
Deterministic Recurrent Communication
and Synchronization in

Restricted Sensor Networks ?

Antonio Fernández Anta1,2, Miguel A. Mosteiro3,2, and Christopher Thraves4

1 Institute IMDEA Networks, Leganés, Spain
2 LADyR, GSyC, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain

anto@gsyc.es
3 Department of Computer Science, Rutgers University, Piscataway, NJ, USA

mosteiro@cs.rutgers.edu
4 ASAP Project team, IRISA/INRIA Rennes, Campus Universitaire de Beaulieu,

35043 Rennes Cedex, France.

Abstract. Monitoring physical phenomena in Sensor Networks requires
guaranteeing permanent communication between nodes. Moreover, in an
effective implementation of such infrastructure, the delay between any
two consecutive communications should be minimized. The problem is
challenging because, in a restricted Sensor Network, the communication
is carried out through a single and shared radio channel without colli-
sion detection. Dealing with collisions is crucial to ensure effective com-
munication between nodes. Additionally, minimizing them yields energy
consumption minimization, given that sensing and computational costs
in terms of energy are negligible with respect to radio communication.
In this work, we present a deterministic recurrent-communication proto-
col for Sensor Networks. After an initial negotiation phase of the access
pattern to the channel, each node running this protocol reaches a steady
state, which is asymptotically optimal in terms of energy and time effi-
ciency. As a by-product, a protocol for the synchronization of a Sensor
Network is also proposed. Furthermore, the protocols are resilient to an
arbitrary node power-up schedule and a general node failure model.

1 Introduction

A Sensor Network is an infrastructure deployed in a hostile or remote area for
monitoring purposes. The basic entities of a Sensor Network are called sensor
nodes, small devices provided with radio-communication, processing, and sens-
ing capabilities. Upon being distributed at random in the area of interest, sensor
nodes have to build a communication system from scratch. A strong shortcoming

? This research was partially supported by Spanish MICINN grant no. TIN2008-06735-
C02-01, Comunidad de Madrid grant no. S2009TIC-1692, EU Marie Curie Interna-
tional Reintegration Grant IRG 210021, NSF grant no. 0937829, and French ANR
project Shaman.

in Sensor Networks is the energy supply of sensor nodes. Consequently, one of
the main challenges is the efficient administration of such resource, extending
the usability of the network. In sensor nodes, sensing and computational costs
in terms of energy consumption are negligible with respect to radio communi-
cation. Thus, it is crucial to optimize the communication schedule. In a harshly
restricted Sensor Network, the communication is carried out by means of a single
and shared radio channel where nodes may broadcast messages to all neighbor-
ing nodes but no collision detection mechanism is available. Therefore, special
mechanisms to effectively transmit or receive a message are required. Indeed, a
node b receives a message transmitted from a neighboring node a only if neither
b nor the other neighbors of b transmit at the same time. Otherwise, a collision
occurs and the messages are garbled. Furthermore, b is not able to recognize
the difference between this garbled message received and the background noise
present in the channel if no transmission is produced.

The mechanism used by a node to decide to transmit or receive at any time
is called the transmission schedule. Some transmission schedules use random-
ness to avoid collisions, but frequently involve a large number of redundant
transmissions, consequently incurring in excessive energy consumption. On the
other hand, deterministic transmission schedules, although efficient in terms of
energy consumption, usually provide only large time guarantees for successful
communication. Therefore, the problem addressed in this work, i.e., to find a
deterministic transmission schedule with optimal time and energy guarantees of
successful communication, is a fundamental question in Sensor Networks.

The rest of the document is organized as follow. In Sections 2, the model
and problem definition are presented. In Section 3, our results are presented and
contextualized with the previous results. Section 4 contains synchronization algo-
rithms of independent interest. Finally, deterministic recurrent communication
algorithms are introduced in Section 5.

2 Model and Problems Definition

Regarding network topology and connectivity, and node constraints, we use the
restrictive model in [15, 16, 14] summarized here as follows.

