theory (AQT) model [6, 2], relaxes
the restriction that packets are assigned to sessions. Thisre-
laxation is similar to allowing the adversary to dynamically
change the sessions over time. In this model, each packet is
injected with its own path and the only restriction on the ad-
versary is that it cannot overload any link, in an amortized
sense. The AQT model assumes that the network evolves
in steps, and in each step at most one packet crosses each
link. The Continuous AQT (CAQT) model, recently pre-
sented in [5], is an extension of the AQT model in which
packets can have arbitrary sizes, and links have different
bandwidths and propagation delays. This model is closer to
reality than AQT, and due to the fact that AQT is a partic-
ular case of CAQT, the instability results obtained for AQT
remain valid for CAQT. Additionally, it was shown in [5]
that many positive results under the AQT model also hold
under the CAQT model. The system model we consider in
this paper is strongly based on the CAQT model.

Time-based scheduling policies. From all the policies
that have been shown to be stable in all networks (which
we calluniversally stable) under the AQT and CAQT mod-
els, those that seem to provide the lowest end-to-end packet
delays are based on timing. In fact, it has been shown by
Weinard [15] that, for any policy in the family of Without-
Time-Stamping strategies, there aren-node under-loaded
networks in which the delays and queue sizes are2Ω(

√
n). A

policy of this family is assumed to know the network topol-
ogy, and it assigns the priority of a packet as a function of its
path and the number of edges it already crossed. This im-
plies that, in general, it is convenient to use some timing in-
formation for scheduling. Unfortunately, the simplest time-
based policies, can also suffer of large delays. For instance,
for Shortest in System (SIS), the policy that gives the high-
est priority to the newest packet in the network, there are
networks in which the delays and queue sizes are2Ω(

√
n)

[2]. Similarly, for Longest in System (LIS), the policy that
gives the highest priority to the oldest packet in the network,
there are networks with diameterd in which the delays and
queue sizes are2Ω(d) [4].

The good news are that time-based policies can in fact
provide low delay guarantees. For instance, in [2] it is
presented a randomized scheduling algorithm that guaran-
tees delays polynomial on the network parameters. This
algorithm basically uses a longest-in-system strategy with
random permutations. The deterministic scheduling algo-
rithm with polynomial delays presented in [3] uses a sim-
ilar approach. Additionally, there are simulation studies
[13] which show that LIS may in fact behave much bet-

ter in practice than one may expect from the lower bounds
mentioned above.

The Non Synchronized CAQT model. The above men-
tioned results for time-based scheduling policies are ob-
tained in network models in which it is implicitly assumed
that each node in the network has a local clock to provide
the time, and that all these clocks are synchronized and pro-
vide the same time. However, this latter assumption is not
realistic in practice, since the oscillation frequency of each
timer is different, what produces differentclock drifts. The
consequence of these drifts is that it is not unusual that dif-
ferent clocks provide different times. The differences be-
tween the clock times is what we callclock skews. In prac-
tice, in order to limit the effect of clock drifts, and to bound
the clock skews, there are mechanisms, like the Network
Time Protocol (NTP), that allow the resynchronization of
clocks.

In this paper we propose a model of adversary in which
clocks do not need to be synchronized. We call the new
modelNon Synchronized CAQT(NSCAQT), since it is ba-
sically the CAQT model with this additional generalization.
Under this model we will study the behavior of different
queue scheduling policies which depend on time and can
be affected both by clock skews and clock drifts. To study
these policies, we need to make assumptions on how they
use the local clocks. For instance, for LIS and SIS we will
assume that packets are assigned the local clock value of
their injection node at their injection time, value that they
carry with them and is used for scheduling.

In this paper we will study two main variations of the
NSCAQT model. In the first one we assume that the sys-
tem has clock skews but no clock has drifts. Hence, in this
model clocks do not have the same time, but their time dif-
ferences remain constant. We call this theNSCAQT model
with constant skews.The second model we will study is
a model in which skews can vary over time, but there is
a bound on the maximum difference between the time of
the clocks. We call this model theNSCAQT model with
bounded skews, and is very suited to model a network in
which a protocol like NTP is used to periodically resyn-
chronize all the clocks. A third natural model which we do
not explore here is one in which clock drifts are present and
no resynchronization mechanism guarantees that the skews
are bounded. This model is left for future study.

