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Abstract. In this paper, contention resolution amongk contenders on a multiple-access
channel is explored. The problem studied has been modeled asa k-Selection in Radio
Networks, in which every contender has to have exclusive access at least once to a shared
communication channel. The randomized adaptive protocol presented shows that, for a
probability of error2ε, all the contenders get access to the channel in time(e+1+ξ)k+
O(log2(1/ε)), whereε ≤ 1/(n + 1), ξ > 0 is any constant arbitrarily close to0, andn
is the total number of potential contenders. The above time complexity is asymptotically
optimal for any significantε. The protocol works even if the number of contendersk is
unknown and collisions can not be detected.

1 Introduction

A recurrent question, in settings where a resource must be shared among many contenders, is
how to make that resource available to all of them. The problem is particularly challenging if
not even the number of contenders is known. The broad spectrum of settings where answers to
such a question are useful makes its study a fundamental task. An example of such contention
is the problem of broadcasting information in a multiple-access channel. A multiple-access
channel is a synchronous system that allows a message to be delivered to many recipients at the
same time using a channel of communication but, due to the shared nature of the channel, the
simultaneous introduction of messages from multiple sources produce a conflict that precludes
any message from being delivered to any recipient. In Radio Networks,3 one of the instances
of such a question is the problem known in the literature [3] asSelection. In its general version,
thek-Selection problem [11], also known asall-broadcast, is solved when an unknown size-k
subset ofn network nodes have been able to access a unique shared channel of communication,
each of them at least once. Thek-Selection problem in Radio Networks and related problems
have been well-studied for settings where a tight upper bound onk is known. In this paper, a
randomized adaptive protocol fork-Selection in Radio Networks is presented, assuming that
such a knowledge is not available, the arrival of messages isbatched, and conflicts to access
the channel cannot be detected by all nodes. To our knowledge, this is the firstk-Selection
protocol in the Radio Networks literature that works in suchconditions and it is asymptotically

⋆ This research was supported in part by Comunidad de Madrid grant S-0505/TIC/0285; Spanish MEC
grant TIN2005-09198-C02-01, TIN2008–06735-C02-01; NSF grant CCF 0632838; and EU Marie
Curie International Reintegration Grant IRG 210021.

3 As pointed out in [3], the historical developments justify the use of Radio Network to refer to any
communication network where the channel is contended, evenif radio communication is not actually
used.



optimal for any sensible error-probability bound (up to inverse exponential ink). This protocol
improves over previous work in adversarial packet contention-resolution thanks to the adaptive
nature of the protocol and the knowledge ofn. Given that the error probability is parametrized,
this protocol can be also applied to solvek-Selection in multiple neighborhoods of a multi-hop
Radio Network.

Notation and Model Most of the following assumptions and notation are folklorein the Radio
Networks literature. For details and motivation, see the survey of Chlebus [3]. We study the
k-Selection problem in a Radio Network comprised ofn labeled stations callednodes. Each
node is assumed to be potentially reachable from any other node in one communication step,
hence, the network is characterized assingle-hop or one-hop indistinctively. Before running
the protocol, nodes have no information besidesn and their own label, which is assumed to
be unique but arbitrary.4 Time is supposed to be slotted incommunication steps. Assuming
that the computation time-cost is negligible in comparisonwith the communication time-cost,
time efficiency is studied in terms of communication steps only. The piece of information as-
signed to a node in order to deliver it to other nodes is calleda message. The assignment of
a message is due to an external agent and such an event is called a message arrival. Com-
munication among nodes is carried out by means of radio broadcast on a shared channel. If
exactly one node transmits at a communication step, such a transmission is calledsuccessful
or non-colliding, we say that the message wasdelivered, and all other nodesreceive such a
message. If more than one message is transmitted at the same time, acollision occurs, the mes-
sages are garbled, and nodes only receiveinterference noise. If no message is transmitted in
a communication step, nodes receive onlybackground noise. In this work, nodes can not dis-
tinguish between interference noise and background noise,thus, the channel is calledwithout
collision detection. Each node is in one of two states,active if it holds a message to deliver,
or idle otherwise. In contrast withoblivious protocols, where the sequence of transmissions
of a node does not depend on the transmissions received, theadaptive protocol presented in
this paper exploits the information implicit on the occurrence of a successful transmission. In
the randomized protocol presented here all active nodes usethe same probability in the same
communication step, a class of protocols usually calledfair. Therefore, it is also auniform pro-
tocol, i.e., all active nodes use the same protocol. As in forinstance [1, 7, 11], we assume that
all thek messages arrive in abatch, i.e. in the same communication step, a problem usually
calledstatic k-Selection,5 and that each node becomes idle upon delivering its message.