Network and Nodes: Let us denote with V the set of sensors. Each sensor
node is assumed to have a unique identification number (ID) in {0, . . . , n − 1}.
Sensors are expected to be deployed at random in the area of interest. Each sensor
is provided with a radio system to communicate with the rest of the network,
but each radio system has only a limited range for transmissions and receptions.
It is assumed that the transmission range and the reception range are the same,
and it is referred as the communication range. Consequently, each node is able to
communicate with a restricted number of other sensors, the ones deployed within
its communication range. In this work, we use an undirected graph G = (V,E)
to model the topology of the network. Each node in V represents a sensor node,
and the link (u, v) ∈ E represents that nodes u and v are in communication

range5. Let us denote with N(v) the set of neighbors of node v. Let n = |V |
denote the number of nodes in the network, and let k = maxv∈V |N(v)| be
the maximum degree of a node in G (i.e., the network). Finally, we use D to
denote the diameter of the network. Unless otherwise stated, we assume that
n, k and D are known by all the nodes in the system. (We assume the precise
values are known for clarity, but limiting that knowledge to asymptotically tight
upper bounds yield the same results asymptotically.) Regarding computational
resources of sensor nodes, node-memory size is restricted only to O(k + log n)
bits. Were the deployment of nodes uniform (random geometric graph) as it
is popularly assumed in the Sensor Networks literature [11, 24], our protocols
would work even if the node-memory size is restricted to just O(log n) bits.

Local Synchrony: Time is assumed to be slotted in equal-length time
slots or steps. It is assumed that the length of a slot is sufficient to transmit one
message, i.e., each transmission occurs in a given slot. Without loss of generality
[23], it is assumed that the slots of all nodes are in phase, i.e., they all start
and finish at the same time instants. For convenience, we assume a global time
that takes non-negative integer values and advances one unit per step. Note that
this is a fictional device and that the nodes do not have access to its value. For
convenience we assume that the global time is the number of time steps since
the first nodes in the system have been awakened. We assume the availability
of a hardware clock mechanism at each node, denoted local-clock, such that,
starting from 0 when the node is powered up, the clock is incremented by one
automatically at the end of each time slot6. Then, for all i ∈ V and t ∈ Z+,
local-clocki(t) denotes the value of local-clock of node i at time step t before
being incremented. In the first step t executed by a node i, local-clocki(t) = 0.

Node Awakening and Types of Adversaries: Nodes are in two possi-
ble states, sleeping and awake. It is assumed that initially all nodes are sleep-
ing. The nodes are assumed to be awakened by an adversary.7 Without loss
of generality, it is assumed that every node of the network is eventually awak-
ened. In the rest of the paper x will be used to denote the first node awakened
by the adversary, breaking ties arbitrarily. As x is always awake (see below),
∀t ≥ 0 : local-clockx(t) = t. Regarding node reliability, as customary in the
Sensor Networks literature, we assume that nodes may fail. I.e., a node may
crash and stop working. The adversary decides when to crash and recover (awake
again) nodes. However, if crashes and recoveries occur arbitrarily, due to deter-
minism, there exist topologies for which the adversary may stop a node from
receiving any message, even if connectivity is required.8 Thus, limitations to the
5 This models corresponds to a Geometric Graph. Generalizing the results to arbitrary

graphs is left for future work.
6 Observe that, if not readily available, the described mechanism can be implemented

as a software counter.
7 In contrast with the wake-up problem studied in the literature, we do not assume

that sleeping nodes may additionally be awaken by the transmission of a neighboring
node.

8 For any time slot t, if none or more than one neighbor transmit, do nothing. Other-
wise, put the transmitter to sleep during t.

crash/recovery schedule are in order. In this work, we consider node failures as
long as: (i) the network stays connected (one connected component) at all times,
(ii) node x is always awake (in fact it would be enough if there is always some
node that has the global time up and running), and (iii) each period when a
node runs without failures lasts at least the length of the stabilization time (as
defined in Section 2). In this work, we consider two types of adversaries.

Definition 1. A τ -adversary is an adversary that awakens all the nodes of the
network within a window time of size τ , i.e., no node is awakened at a time t ≥ τ .
Additionally, a τ -adversary does not recover crashed nodes. The parameter τ is
assumed known by the nodes.

Definition 2. An ∞-adversary is an adversary that has no restriction on when
nodes are awakened.