Contributions. The main contribution of this work is the
detailed definition of a model in which clocks need not be
synchronized. We have not found a model that considers
this possibility in any previous adversarial model. Then,
the first result we provide is on the NSCAQT model with
constant skews. We study under this model scheduling poli-
cies that assign priorities to packets based on their injection



times and their remaining paths. For these policies we will
show how the NSCAQT system can be transformed into a
CAQT system by changing the topology of the network and
the adversary. As a consequence, we conclude that any such
policy that is universally stable under CAQT is also univer-
sally stable under NSCAQT with constant skews.1

We then explore universal stability under the NSCAQT
model with bounded skews. In this model, we prove the
universal stability of the SIS policy. We also define a family
of policies, that include LIS as a particular case, and show
that all the policies in the family are universally stable in
this model as well. We call this family of policiesLongest
in System considering Path(LISP). Policies from the LISP
family assign packet priorities depending on both the injec-
tion time and the number of edges already traversed by the
packet.

Unfortunately, for the universally stable policies that we
identified with the previously mentioned results, all the up-
per bounds on delays and queue sizes that we could prove
depend on the clock skews. In fact, in several cases it can
be easily shown that these parameters become larger as the
skews grow. Then, the question is whether there are policies
whose performance does not depend on the clock skews.
We introduce a new policy,Longest in Queues(LIQ), which
gives priority to the packet that has been waiting in queues
the longest. We show that this policy is universally stable
in the NSCAQT model with bounded skews. More interest-
ingly, we show that in the NSCAQT model with constant
skews this policy has an upper bound on the end-to-end de-
lay that does not depend on the skews and is close to that of
LIS in CAQT.

Finally, we present some simulations which try to shed
some light on the behavior of LIS, SIS, and LIQ in a net-
work with stochastic arrival patterns, instead of adversarial,
in the NSCAQT model with constant skews. The results
show that, as expected by analysis, LIQ is not affected by
the clock skews, and presents the best performance from
among the three policies.

Structure. The structure of the rest of the paper is the fol-
lowing. In Section 2 we define the NSCAQT model in de-
tail and introduce some notation to be used on the paper. In
Section 3 we study stability under the NSCAQT model with
constant skews. In Section 4 we study SIS and the policies
in LISP under the NSCAQT model with bounded skews. In
Section 5 we explore the performance of LIQ under both
NSCAQT models. In Section 6 we present the simulations
that have been done. Finally, in Section 7 we present some
conclusions.

1Note that due to space limitations several proofs have been omitted
and can be found in [8]

2. System model

Like most previous adversarial network models, the
NSCAQT system model has three major elements: an un-
derlying networkG, a scheduling policy usedP , and an ad-
versaryA. With these elements, the evolution of the system
can be seen as a game between the adversary, which injects
packets in the network trying to create instability, and the
scheduling policy, that decides which packets move along
their paths in the network, trying to prevent instability. The
model of system considered in this paper is a direct exten-
sion of that presented in [5].

The network. In this model a network is modeled by a
directed graphG, formed by a set of nodesV (G), repre-
senting the hosts and routers, and a set of edgesE(G), rep-
resenting links between the nodes. Each linke of the net-
work has associated a positive finite bandwidthBe, which
determines the transmission speed of the link, and a fi-
nite propagation delayPe ≥ 0. We use a specific nota-
tion for the largest propagation delay and smallest band-
width as follows: Pmax = maxe∈E(G){Pe} andBmin =
mine∈E(G){Be}. (SinceG is finite, these values are well
defined.)

The bounded adversary. In a system with networkG,
the adversaryA defines the traffic pattern, continuously
deciding which packets are injected. Additionally, for
each packetp, the adversary chooses the moment of in-
jectionT0(p), the source nodev0(p), the destination node
vdp

(p), and the path the packet has to traverseΠ(p) =
(e0(p), e1(p), ..., edp−1(p)). (When clear from the context,
we may omit the packetp from the notation.) Notice that
dp represents the length of the path packetp has to traverse.
We assume that a packet path is edge-simple, i.e. it does
not contain the same edge more than once, although it can
visit the same node several times2. We denote bydmax the
length of the longest path of a packet, which is clearly open
bounded by the length of the longest edge-simple path in
the network.

