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Abstract

Random walks are gaining much attention from the networks research catyniirey
are the basis of many proposals aimed to solve a variety of network-relatieléims such
as resource location, network construction, nodes sampling, etc. Thieshtn random
walks is justified by their inherent properties. They are very simple to impleagenbdes
only require local information to take routing decisions. Also, random wadieand little
processing power and bandwidth. Besides, they are very resilieratgel on the network
topology.

Here, we quantify the féectiveness of independent random walks (i.e, random walks
that have statistical properties identical to the random sampling) as a seaottanism
in one-hop replication networksetworks where each node knows its neighbors’ iden-
tity/resources, and so it can reply to queries on their behalf. Our modesdecon esti-
mating the expected average search time of the random walk by applyingrkeuwening
theory. To do this, we must provide first the expected average seagthlé his is com-
puted by means of estimations of the expected average coverage ategaghtse random
walk for all random walks in all random networks with a given degree itigion. This
model takes into account thevisiting gfect the fact that, as the random walk progresses,
the probability of arriving to nodes already visited increases, which impactsow the
network coverage evolves. That is, we do not model the coveragmamaryless process.
Furthermore, we conduct a series of simulations to evaluate, in practicabtive men-
tioned metrics. Our results show a very close correlation between the aabbid the
experimental results.
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1 Introduction

Random walksare a mechanism to route messages through a network. At each
hop of the random walk, the node holding the message forwatdsome neigh-

bor chosen uniformly at random. Random walks have interg@gtioperties: they
produce little overhead and network nodes require onlyl im¢armation to route
messages. In turn, this makes random walks resilient toggsaon the network
structure. Thanks to these features, random walks areldeefdifferent applica-
tions, like routing, searching, sampling and self-stahtiion in diverse distributed
systems such as Peer-to-Peer (P2P) and wireless netwed@®][1

Past works have addressed the study of random walks. Sorhesatsearch has
focused on the coverage problem, trying to find bounds foekpected number of
hops taken by a random walk to visit all vertices (nodes) imaply G (Cg) [11-
14]. Results vary from the optimé&ls of complete graph®(nlogn) [11] (wheren
is the number of vertices) to the worst case found in thegopigraph®(n®) [15].
Barnes and Feige in [16] generalize this bound to the expeuistber of hops to
cover a fraction { < n) of the vertices of the network, which they foundagf3).
Other works, for example, are devoted to find bounds on theagd number of
steps before a given nodas visited starting from node(H; ;). For example, it is
known that the upper bound fbt; ; is ®(n®) [17]. Many of these results are based
on the study of the properties of the transition maRiand adjacency matri& in
spectral form [18].

The previous results are used in several works to discugsrtiperties of random
walks in communication networks. Gkantsidis et al. [19]lgfghem to argue that
random walks can simulate random sampling on P2P netwonkspeerty that in
their opinion justifies the ‘success of the random walk méthhen proposed as
a search tool [3] or as a network constructing method [9].rAideet al. [20] study
the search process by random walks in power-law networkyiaghe generating
function formalism. This work seems deeply inspired by asjanes contribution of
Newman et al. [21], who study the properties (mean compaosizaf giant compo-
nent size, etc.) of random graphs with arbitrary degreeildigton.

This paper introduces a study of random walks fromfedent perspective. It does
not study the formal bounds in the amount of hops to cover éteark. Instead, it
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tries to estimate thefigciency of the random walk as a search mechanism in com-
munications networks, applying network queuing theoryakes into account the
bounded processing capacities of the nodes of the netwarkharoad introduced
by the search messages, that are routed using random walkdtdin this load,
we need to estimate first the average search length, tha¢ iant to quantify the
expected number of hops a random walk requires to find a gigda.nrhis expec-
tation is taken over all random networks with a given degris&idution and all
random walks in these networks. The average search lengtmputed from the
expected average coverage: the average numbeffefatit nodes covered at each
hop of the random walk. A distinguishing feature of our wagkhat, as in the case
of Adamic et al. [20], it deals with a scenario that has notbesry exhaustively
explored although, in our opinion, is quite interestinghe tommunications field:
one-hop replication networks