Problem Definition Given a Radio Network where a subsetK of the set ofn network nodes,
such that|K| = k, are activated by message arrivals, thek-Selection problem is solved when
each node inK has delivered its message. The definition given pertains to the general version
of the problem where messages may arrive at different times,although in this paper we study
only simultaneous, orbatched, arrivals.

Related Work Regarding deterministic solutions, thek-Selection problem was shown to be
in O(k log(n/k)) already in the 70’s by giving adaptive protocols that make use of collision
detection [2, 8, 14]. In all these results the algorithmic technique, known astree algorithms,

4 Notice that our protocol does not make any use of the identityof a message originator. Thus, it can be
used even in settings where nodes are not labeled or labels are not unique.

5 A dynamic counterpart where messages arrive at different times was also studied [11].



relies on modeling the protocol as a complete binary tree where the messages are placed at
the leaves. Later, Greenberg and Winograd [6] showed a lowerbound for that class of pro-
tocols ofΩ(k logk n). Regarding oblivious algorithms, Komlòs and Greenberg [10] showed
the existence ofO(k log(n/k)) solutions even without collision detection but requiring knowl-
edge ofk andn. More recently, Clementi, Monti, and Silvestri [4] showed alower bound of
Ω(k log(n/k)), which also holds for adaptive algorithms if collision detection is not available.
In [11], Kowalski presented the construction of an oblivious deterministic protocol that, us-
ing the explicit selectors of Indyk [9], gives aO(k polylogn) upper bound without collision
detection.

In the following results, availability of collision detection is assumed. Martel presented
in [13] a randomized adaptive protocol fork-Selection that works inO(k + log n) time in
expectation6. As argued by Kowalski in [11], this protocol can be improvedto O(k+log log n)
in expectation using Willard’s expectedO(log log n) selection protocol of [17]. In the same
paper, Willard shows that, for any given protocol, there exists a choice ofk ≤ n such that
selection takesΩ(log log n) expected time for the class of fair selection protocols. Forthe case
in which n is not known, in the same paper aO(log log k) expected time selection protocol
is described, again, making use of collision detection. If collision detection is not available,
using the techniques of Kushilevitz and Mansour in [12], it can be shown that, for any given
protocol, there exists a choice ofk ≤ n such thatΩ(log n) is a lower bound in the expected
time to get even the first message delivered.

A frequent challenging difficulty to overcome in resolving collisions is to determine which
is the best probability of transmission to be used by the contenders when their number is un-
known. The method of choice is then to increase or decrease such probability based on the
success or failure of successive trials. When the probability of transmission is increased it is
said that aback-on strategy is used, whereasback-off is the term used when such probabil-
ity is decreased. A combination of both strategies is usually calledback-on/back-off. Mono-
tonic back-off strategies for contention resolution of batched arrivals ofk packets on sim-
ple multiple access channels, a problem that can be seen ask-Selection, have been analyzed
in [1]. The best strategy shown is the so-calledloglog-iterated back-off with a makespan in
Θ(k log log k/ log log log k) with probability at least1 − 1/kc, c > 0, which does not use any
knowledge ofk or n.