Communication: Each radio system transmits and receives in a single and
shared radio channel. Therefore, at each step, each node decides between trans-
mission mode or reception mode. Moreover, node v receives from node u in a
slot if and only if node u is the only neighbor of v transmitting in that slot, and
v is in reception mode at that slot. In the case that two or more neighbors of
node v transmit in the same slot a collision occurs at node v. A node v is not
able to distinguish between silence (none of the nodes in N(v) transmits) and
collision. We denote the communication range as r. A customary assumption in
Sensor Networks [11, 24] is that nodes can adjust the power of transmission to
a smaller level, introducing only a constant factor in the number of nodes that
has to be deployed to maintain connectivity. Instead, for the sake of clarity, in
this work we assume that nodes can duplicate their transmission range to 2r.
Likewise, such an assumption does not yield an extra asymptotic cost. Notice
that, independently of this assumption, the maximum degree k and diameter D
defined before correspond to the underlying graph G defined for range r.

Deterministic Recurrent Communication Problem The problem solved in
this paper is called deterministic recurrent communication. The goal in solving
this problem is to provide a communication service that can be used by the
components of a distributed application residing in different nodes to exchange
application messages. Thus, the service must allow a component in a node to
recurrently communicate with the components in neighboring nodes. For the
sake of clarity, we assume that all nodes run application components that have
an infinite supply of application messages to transmit.

Definition 3. A distributed protocol solves the deterministic recurrent commu-
nication (DRC) problem if it guarantees that, for every step t and every pair
(u, v) ∈ E, there is some step t′ ≥ t such that, in step t′, v receives an applica-
tion message from u.

The protocols proposed in this paper are adaptive, in the sense that when
nodes are awakened, they run a start-up phase. During this phase, nodes use
control messages to agree on a periodic transmission schedule. After the start-up

phase, a stable phase starts in which they use the agreed transmission schedule
to exchange application messages. For some of the protocols, control messages
still have to be used in the stable phase. We use three goodness parameters to
evaluate these protocols. The first one is the maximum number of steps of the
start-up phase for any node, called the stabilization time. Then, we define the
following metrics to evaluate energy and time efficiency in the stable phase. For
any (u, v) ∈ E and any i > 1, let Ri

u(v) be the number of transmissions of u
between the (i − 1)th and the ith receptions of application messages from u at
v, and Ru(v) = maxiR

i
u(v) 9. In order to measure time we denote ∆Ri

u(v) the
time (number of time slots) that are between the (i−1)th and the ith receptions
of application messages from u at v, and ∆Ru(v) = maxi∆R

i
u(v) 7. We define

the message complexity of a protocol for DRC as max(u,v)∈E Ru(v). We define
the delay of a protocol for DRC as max(u,v)∈E ∆Ru(v).

In this paper, the goal is to derive protocols that solve DRC with asymptoti-
cally optimal message complexity and delay, even if they incur in significant sta-
bilization times. We design our protocols assuming the existence of an oblivious
deterministic recurrent communication protocol that solves DRC with bounded
delay and no start-up phase. In this protocol, whether a node u is in transmission
or reception mode at step t is a function only of u’s ID and local-clocku(t) (the
number of steps u has been awake). Such oblivious deterministic protocols exist.
An example is the Primed Selection communication protocol proposed in [15].
In the rest of the paper, the oblivious deterministic recurrent communication
protocol will be modeled as a binary function ORC on V × Z+. Then, for all
u ∈ V and all j ∈ Z+ we have ORC(u, j) ∈ {transmit, receive}. The delay of this
protocol will be denoted by T . Since oblivious protocols have no start-up phase,
this means that if nodes u and v, such that (u, v) ∈ E, are awake and run ORC,
in every interval of T steps they will receive from each other.

The Synchronization Problem As a by-product of the protocols proposed
in this paper for DRC, we propose also deterministic protocols that solve the
synchronization problem under both classes of adversaries defined. In the syn-
chronization problem it is assumed that each node has a slot counter global-clock
(incremented in every step) and a Boolean variable synced indicating whether it
is synchronized or not. The slot counters of all synchronized nodes must have
the same value. For each node i ∈ V and time slot t, let global-clocki(t) and
syncedi(t) be, respectively, the slot counter and the Boolean variable of node i
at the beginning of time slot t. We say that a network is synchronized at a time
step t ∈ Z+ if, for all i, j ∈ V , such that syncedi(t) = syncedj(t) = true, it holds
that global-clocki(t) = global-clockj(t).