Although the adversary controls the traffic arrival, it is
restricted on the load that it can inject to the system. We
assume that the injection of a packet is instantaneous. Then,
if Ne(I) represents the number of bits of the packets which
want to cross edgee injected byA during an intervalI, it
must satisfy that

Ne(I) ≤ r|I|Be + b = (1 − ε)|I|Be + b (1)

2This assumption does not decrease the generality of the model in terms
of universal stability of policies, since it is known that a system in which
packets may traverse the same edge several times can be simulated by an-
other system with only edge-simple paths [1].



for every edgee and for every time intervalI. We denote
by r, 0 < r ≤ 1, the long term rate (load) the adversary can
impose on the system. For convenience we sometimes use
the notationr = 1 − ε, for ε ≥ 0. The parameterb, b ≥ 1,
is the burstiness allowed to the adversary injections, which
is the excess of bits allowed to arrive at any time during the
complete game. An adversary that satisfies this condition is
called an(r, b)-adversary.

Packets, queues, and buffers. Packets are sequences of
bits of possibly different sizes. We denote byLp the size
in bits of a packetp and byLmax the maximum size of a
packet. Because of the above restriction (1) on the adver-
sary and the assumption of instantaneous injection of pack-
ets, it can be easily observed thatLmax ≤ b. Note thatb is
also an upper bound on the number of packets that the ad-
versary can inject instantaneously (which is achieved in the
improbable case that all packets have size 1).

Packets in the system follow their path traversing one
edge after the other toward their destination. As explained
in [5], in every node in the network there is a reception
buffer for each edge entering the node and an output queue
for each edge leaving the node. The output queue of an edge
has unbounded capacity and holds the packets that are ready
to cross this edge. The scheduling policy of the edge’s out-
put queue chooses the next packet to cross the edge from
those in this output queue. The reception buffer is used to
store the received portion of a packet until it has been com-
pletely received. Then, the packet is placed instantaneously
by a dispatcher in the corresponding output queue or it dis-
appears from the system if it already reached its destination.

Note that once a packetp starts to cross edgee, it will
spendLp

Be
+ Pe units of time to completely cross it. As pa-

rameter of the network we have the greatest amount of time
that a packet can spend crossing an edge, denotedDmax,

and defined asDmax = maxe∈E(G)

{

Lmax

Be
+ Pe

}

≤
b

Bmin

+ Pmax.

Clocks. As we said, the main difference between the
NSCAQT model we propose and previous models [6, 7, 2,
5] is that we consider here the impact of clocks not being
synchronized on the performance. In order to make the
model as general as possible, we assume that the output
queue of each edge has its own internal clock, callededge
clock(this is clearly more general than assuming one clock
per node). Additionally, we assume there is an external ref-
erence clock which is always on time. We refer to this clock
as thereal clockand we say that it provides thereal time.
We assume that the adversary has access to both the edge
clocks and the real clock, while the scheduling policy at a
given edge has only access to the clock of that edge.

The difference between the real clock and the edge clock

of e at real timet is what we call theclock skewof e’s edge
clock at timet, and is denoted byφe(t). Then, ifte denotes
the value of the edge clock ofe at real timet, we havete =
t − φe(t). If this value changes over time, we say that the
edge clock has adrift. If an edge clock has no drift we omit
the time and denote its skew byφe. Note that, at any given
time, the skew of an edge clock can be positive or negative.
However, for convenience we assume that these skews are
all non-negative if all edge-clock skews are lower bounded.
We can do this freely since the real clock is not available to
the scheduling policies and does not interfere in the relation
between edge clocks.

We denote byTi(p), 0 ≤ i < dp, the real time at
which a packetp arrives to the output queue of the edge
ei(p). Due to clock skews, according to edgeei(p)’s clock,
the instant when packetp arrives to the output queue is
Ti(p) − φei(p)(Ti(p)). Additionally, we denote byTdp

(p)
the time at whichp is completely received at its destination
and leaves the system.

Scheduling policies. As we said above, the scheduling
policy is in charge of deciding, whenever a linke is avail-
able, which packet from those in the output queue ofe must
be sent next acrosse. In this paper we only consider dis-
tributed work-conserving time-based scheduling policies.
We say that policies are distributed if they do not use the
state (and in particular the clock) of other edges to make
scheduling decisions. Policies are work-conserving (also
called greedy) if they always send a packet across the link
as long as the edge’s output queue is not empty. Finally,
we only consider time-based policies, which are policies
that use the edge clocks for scheduling. Note that policies
that are not time-based are not affected by clock skews and
drifts.

We will only consider in this work systems in which
all the queues use the same scheduling policy. The study
of systems under the NSCAQT model in which different
queues may use different scheduling policies is left for fu-
ture work.