Regarding related problems, extending previous work on tree algorithms, Greenberg and
Leiserson [7] presented randomized routing strategies in fat-trees for bounded number of mes-
sages. Choosing appropriate constant capacities for the edges of the fat-tree, the problem could
be seen ask-Selection. However, that choice implies a logarithmic congestion parameter which
yields an overallO(k polylog n) time. In [5], Gerèb-Graus and Tsantilas presented an algo-
rithm that solves the problem of realizing arbitraryh-relations in ann-node network, with
probability at least1 − 1/nc, c > 0, in Θ(h + log n log log n) steps. In anh-relation, each
processor is the source as well as the destination ofh messages. Makingh = k this protocol
can be used to solvek-Selection. However, it requires that nodes knowh.

Results and Outline In this paper, a randomized adaptive protocol fork-Selection, in a one-
hop Radio Networkwithout collision detection, that does not require knowledge of the number
of contendersk, is presented. Assuming thatε ≤ 1/(n + 1), the protocol is shown to solve
the problem in(e + 1 + ξ)k + O(log2(1/ε)) communication steps, whereξ > 0 is any con-
stant arbitrarily close to0 with probability at least1 − 2ε. Given that the error probability

6 Througout this paper,log meanslog
2

unless otherwise stated.



is parametric, this protocol can be applied to multiple neighborhoods of a multi-hop Radio
Network, adjusting the error probability in each one-hop neighborhood appropriately. To our
knowledge,O(k log log k/ log log log k) [1] is the best upper bound in the literature for a pro-
tocol suitable to solvek-Selection in Radio Networks (although they propose it for packet
contention resolution), that works without knowledge ofk, under batched arrivals, and with-
out collision detection. By exploiting back-on/back-off and the knowledge ofn, our protocol
improves their time complexity. Given thatk is a lower bound for this problem, the protocol
is optimal (modulo a small constant factor) ifε ∈ Ω(2−

√
k). In Section 2 the details of the

protocol are presented and they are analyzed in Section 3.

2 Protocol

The protocol comprises two different algorithms. Each of them is particularly suited for one
of two scenarios, depending on the number of messages left todeliver. The algorithm called
BT solves the problem for the case when that number is below a threshold (that will be defined
later). The algorithm calledAT is suited to reduce that number from the initialk to a value
below that threshold. The BT algorithm uses the well-known technique of repeating trans-
missions with the same appropriately-suited probability until the problem is solved. The AT
algorithm on the other hand is adaptive by repeatedly increasing an estimation of the messages
left and decreasing such an estimation by roughly one each time a message is delivered. (Even
if that successful transmission is due to the BT algorithm.)An illustration of the estimation
progress is depicted in Figure 1. Further details can be seenin Algorithm 1. Both algorithms

κ

eκ

k

log(1/ε)

4k

4k + log2(1/ε)

t

Fig. 1. Illustration of estimate progress.

are executed interleaving their communication steps (see Task 1 in Algorithm 1). For clarity,
each communication step is referred to by using the name of the algorithm executed at that step.
The following notation used in the algorithm is defined for clarity: β , e + ξβ , δ , 1 + ξδ,
τ , 300β ln(1/ε), ε , error probability,0 < ξδ < 1, 0 < ξβ < 0.27 and0 < ξt ≤ 1/2 are
constants arbitrarily close to0, and1/ξt ∈ N.

3 Analysis

For clarity, each of the algorithms comprising the protocolare first analyzed separately and
later put together in the main theorem. Consider first the AT algorithm. (Refer to Algorithm 1.)
Let κ̃ be called thedensity estimator. Let a round be the sequence of AT-steps between in-
creasings of the density estimator (Line 14). Let the roundsbe numbered asr ∈ {1, 2, . . .}



Algorithm 1 : Pseudocode for nodex.