Definition 4. We say that a protocol solves the synchronization problem if
there exists a time t from which the protocol guarantees that the network is
synchronized at all times after t, and every node that awakes eventually gets
synchronized. The maximum time between a node awaking and getting synchro-
nized is the synchronization time of the protocol.

9 If the maximum does not exist, this value is defined as ∞.

In the synchronization protocols proposed here each node initializes its counter
global-clock to 0 and increments it by 1 every step. A node can also adopt a larger
global-clock value from another node. Then, since x is the first node awake and
it never fails, it will always have the largest global-clock counter, i.e., for each
node u ∈ V and each t ≥ 0, if u is awake at time t then global-clocku(t) ≤
global-clockx(t). Moreover, ∀t ≥ 0 : local-clockx(t) = global-clockx(t) = t.

3 Framing Our Results with Related Work.

To the best of our knowledge, deterministic recurrent communication under a
restricted Sensor Network model was only studied in [15] and later improved
in [16]. It was shown in the latter an oblivious protocol with optimal message
complexity and delay at most k(n+k)(ln(n+k)+ln ln(n+k)), which was shown
to be optimal delay-wise for a subclass of non-adaptive protocols for most values
of k. For adaptive protocols, it was shown in that work a delay of O(k2 log k)
relaxing memory size constraints and an asymptotically optimal delay of O(k)
additionally limiting the adversarial node awakening schedule. In the present
paper, a worst-case asymptotically optimal O(k) delay bound is proven, even
removing those restrictions.

The question of how to disseminate information in Radio Networks has led
to different well-studied important problems such as Broadcast [2, 21], Selec-
tion [20], and Gossiping [22, 5]. These problems differ in the number of nodes
that hold a possibly different message to disseminate to all nodes in the network.
Although these are one-shot communication primitives, some of the results ob-
tained could be used repeatedly to achieve recurrent communication.

Deterministic solutions [8, 10] for Broadcast and Gossiping include assump-
tions such as simultaneous startup or the availability of a global clock, which
are not feasible in Sensor Networks. The selection problem, on the other hand,
was studied by Kowalski [20] in a model where the node awakening schedule is
adversarial, proving the existence of a O(k2 log n) algorithm and showing con-
structively how to obtain an algorithm that achieves O(k2 polylog n). These
results are obtained for a model where nodes turn off upon successful transmis-
sion. Thus, they do not apply to our setting.

In [1], Alon, Bar-Noy, Linial and Peleg gave a deterministic distributed
protocol to simulate the message passing model in radio networks. Using
this technique, each node receives a transmission of all its neighbors after
O(k2 log2 n/ log(k log n)) steps. Again, simultaneous awakening of nodes is re-
quired, a feature that can not be assumed in restricted models of Sensor Net-
works. In the same paper, lower bounds for this problem are also proved by
showing bipartite graphs that require Ω(k log k) rounds. Bipartite graphs with
maximum degree ω(1) are not embeddable in geometric graphs therefore these
bounds do not apply to our setting.

Related lines of work from combinatorics include selectors, selective- and
strongly-selective families [19, 9, 13, 3]. The application of any of these combi-
natorial objects to recurrent communication in Radio Networks would require

simultaneous awakening of the participating nodes. Within the scope of the wake-
up problem, the existence of a combinatorial structure called radio-synchronizer
was shown in [7], later explicited in [6]. The existence of an extension of radio-
synchronizers, called universal-synchronizers, was also shown in the latter, and a
constructive proof of universal-synchronizers was given in [4]. In Radio Networks
terminology, a radio-synchronizer is an n-set of schedules of transmissions (one
for each node) such that, for any node awakening schedule and for any subset
of k nodes, there is a time step when exactly one of the k nodes transmits. Syn-
chronizers (radio- or universal-) are of the utmost importance in Radio Networks
because they tolerate arbitrary rotations of each schedule of transmissions. In
other words, they can be used obliviously without assuming any specific node
awakening schedule. Furthermore, due to the same reason, synchronizers could
be used repeatedly to implement a recurrent communication primitive, as long
as it is enough for each node to receive messages from some neighboring node
infinitely many times. In the present paper, we study a recurrent communica-
tion primitive that requires each node to receive from each neighboring node
infinitely many times. (See Definition 3.)