Two of the most studied distributed work-conserving
time-based scheduling policies are Longest in System (LIS)
and Shortest in System (SIS). The LIS policy gives the high-
est priority to the packet that has been in the system for the
longest time, while the SIS policy gives the highest prior-
ity to the packet that has been in the system for the shortest
time. These definitions do not clearly show the use these
policies make of the edge clocks. For that, we need to look
at the natural implementation of these policies: upon arrival
of a packetp into the system, it is assigned a timestamp,
TS (p), whichp carries with it. Then, the LIS and SIS poli-
cies only compare the timestamps of the packets to decide
which to schedule next. The edge scheduler in LIS gives
the highest priority to the packet with the smallest times-



tamp, while in SIS it gives the highest priority to the packet
with the largest timestamp. Note that when clocks are not
synchronized, these timestamps are not accurate, since the
timestamp for a packetp isTS (p) = T0(p)−φe0(p)(T0(p)).
These two policies have been proved to be universally stable
in [5] for the CAQT model, whereφe = 0 for all e ∈ E(G).

In addition to these two well-known policies, we will
study a family of policies derived from LIS, that we call
Longest in System considering Path (LISP). In the policies
of this family, packets carry their timestamp and the length
of the traversed path, so that at its edgeei(p), packetp is as-
signed a priority label of the formPL(p, i) = TS (p)+f(i),
wheref(i) is a function which assigns a real number to each
i ∈ {0, 1, . . . , dmax − 1}, beingi the number of crossed
edges. A policyPf is in LISP if at each queue it gives
the highest priority to the packetp with the smallest value
PL(p, i). Notice that whenf(i) = 0 for all i, Pf is equiva-
lent to LIS. Since the functionf is defined over the finite set
of number of edges crossed by a packet, it has a maximum
and a minimum values, that we denote byfmax andfmin,
respectively.

Finally, we will consider a new policy named Longest
in Queues (LIQ). In this policy the highest priority is as-
signed to the packet that has been waiting the longest in all
the output queues it has visited. In our model NSCAQT, in
which clocks are not synchronized, we assume that the time
in queues is measured locally at each output queue. The
time a packetp waits at the edgee’s queue is the difference
between the value of the edge clock when the packet arrives
and the value when it starts being transmitted, or the current
value of the edge clock if it is still waiting. The time used
to schedulep is the sum of these waiting times in all the
visited queues.

System stability. To study stability and performance in
packet switching networks, we introduce the concept of a
(G,P ,A) system to represent the game played between an
adversaryA and the packet scheduling policyP over the
networkG. In the NSCAQT model, a system(G,P ,A) is
stable if the maximum number of packets (or bits) present
in the system is bounded at any time by a constant that may
depend on system parameters: the network, the adversary
or the policy. A policyP is universally stableif the system
(G,P ,A) is stable on every networkG and against every
(r, b)-adversaryA with r < 1 andb ≥ 1.

3. Stability of policies for constant clock skews

In this section we study the case in which all the edge
clocks have zero drift, so thatφe is constant. This frame-
work allows to assure the stability in a non synchronized
system if there is stability in a synchronized system for

many policies, in particular for those policies that only de-
pend on the injection time and the remaining path of the
packets.

We present a proof by transformation of this case.
We start from a(G,P ,A) system with non synchronized
clocks, whereA is an (r, b)-adversary,r ≤ 1. Then, we
vary the networkG and the adversaryA to obtain a synchro-
nized system(G′,P ,A′), whereA′ is an(r, b′)-adversary,
so that if(G′,P ,A′) is stable, then(G,P ,A) is also stable.
The details of the proof can be found in [8].

Theorem 1 [8] Let (G′,P ,A′) be the synchronized system
in the CAQT model obtained from the non synchronized
system(G,P ,A) through the above process. LetP be a
scheduling policy which considers only the time of injection
of the packets and the paths that the packets still have to
traverse. Then,(G,P ,A) is stable if and only if(G′,P ,A′)
is stable.

Corollary 1 The scheduling policies that are universally
stable in CAQT and only consider the times of injection
and the paths that the packets still have to traverse are uni-
versally stable in the NSCAQT model with constant clock
skews.

4. Stability of policies for bounded clock skews

In this section we will study the case in which clocks
may experience drifts. Hence, we assume here that the
clock skews are not necessarily constant. However, the
maximum difference between real time and any edge clock
is bounded. As we said, this model fits naturally with a sys-
tem in which edge clocks are periodically resynchronized,
for instance via NTP.