upon message arrival do1

t← τ2

eκ← τ3

start tasks1, 2 and34

Task 15

foreach communication-step = 1, 2, . . . do6

if communication-step ≡ 1 (mod 1/ξt) then // BT-step7

transmit〈x, message〉 with prob1/τ8

else // AT-step9

transmit〈x, message〉 with prob1/eκ10

t← t− 111

if t ≤ 0 then12

t← τ13

eκ← eκ + τ14

Task 215

upon reception from other node do16

eκ← max{eκ− δ, τ}17

t← t + β18

Task 319

upon message delivery stop20

and the AT-steps within a round ast ∈ {1, 2, . . .}. (E.g., round1 is the sequence of AT-
steps from initialization until Line 14 of the algorithm is executed for the first time.) Let
κr,t, called thedensity, be the number of messages not delivered yet (i.e., the number of ac-
tive nodes) at the beginning of AT-stept of roundr. Let κ̃r,t be the density estimator used
at the AT-stept of roundr. Let Xr,t be an indicator random variable such that,Xr,t = 1
if a message is delivered at the AT-stept of round r, and Xr,t = 0 otherwise. Then,
Pr(Xr,t = 1) = (κr,t/κ̃r,t)(1−1/κ̃r,t)

κr,t−1. Also, for a roundr, let the number of messages
delivered in the interval of AT-steps[1, t) of r, including those delivered in BT steps, beσr,t.
The following intermediate results will be useful. First, we state the following useful fact.

Fact 1 [15, §2.68]

ex/(1+x) ≤ 1 + x ≤ ex, 0 < |x| < 1.

Lemma 1. For any round r where κ̃r,1 ≤ κr,1 − γ, γ ≥ δ(2− δ)/(δ − 1) ≥ 0, Pr(Xr,t = 1)
is monotonically non-increasing with respect to t for δ + 1 < κ̃r,t ≤ κr,t, and δ < (κr,t −
γ)(κr,t − γ − 1)/(κr,t − γ + 1).

Proof. We want to show conditions such that for anyt in round r, Pr(Xr,t = 1) ≥
Pr(Xr,t+1 = 1). If κr,t = κr,t+1 the claim holds trivially. Then, let us assume instead that
κr,t > κr,t+1. We want to show that

κr,t

κ̃r,t

(
1 −

1

κ̃r,t

)κr,t−1

≥
κr,t+1

κ̃r,t+1

(
1 −

1

κ̃r,t+1

)κr,t+1−1

.

Due to the BT-step between two consecutive AT-steps, at mosttwo messages are delivered in
the interval[t, t + 1) of r. Thus, replacing appropriately, we want to show that the following



inequalities hold.

κr,t

κ̃r,t

(
1 −

1

κ̃r,t

)κr,t−1

≥
κr,t − 1

κ̃r,t − δ

(
1 −

1

κ̃r,t − δ

)κr,t−2

, (1)

κr,t

κ̃r,t

(
1 −

1

κ̃r,t

)κr,t−1

≥
κr,t − 2

κ̃r,t − 2δ

(
1 −

1

κ̃r,t − 2δ

)κr,t−3

. (2)

Reordering 1,

κ̃r,t − δ − 1

κ̃r,t

(
κ̃r,t − 1

κ̃r,t

κ̃r,t − δ

κ̃r,t − δ − 1

)κr,t−1

≥
κr,t − 1

κr,t
. (3)

Using calculus, it can be seen that the left-hand side of 3 is monotonically non-increasing for
δ + 1 < κ̃r,t ≤ κr,t. The details are omitted for brevity. Then, given thatκ̃r,t = κ̃r,1 − σr,t ≤
κr,1 − σr,t − γ ≤ κr,t − γ, it is enough to show

κr,t

κr,t − 1
·
κr,t − γ − δ − 1

κr,t − γ
·

(
κr,t − γ − 1

κr,t − γ

κr,t − γ − δ

κr,t − γ − δ − 1

)κr,t−1

≥ 1. (4)

Again using calculus, it can be seen that the left-hand side of Inequality 4 is monotonically non-
increasing onκr,t for γ ≥ δ(2 − δ)/(δ − 1) andδ < (κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1).
The details are omitted for brevity. Then, it is enough to show that, in the limit, the left-hand
side of Inequality 4 tends to1. Which can be verified using standard calculus techniques. The
details are omitted for brevity. Using the same techniques,Inequality 2 can be shown to hold.

Lemma 2. For any round r where κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ ≥ 0 and for any AT-step
t in r such that

σr,t ≤ κr,1
lnβ − 1

δ lnβ − 1
−

(γ + τ + 1) lnβ − 1

δ lnβ − 1
,

the probability of a successful transmission is at least Pr(Xr,t = 1) ≥ 1/β.