In order to compute a transmission schedule that solves DRC with asymp-
totically optimal delay bound, we include in the algorithms presented in this
paper a synchronizing phase. Within the scope of Radio Networks, the problem
of globally synchronizing the network has been recently studied in [12], but their
model includes a single-hop network and many channels of communication.

The application of Radio Network wake-up protocols to global synchroniza-
tion was studied in [7, 6, 4]. In their model, nodes may be awaken adversarially,
but additionally they may be also awaken by the transmission of another node.
The synchronization technique proposed takes advantage of the latter and works
only after all nodes have been awaken. Thus, it can only be applied to our setting
under a τ -adversary, adding an initial waiting phase to ensure that all nodes are
awake before running that protocol. Extending the best running time obtained
in [4] by the additional τ waiting steps gives O(τ + min{n,Dk}k polylog n).
Whereas the synchronization algorithm of [18], suited here for a τ -adversary
and using the ORC protocol of [15], yields a running time of τ + Dnk log n. Al-
though which of these protocols is more efficient depends on the parameters
instance, we propose the latter for clarity of the presentation towards the more
general adversary. A more complete review of the related literature can be found
in [17].

Our Results In this work, we present an adaptive protocol that solves DRC
asymptotically optimally for message complexity and delay efficiency measures.
We model the arbitrary node awakening schedule, and node failures, with the
two types of adversaries previously defined, τ -adversary and ∞-adversary. As
a building block of our deterministic computation of an optimal transmission
schedule, we include a synchronization algorithm for each of type of adversary.
Once nodes are synchronized, we provide a 19(k + 1) coloring of the network,

where k is the maximum degree10. Thus, the transmission schedule guarantees,
in the case of the first adversary, that for every time interval of length 19(k+ 1)
slots, each node has at least one successful transmission to all its neighbors. In
the case of the less restricted ∞-adversary, the transmission schedule has to be
resilient to the awakening of new nodes. Thus, after synchronization, each time
step is doubled extending the length of that interval to 38(k+1) slots. Due to the
pigeonhole principle, these delays between reception of each neighboring node
are asymptotically optimal.

Given that the efficient use of energy is crucial to extend the life-cycle of a
sensor node, and that the radio-communication cost in terms of energy dominates
other consumption factors, it is extremely important to minimize the number of
transmissions produced that do not achieve effective application communication.
The protocols presented in this paper are shown to have optimal message com-
plexity of 0 for the restricted adversary, and a message complexity of 19(k+1)/n
for the unrestricted adversary, which is asymptotically optimal if all nodes run
application components that have an infinite supply of application messages to
transmit.

4 Synchronization Protocols

In this section, we present the protocol that solves the synchronization problem
under an ∞-adversary. For a τ -adversary, the synchronization protocol used is
a re-creation of the algorithm presented in [18]. The interested reader may find
the details in [17].

We present now the protocol ContMaxSpread, designed to solve the syn-
chronization problem against an ∞-adversary. Observe that, due to the nature
of an ∞-adversary, any synchronization protocol has to keep sending synchro-
nization messages during all its execution, even after the network has been syn-
chronized. In this way, any new node awakened after the network is synchronized
recognizes this fact, and joins the network adopting the common value of the
global clock.