In this section we will again adapt the real time reference
clock, in order to simplify the analysis and the presentation.
Like in the previous section, we will assume that all clock
skews are non-negative, i.e., for any edgee and any timet,
φe(t) ≥ 0. Additionally, since we assume that skews are
bounded, we can safely defineφmax = maxe,t{φe(t)}.

Under these assumptions, we show first that the SIS pol-
icy is universally stable (universal stability for CAQT was
proved in [5]). Then we consider the family of policies
LISP, to which LIS belongs, and we also show its univer-
sal stability for the NSCAQT model, and consequently, for
CAQT (which was previously unknown in general).

Universal stability of SIS. As we said above, the SIS
scheduling policy gives the highest priority to the packet
which has been in the system for the shortest time. Addi-
tionally, we assume that SIS is implemented by making the
first edge in the path of a packetp to attach the arrival time
to the packet. Since this arrival time is obtained from the
local edge clock, SIS can be affected by clock skews.



Theorem 2 [8] Let G be a network anddmax the length
of its longest edge-simple directed path, letA be an(r, b)-
adversary withr = 1 − ε < 1 and b ≥ 1. Then the sys-
tem (G, SIS,A) is stable under the NSCAQT model with
bounded clock skews, no queue ever containskdmax−1 +
Lmax bits, and no packet spends more than

dmaxb +
∑dmax−1

i=0 ki

εBmin
+ dmaxDmax

units of time in the system.

Corollary 2 SIS is universally stable in the NSCAQT model
bounded clock skews.

Universal stability of LISP. In this subsection we ex-
plore the stability of the new family of policies LISP de-
fined in Section 2, which is based on the injection time and
the number of edges already crossed by a packet. As de-
scribed there, a policyPf in LISP assigns to each packet
p at the queue of its edgeei(p) a priority labelPL(p, i) =
TS (p) + f(i), and gives the highest priority to the packet
with the smallest label.

Theorem 3 [8] Let G be a network anddmax the length
of its longest edge-simple directed path, letA be an(r, b)-
adversary, withr = 1 − ε < 1 andb ≥ 1, and letPf be a
policy in LISP. Then the system(G,Pf ,A) is stable under
the NSCAQT model with bounded clock skew, and no packet
spends more than

1 − εdmax

εdmax

(

fmax − fmin + φmax +
Dmax

1 − ε

)

units of time in the system.

Corollary 3 Any protocol in LISP, and in particular LIS, is
universally stable under the NSCAQT model with bounded
clock skew, and hence under the CAQT model.

5. Universal stability of LIQ

In previous sections we have shown how several policies
are universally stable in the NSCAQT models with constant
and bounded clock skews, respectively. Unfortunately, the
bounds on end-to-end packet latencies we derived were de-
pendent on the maximum clock skew that can occur in the
system. This means that in a system with high maximum
skew, the latencies can be very high. It is easy to construct
examples for policies like SIS and LIS in which this can be
observed.

In this section we study a new policy named LIQ, which
gives the highest priority to the packet that has been wait-
ing in output queues for the longest time. We prove that

LIQ is universally stable in the NSCAQT model with but
bounded clock skews. The bad news is that in this case
the end-to-end latency bound we obtain depends also on the
maximum skew. The good news is that for the NSCAQT
model with constant clock skews LIQ is universally stable,
and the bound does not depend on the maximum skew, and
it is similar to that obtained with LIS in a synchronized sys-
tem.

As in previous sections, we assume thatφe(t) ≥ 0 for
all e and t. Then, we defineφmin(e) = mint{φe(t)}
and φmax(e) = maxt{φe(t)}. Finally, let ∆φ =
maxe{φmax(e) − φmin(e)}. Observe that in the model of
constant skews,∆φ = 0.

Theorem 4 [8] Let G be a network withdmax the length
of its longest edge-simple directed path, letA be an(r, b)-
adversary withr = 1 − ε < 1. Then (1) the sys-
tem(G, LIQ,A) is stable under the NSCAQT model with
bounded clock skews, and no packet spends more than

1 − εdmax

εdmax

(

dmax(2∆φ + Dmax) +
Dmax

1 − ε

)

units of time in the system, and(2) the system(G, LIQ,A)
is stable under the NSCAQT model with constant clock
skews, and no packet spends more than

1 − εdmax

εdmax

(

dmaxDmax +
Dmax

1 − ε

)

units of time in the system.

Corollary 4 LIQ is universally stable under the NSCAQT
model with bounded clock skews, and hence under the
CAQT model.