Proof. We want to show(κr,t/κ̃r,t)(1−1/κ̃r,t)
κr,t−1 ≥ 1/β. Given that nodes are active until

their message is delivered, it is enough to show

κr,1 − σr,t

κ̃r,1 − δσr,t

(
1 −

1

κ̃r,1 − δσr,t

)κr,1−1−σr,t

≥ 1/β. (5)

Using calculus, it can be seen that the left hand side of Inequality 5 is monotonically non-
decreasing with restpect tõκr,1 under the conditions of the Lemma. The details are omitted for
brevity. Then, it is enough to prove Inequality 5 forκ̃r,1 = κr,1 − γ − τ .

κr,1 − σr,t

κr,1 − γ − τ − δσr,t
·

(
1 −

1

κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β

(
1 −

1

κr,1 − γ − τ − δσr,t

)κr,1−1−σr,t

≥ 1/β.



Given thatσr,t ≤ κr,1
ln β−1

δ ln β−1 − (γ+τ+1) ln β−1
δ ln β−1 < (κ̃r,1 − (γ + τ + 1))/δ, using Fact 1, we

want

exp

(
κr,1 − σr,t − 1

κr,1 − γ − τ − δσr,t − 1

)
≤ β

κr,1 − σr,t − 1

κr,1 − γ − τ − δσr,t − 1
≤ lnβ.

Manipulating the last expression, it can be seen that the lemma holds.

The following lemma, shows the efficiency and correctness ofthe AT-algorithm.

Lemma 3. If the number of messages to deliver is more than

M = 2
δ lnβ − 1

lnβ − 1
(

5∑

j=1

(5/6)j−1τ) +
((δ(2 − δ)/(δ − 1)) + τ + 1) lnβ − 1

lnβ − 1
∈ O(log(1/ε)),

after running the AT-algorithm for (e+ ξβ +1+ ξδ)k− τ steps, where ξβ and ξδ are constants
arbitrarily close to 0, the number of messages left to deliver is reduced to at most M with
probability at least 1 − ε, for ε ≤ 1/(n + 1).

Proof. Consider the first roundr such that

κr,1 − γ − τ ≤ κ̃r,1 < κr,1 − γ, γ = δ(2 − δ)/(δ − 1). (6)

By definition of the AT algorithm, unless the number of messages left to deliver is reduced
to at mostM before, such a round exists. To see why, notice in Algorithm 1that the density
estimator is either increased byτ in Line 14, or decreased byδ in Line 17, or assignedτ
in Line 3 or 17. After the first assignment, we haveκ̃1,1 = τ < κ1,1 − γ − τ , because
κ1,1 > M > 2τ + γ. We show now that condition 6 ofr can not be satisfied right after
decreasing the density estimator in Line 17. Consider two consecutive stepst′, t′ + 1 of some
roundr′ such that still̃κr′,t′ < κr′,t′ − γ − τ . If, upon a success at stept′ of r′, κ̃r′,t′+1 = τ
by the assignment in Line 17, andκr′,t′+1−γ− τ ≤ κ̃r′,t′+1, thenκr′,t′+1 ≤ τ +γ + τ < M
and we are done. If on the other handκ̃r′,t′+1 = κ̃r′,t′ − δ by the assignment in Line 17, then
κ̃r′,t′+1 = κ̃r′,t′ − δ < κr′,t′ − γ − τ − δ < κr′,t′+1 − γ − τ . Thus, the only way in which
the density estimator gets inside the aforementioned rangeis by the increase in Line 14 and
therefore roundr exists.