Hence, the synchronization protocol ContMaxSpread has two phases, a
synchronization phase, and an application phase. In the synchronization phase,
the largest global-clock is spread through the network. However, as mentioned
above, ContMaxSpread keeps sending synchronization messages in the appli-
cation phase. The protocol ContMaxSpread sets up the synchronization flag
synced to communicate the current synchronization state of the network (from a
node’s point of view). Roughly speaking, during the first T1 = 3n2 + 2nT steps
of the synchronization phase, a node listens for messages from the network. That
listening part is devoted to provide the node with the current synchronization
state of the network. If the network is synchronized, and some node has synced
= true, when the node wakes up, it will know about it before the listening period
10 Recall that k is the maximum degree with communication range r. The proposed

protocols use also a communication range of 2r. The value 19(k + 1) is an upper
bound on the maximum degree with this range.

is over and, without having to send any message will get synchronized. If that
does not happen, during the next T2 = 2nT steps of the synchronization phase,
the node transmits to its neighbors its value global-clock and its synchronization
flag synced following ORC. As will be shown, at the end of this subphase the
network (and hence the node) has to be synchronized. During the application
phase, a node transmits its value global-clock and its synchronization flag synced
(perhaps, piggybacked in an application message), but this time, the transmis-
sion is done in a round robin fashion, i.e., if the identifier of the node is equal
to the value global-clock modulo n, then the node transmits. More details of the
ContMaxSpread protocol can be found in [17].

Lemma 1. The global clock of a node u awakened before T1 + T2 satisfies that
either global-clocku(T1 +T2) ≤ T2, or global-clocku(T1 +T2) = global-clockx(T1 +
T2) = T1 + T2.

Proof. Recall that the adversary is restricted so that the network is connected
at all times and awake nodes are alive for at least the stabilization time. This
means that, up to time T1 + T2, if node u ∈ V is awake, there exists some
time ordered path x = v0, v1, . . . , vl = u (recall that x is the first node awake)
in the network connecting x to u such that l < n and, for all 0 < i ≤ l,
local-clockvi−1(t) ≥ local-clockvi

(t). We call the distance from u to x as the
smallest number of edges of any of these time ordered paths. Since all the time
steps, and hence global clocks, considered in this proof are smaller than T1 +T2,
then no node fails, and all awake nodes are in the synchronization phase of the
algorithm, have a time ordered path to x, and have synced = false.

We show that a node u that at time T1 +T2 has a global clock different from
x’s must have global-clocku(T1 + T2) ≤ T2. Let us consider a node u awakened
before T1 + T2 and whose global clock at that time is global-clocku(T1 + T2) <
T1 + T2. A node that is awakened before T1 and whose distance to x is d has
the same global clock as x by time T1 + d · T . (Broadcast time in a network
of awakened nodes, see [17] for details.) Thus, given that the distance is always
less than n, a node awakened before T1 has the the same global clock as x
by time T1 + nT ≤ T1 + T2. Therefore, to complete the proof, it remains to
consider the case where u was awakened at some time within the global-time
interval [T1, T1 +T2). To prove the claim in that case, it is enough to prove that
global-clocku(T1 +T2) = local-clocku(T1 +T2) because, given that u did not wake
up before T1, it holds that local-clocku(T1 + T2) ≤ T2.

Let us assume, by way of contradiction, that u has global-clocku(T1 + T2) 6=
local-clocku(T1 + T2). This means that u has received a message before time
T1+T2 with a field global-clock′ larger than its own global clock, and has adopted
it. The value global-clock′ is received because some node v had global-clockv(t) =
local-clockv(t) ≥ T1 at some time t < T1 + T2, and transmitted this value (using
schedule ORC). Let us denote the propagation path (not necessarily time ordered)
of this value before reaching u as v = q0, q1, ..., qs = u.

From t < T1 + T2, local-clockv(t) ≥ T1, and T1 > T2, it is derived that v was
awakened before T1. Let d be the distance from v to x. Then, node v has the

same global clock as x by time T1 + d · T . Then, by time T1 + d · T v transmits,
using the ORC schedule, the same global clock as x. Furthermore, it does this for
at least (2n− d)T steps.

Returning to the path v = q0, q1, ..., qs = u, we have that q1 must have re-
ceived (and hence was awake) some message from v = q0 (in particular, the global
clock that was later propagated as global-clock′) before T1 + d · T . Furthermore,
q1 has received from v a message with the global clock of x by T1 +(d+1)T . Ap-
plying the same argument, we conclude that q2 received (and hence was awake)
from q1 before T1 + (d + 1)T and has received the global clock of x by time
T1 + (d + 2)T . Inductively, qs = u has received the global clock of x by time
T1 + (d+ s)T . Since d+ s < 2n, this mean that u has the same global clock as
x by time T1 + T2, which is a contradiction.