6. Simulations

In order to partially evaluate the theoretical results we
have developed several simulation experiments. All the ex-
periments in this article have been carried out using the J-
Sim discrete event simulator [14]. J-Sim has been designed
to simulate network behaviors in a realistic way, including
propagation delays, packet processing times, etc. The J-Sim
package has been modified in several ways, mainly to adapt
it to our model. First, the traffic generator has been modified
in order to ensure that destinations are uniformly distributed
over all nodes in the network. Then, the sink monitor has
also been changed in order to log several parameters that are
not stored by J-Sim by default (e.g., the mean and the vari-
ance of the packet delay and the queue size, and samples of
these values chosen at random). Also, the routing algorithm
has been replaced and some scheduling policies discussed
in this paper have been implemented.



The network topology used in all the experiments is an
11 × 11 torus, in which every node is, at the same time,
router, source, and sink of packets. Each node periodi-
cally generates new packets, whose destination is chosen
randomly and uniformly among the nodes of the network.
The routing is deterministic, so that the traffic is balanced
among all the links. We have adjusted the average load of
the network to99% in the simulations because we are inter-
ested on the response of the network with high load levels.
In our experiments all the queues are of unbounded size.
Links have no propagation delays because we consider it
negligible. The link bandwidth is set to100 Kbps and the
packet size is125 bytes (105 bytes plus20 IP header bytes).
The reason why we set this bandwidth is for not overloading
the simulator, and the packet size is chosen in order to ob-
tain an entire number of packets per second (100000 bits/s
is equal to12500 bytes/s). The simulation experiments have
been run for6000 seconds, ignoring the first1000 seconds
in the analysis of the results.

We assign to local node clocks (all output edge clocks
in a node are the same) different skews following a normal
distribution with a mean value of 0 seconds and a standard
deviation of up to105 milliseconds. Before starting the ex-
periment, each node randomly chooses a constant skew for
its clock from the above distribution.

Figure 1 shows the mean and maximum latencies expe-
rienced by packets that cross 10 links when, as said be-
fore, the distribution of clock skews have standard devia-
tions ranging from0 to 105 milliseconds. As expected, LIQ
is not affected by clock skews, since it does not consider in-
jection time (which could be affected by clock skews), but
waiting time, which is always correctly computed since all
clocks run at the same speed (there are no drifts). It is also
noticeable that the mean and the maximum latencies of LIQ
are very low, which is not the case for the other policies,
especially when clock skews grow. At first sight, it seems a
bit paradoxical the fact that the mean latency with SIS de-
creases when skews grow. However, this behavior may be
attributed to the fact that increasing skews randomizes the
behavior of the policy. Note that the maximum latency with
SIS does not seem to be significantly affected by the skew
variation. LIS suffers from increasing clock skews, since
its effectiveness relies on the accuracy of clocks. When
skews grow, LIS clearly degrades its performance. Finally,
we want to emphasize the great distance between the mean
and the maximum in the case of SIS, and in the case of LIS
for large skews.

Figure 2 shows how the number of hops a packet needs
to reach its destination affects the latency. Here we see that
LIS when all clocks are synchronized (no skews) and LIQ
give analogous results, and behave quite uniformly on the
number of hops. It is again noticeable that the mean and
the maximum are much closer in the cases of LIS with no
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Figure 1. Average latency experienced by
packets that cross 10 links with policies LIS,
SIS, and LIQ under distribution of skews with
different standard deviations.

skews and LIQ, than in the other cases (between one and
two orders of magnitude). Observe that, while with LIS
the slope of the curve increases with the skew, with SIS the
slope decreases.

7. Conclusions

We introduce a model to analyze communication net-
works in which router clocks are not necessarily synchro-
nized. This new model is an extension of the Continuous
Adversarial Queuing Theory (CAQT) model [5]. We show
that, if all clocks run at the same speed, all universally sta-
ble policies in CAQT that use the injection time and the re-
maining path to schedule packets remain universally stable.
Furthermore, we show the universal stability of SIS and a
family of policies related to LIS, when time differences can
vary over time (but this difference is bounded). We then
present a new policy which gives priority to the packet that
has been waiting the longest in edge queues (LIQ). We show
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Figure 2. Average latency experienced by
packets with policies LIS, SIS, and LIQ un-
der normal distribution of skews with stan-
dard deviations of 0 and 100000.

that LIQ is universally stable and, if clocks maintain con-
stant differences, the bounds do not depend on them. To
finish, we provide simulations that compare the behavior of
some of these protocols in a network with stochastic injec-
tion of packets.
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