We show now that, before leaving roundr, at leastτ messages are delivered with high
probability so that in some future roundr′′ > r the conditionκr′′,1 − γ − τ ≤ κ̃r′′,1 <
κr′′,1 − γ holds again. In order to do that, we divide roundr in consecutive sub-rounds of
sizeτ, 5/6τ, (5/6)2τ, . . . (The fact that a number of steps is an integer is omitted throughout
for clarity.) More specifically, the sub-roundS1 is the set of AT-steps in the interval(0, τ ]
and, fori ≥ 2, the sub-roundSi is the set of steps in the interval((5/6)i−2τ, (5/6)i−1τ ].
Thus, denoting|Si| = τi for all i ≥ 1, it is τ1 = τ andτi = (5/6)τi−1 for i ≥ 2. For
eachi ≥ 1, let Yi be a random variable such thatYi =

∑
t∈Si

Xr,t. Even if no message is
delivered, roundr still has at least the sub-roundS1 by definition of the algorithm. Given that,
according with Algorithm 1, each message delivered delays the end of roundr in β = e + ξβ

AT-steps, fori ≥ 2, the existence of sub-roundSi is conditioned onYi−1 ≥ 5τi−1/(6β). We
show now that with big enough probability roundr has5 sub-rounds and at leastτ messages
are delivered. Even if messages are delivered in every step of the 5 sub-rounds (including



messages delivered in BT-steps), given thatκr,1 > M , the total number of messages delivered

is less thanκr,1
ln β−1

δ ln β−1 −
(γ+τ+1) ln β−1

δ ln β−1 becauseγ = δ(2−δ)/(δ−1). Thus, Lemma 2 can be
applied and the expected number of messages delivered inSi is E[Yi] ≥ τi/β. In order to use
Lemma 1, we verify first its preconditions. If, at any stept, κr,t ≤ M , we are done. Otherwise,
we know thatκr,t ≥ κ̃r,t > δ + 1 and(κr,t − γ)(κr,t − γ − 1)/(κr,t − γ + 1) > δ. Given that
γ = δ(2 − δ)/(δ − 1), by Lemma 1, the random variablesXr,i are not positively correlated,
therefore, in order to bound from below the number of successful transmissions we can use the
following Chernoff-Hoeffding bound [16]. For0 < ϕ < 1,

{
Pr(Y1 ≤ (1 − ϕ)τ1/β) ≤ e−ϕ2τ1/(2β)

Pr(Yi ≤ (1 − ϕ)τi/β|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2τi/(2β), ∀i : 2 ≤ i ≤ 5.

Takingϕ = 1/6,

{
Pr(Y1 ≤ 5τ1/(6β)) ≤ e−ϕ2300 ln(1/ε)/2

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) ≤ e−ϕ2(5/6)i−1300 ln(1/ε)/2, ∀i : 2 ≤ i ≤ 5.

{
Pr(Y1 ≤ 5τ1/(6β)) < e−2 ln(1/ε)

Pr(Yi ≤ 5τi/(6β)|Yi−1 ≥ 5τi−1/(6β)) < e−2 ln(1/ε), ∀i : 2 ≤ i ≤ 5.

Given thatε ≤ 1/(n + 1) andk ≤ n, then it holds thatε2 + kε ≤ 1 which implies
that ln(1/ε) ≥ ln(ε + k), thereforee−2 ln(1/ε) ≤ e− ln(ε+k)−ln(1/ε) = ε/(ε + k). So, more
than(5/(6(e + ξβ)))τi messages are delivered in any sub-roundSi with probability at least
1 − ε/(ε + k). Given that each success delays the end of roundr in β = e + ξβ AT-steps, we
know that, for1 ≤ i ≤ 4, sub-roundSi+1 exists with probability at least1−ε/(ε+k). If, after
any sub-round, the number of messages left to deliver is at most M , we are done. Otherwise,
conditioned on these events, the total number of messages delivered over the5 sub-rounds is
at least

∑5
j=1 Yj >

∑5
j=1(5/(6(e + ξβ)))j(e + ξβ)j−1τ = (τ/(e + ξβ))

∑5
j=1(5/6)j > τ

becauseξβ < 0.27.
Thus, the same analysis can be repeated over the next roundr′′ such thatκr′′,1 − γ − τ ≤

κ̃r′′,1 < κr′′,1 − γ. Unless the number of messages left to deliver is reduced to at mostM
before, such a roundr′′ exists by the same argument used to prove the existence of round r.
The same analysis is repeated over various rounds until all messages have been delivered or
the number of messages left is at mostM . Then, using conditional probability, the overall
probability of success is at least(1 − ε/(ε + k))k. Using Fact 1 twice, that probability is at
least1 − ε.