Theorem 1. ContMaxSpread solves the synchronization problem under any
∞-adversary with synchronization time T1 + T2, where T1 = 3n2 + 2nT and
T2 = 2nT .

Proof (Proof sketch). To prove the theorem, it is enough to prove that, at any
global time step t ≥ T1 + T2, any node in the network is either synchronized
with x, or it is still in the listening part of the synchronization phase. The proof
of the following claim can be found in [17].

Claim. For any node v ∈ V and any time step t ≥ T1 + T2, it takes at most 3n2

time steps for v to have the global time (be synchronized), even under failures
(as defined in Section 2), unless v goes back to sleep before.

Lemma 1 shows that at global time T1 + T2 a global-clock in the network is
either synchronized with x’s global clock, or its value is smaller than T2, which
is 3n2 time steps smaller than T1. Consequently, at global time T1 + T2, every
node who is transmitting messages does it with x’s global clock. Then, any
node with global clock smaller than T2 receive x’s global clock before its own
global clock reaches the value T1. Finally, due to the same reason, if a node is
awakened at global time t ≥ T1 + T2, before its local clock reaches the value
3n2, it receives a message with x’s global clock. Then, that node is synchronized
without transmitting itself in the synchronization phase.

5 Communication Scheme

In this section, we show how to solve DRC for τ - and∞- adversaries. Both proto-
cols are algorithmically similar and can be broadly described for each node v ∈ V
as follows. Upon waking up, v runs three phases: synchronization, coloring, and
application. During the first phase, v synchronizes itself (as defined in Section 2)
with the node x that woke up first in the network. During the second phase, v
chooses a color that has not been chosen by any neighboring node. Finally, by
mapping colors to time slots (thanks to the global synchronization achieved),
the application phase of i corresponds to its stable phase. Given that the color
chosen by v is unique within radius 2r of v, but the application messages are

transmitted with radius r, all nodes within distance r of v receive v’s application
messages.

Moving to how do we implement each phase, synchronization is implemented
using the protocols of Section 4 for the τ - and ∞- adversaries respectively. The
coloring phase, on the other hand, is implemented by each node announcing
the color chosen so that, by appropriate bookkeeping of the available colors at
each node, nodes within distance 2r do not choose the same color (avoiding
the hidden-terminal problem). To avoid collision of transmissions and simulta-
neous choice of the same color, taking advantage of the global synchronization
achieved in the previous phase, each colored node chooses an available color and
announces its choice in a time slot selected in Round-robin fashion according
to ID. For the application phase, again thanks to the global synchronization
achieved, each node transmits its application messages in Round-robin fashion,
but now according to its color.

For the τ -adversary, thanks to the inclusion of a τ -long waiting period at the
beginning of the synchronization phase, the above described phases are executed
synchronously by all nodes in the network. In other words, all nodes in the
network finish the synchronization (resp. coloring) phase and begin the coloring
(resp. application) phase at the same time. For the ∞-adversary on the other
hand, new nodes may be woken up while others are already in the coloring or
application phases. Thus, control messages have to be sent always to handle
these late arrivals. The transmissions corresponding to those control messages
are produced in Round-robin fashion according to ID. The coexistence of both
types of messages during the application phase is handled by devoting even slots
(w.r.t. global time) to control messages and odd slots (w.r.t. global time) to
application messages, at the cost of duplicating the time delay. The details of
both algorithms can be found in [17].

Regarding the space complexity of these protocols, a node needs to store its
own ID (O(log n) bits) and after the coloring phase one of O(k) colors (O(log k)
bits). Additionally, each node has to keep track of the colors still available (O(k)
bits), and maintains a counter that reach a maximum count in O(kn) (O(log n)
bits). Thus, the overall space complexity for each node is O(k+ log n) bits. The
stabilization time, delay, and message complexity of the protocols described can
be proved applying the results of Section 4 and standard analysis of the Round-
robin algorithms used. We establish those bounds in the following theorems.
(The proofs can be found in [17].)

Theorem 2. Given a Sensor Network of n nodes, the protocol presented in Sec-
tion 5 solves the DRC problem under a τ -adversary with stabilization time at
most D·T+τ+n, where T is the delay of the ORC protocol. The delay of this DRC
protocol is 19(k+1) which is asymptotically optimal, and the message complexity
is 0 which is optimal.

Theorem 3. Given a Sensor Network of n nodes, upon being woken up by a
∞-adversary, the protocol presented in Section 5 solves the DRC problem under
an ∞-adversary with stabilization time at most 6n2 + 4nT + 4n, where T is the

delay of the ORC protocol. The delay of this DRC protocol is 38(k + 1) and the
message complexity is 19(k + 1)/n, which are both asymptotically optimal.

References

1. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. Single round simulation in radio
networks. J. Algorithms, 13:188–210, 1992.

2. R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. JCSS, 45:104–126, 1992.

3. A. De Bonis, L. Ga̧sieniec, and U. Vaccaro. Generalized framework for selectors
with applications in optimal group testing. In ICALP, pages 81–96, 2003.

4. B. Chlebus, L. Ga̧sieniec, D. Kowalski, and T. Radzik. On the wake-up problem
in radio networks. In ICALP, 2005.

5. B. Chlebus, L. Ga̧sieniec, A. Lingas, and A. Pagourtzis. Oblivious gossiping in
ad-hoc radio networks. In DIAL-M, pages 44–51, 2001.

6. B. Chlebus and D. Kowalski. A better wake-up in radio networks. In PODC, 2004.
7. M. Chrobak, L. Ga̧sieniec, and D. Kowalski. The wake-up problem in multi-hop

radio networks. In SODA, 2004.
8. M. Chrobak, L. Ga̧sieniec, and W. Rytter. Fast broadcasting and gossiping in

radio networks. In FOCS, 2000.
9. A. Clementi, A. Monti, and R. Silvestri. Selective families, superimposed codes,

and broadcasting on unknown radio networks. In SODA, 2001.
10. A. Czumaj and W. Rytter. Broadcasting algorithms in radio networks with un-

known topology. In FOCS, 2003.
11. L. Doherty, K. S. J. Pister, and L. El Ghaoui. Convex optimization methods for

sensor node position estimation. In INFOCOM, pages 1655–1663, 2001.
12. S. Dolev, S. Gilbert, R. Guerraoui, F. Kuhn, and C. Newport. The wireless syn-

chronization problem. In PODC, 2009.
13. A. Dyachkov and V. Rykov. A survey of superimposed code theory.

Probl. Contr. Inform. Theor., 12(4), 1983.
14. M. Farach-Colton, R. J. Fernandes, and M. A. Mosteiro. Bootstrapping a hop-

optimal network in the weak sensor model. ACM TALG, 5(4):1–30, 2009.
15. A. Fernández Anta, M. A. Mosteiro, and C. Thraves. Deterministic communication

in the weak sensor model. In OPODIS, pages 119–131, 2007.
16. A. Fernández Anta, M. A. Mosteiro, and C. Thraves. Deterministic recurrent

communication in restricted sensor networks. INRIA RR 00486270, 2009.
17. A. Fernández Anta, M. A. Mosteiro, and C. Thraves. Deterministic recurrent

communication and synchronization in restricted sensor networks. INRIA RR
00486277, 2010.

18. M. G. Gouda and T. Herman. Stabilizing unison. IPL, 35(4):171–175, 1990.
19. P. Indyk. Explicit constructions of selectors and related combinatorial structures,

with applications. In SODA, 2002.
20. D. R. Kowalski. On selection problem in radio networks. In PODC, pages 158–166,

2005.
21. E. Kushilevitz and Y. Mansour. An Ω(D log(N/D)) lower bound for broadcast in

radio networks. SICOMP, 27(3):702–712, 1998.
22. D. Liu and M. Prabhakaran. On randomized broadcasting and gossiping in radio

networks. In COCOON, pages 340–349, 2002.

23. L. G. Roberts. Aloha packet system with and without slots and capture. CCR,
5(2):28–42, 1975.

24. W.-Z. Song, Y. Wang, X.-Y. Li, and O. Frieder. Localized algorithms for energy
efficient topology in wireless ad hoc networks. MONET, 10(6):911–923, 2005.