It remains to be shown the time complexity of the AT algorithm. The difference between
the number of messages to deliver and the density estimator right after initialization is at most
k − τ . This difference is increased with each message delivered by at mostδ − 1 and reduced
at the end of each round byτ . Therefore, the total number of rounds is at most(k − τ +
(δ − 1)k)/τ = δk/τ − 1. Each message delivered adds only a constant factorβ to the total
time, whereas the other steps in each round add up toτ . Therefore, the total time is at most
(β + δ)k − τ = (e + ξβ + 1 + ξδ)k − τ .

The time efficiency and correctness of the BT algorithm is established in the following lemma.
The proof, omitted for brevity, is a straightforward computation of the probability of some
message not being delivered.



Lemma 4. If the number of messages left to deliver is at most

M = 2
δ lnβ − 1

lnβ − 1
(

5∑

j=1

(5/6)j−1τ) +
((δ(2 − δ)/(δ − 1)) + τ + 1) lnβ − 1

lnβ − 1
,

there exists a constant c > 0 such that, after running the BT-algorithm for c log2(1/ε) steps,
all messages are delivered with probability at least 1 − ε.

The following theorem establishes the main result.

Theorem 2. For any one-hop Radio Network, under the model detailed in Section 1, Algo-
rithm 1 solves the k-selection problem within (e + 1 + ξ)k + O(log2(1/ε)) communication
steps, where ξ > 0 is any constant arbitrarily close to 0, with probability at least 1 − 2ε for
ε ≤ 1/(n + 1).

Proof. From Lemmas 3 and 4, and the definition of the algorithm, the total time is(e + 1 +
ξδ + ξβ)k/(1− ξt) + O(log2(1/ε)). Given thatξβ , ξδ, andξt are positive constants arbitrarily
close to0, the claim follows.

4 Conclusions and Open Problems

The general problem of enabling an unknown number of contenders the access to a shared
resource was studied in this paper. The results obtained pertain to a problem of broadcast-
ing information in a multiple-access radio-channel, but they may be straightforwardly applied
to any setting that supports the same model. The specific problem studied here,k-Selection
in Radio Networks, was previously studied in the literature, but assuming that a tight upper
bound on the number of contenders is known. Thus, a crucial contribution of this paper was
the removal of such assumption, consequently widening the scope of application of the pro-
tocol presented. Furthermore, we have assumed that messages are assigned to all nodes at the
same time, increasing the potential contention for the channel with respect to scenarios where
messages might arrive sparsely. To avoid collisions resulting from that contention it would be
useful to have a mechanism to detect them at each node. However, we studied a more challeng-
ing scenario where only the transmitter of a message knows ifit was the only one to access
the channel in a time slot or not. Nonetheless, even under allthese challenging conditions, the
bound shown is asymptotically optimal for any sensible error-probability bound. To the best
of our knowledge, thek-Selection protocol presented in this paper is the first in the Radio
Networks literature that works in such conditions and is optimal.

A number of possible extensions of this work arise as naturalquestions that are left for
future work. First, different patterns of message arrivalscomprising specific application sce-
narios, such as Poisson arrivals and others, may also yield optimal bounds. Also, the protocol
presented here improves over previous work in adversarial packet contention-resolution thanks
to the adaptive nature of the protocol and the knowledge ofn. Therefore, the question of how
to solve the problem optimally in settings where nodes don’teven known or the feasibility of
a non-adaptive optimal protocol are also important. Finally, the experimental evaluation of the
protocol presented here, or others resulting from the abovementioned future work, would be
useful for comparison with heuristics currently in use.
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15. D. S. Mitrinović.Elementary Inequalities. P. Noordhoff Ltd. - Groningen, 1964.
16. M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Proba-

bilistic Analysis. Cambridge University Press, 2005.
17. D. E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.SIAM

Journal on Computing, 15:468–477, 1986.