One-hop Replication One-hop replication networks (also callledkahead net-
works[22]) are networks where each node knows the identity ofeigimbors and
so it can reply on their behalf. Hence, to find a certain node lbgndom walk it
sufices to visit any of its neighbors. This feature is presenef@mple in social
networks, where to find some person it is usually enough tatéany of hehis
friends [20]. Also, certain proposals to improve the reseuocation process on
P2P systems [2, 23] (some based on random walks) assumetthahede knows
the resources held by its neighbors, so to discover somenas¢such as a file or
a service) it stlices to visit any of the neighbors of the node(s) holding it.

In one-hop replication networks, when the random walk sistme nodewe say
it alsodiscoverghe neighbors of. Hence, we will use two dierent terms to refer
to the coverage of the random walk. We denotevisjted nodeghose that have
been traversed by the random walk, anddoyered nodethe visited nodes and
their neighbors. See Figure 1 for an illustrative example.

Previous Work and the Revisiting Effect There is some research work related
with the characterization of random walks in one-hop repian networks. In [24]
the authors prove that in the power-law random graph the atmmiuhops for a
random walk to discover the graph is sublinear (faster tlmaupon collection, with
which the random walk is compared in [19]). Also, Manku et[2R] study the
impact of lookahead on P2P systems where searches are thovegh greedy
mechanisms. In another work, Adamic et al. [20] try to findlgieal expressions
for Csthe cover time of a random walk in power-law networks with tiaaps repli-
cation. They detected divergences between the analytiedigtions and the ex-
perimental results. The reason for such discrepancy, aauthers point out, is the
revisiting gfect which occurs when a node is visited more than once. In small-
world networks, where a small number of nodes are conneotether nodes far



more often than the rest, it is quite common for random wadké@git often these
highly connected nodes.

Our Contributions Although there is a plethora of interesting results abomt ra
dom walks, we have noticed that there are situations whemermufindings are
not straightforward to apply, especially on communicatietworks with one-hop
replication. For example, in such networks, we can be isteceon studying be-
forehand the expected behavior of the random walk to ewalfidtsuits the system
requirements. We characterize the random walk performayéeur values:

e The expected coverag&iven by the expected number of visited and covered
nodes of each degrdeat each hop of the random walk.

e The expected average search lendikpected length of searches in number of
hops, assuming that the source and destination nodes okeaoth are chosen
uniformly at random. Obtained from the coverage estimation

e The expected average search durati@xpected time to solve searches. Ob-
tained from the average search length, givenglaessing capacitpf each
node and théoad on the network due to queries.

e The maximum load that can be injected to the netwatkout overloading it.

In this work we provide a set of expressions that model theatieh of the ran-

dom walk and give estimations for the three previous parareeThis analysis is
based on a set of premises: a fast convergence to the statidis&ribution; the

independence of neighbors degrees; and finally the idéndetzavior of random
walks with respect to independent sampling. Thus, we assbateandom walks
behave asndependent walkgi.e., we model random walks as a process similar to
the random sampling of nodes, where the probability of cimgpa certain node
is proportional to its degree). The model introduced heddshdagorously under
independent walks since, as we discuss and support by siongan Section 2.1,
this approach provides a good characterization of randohksvila many relevant
networks.

Our claim is that these expressions can be used as a matbaihtadl to predict

how random walks will perform on networks of arbitrary degdéstribution. Then,

we do not only address the coverage problem (i.e. to estithatamount of nodes
covered after each hop of the random walk), but we also apjpdyiqg theory to

model the response time of the system depending on the leaseAshow, this

approach allows to compute in advance important magnitsiles the expected
search duration or the maximum load that can be managed etivrk before

getting overloaded. Additionally, we find our model useflstudy how certain
features of the network impact on the performance of seardf@ example we
find that the best average search time is achieved only if tueswith higher

degrees have also greater processing capacities.



The expressions related with the estimation of covered s\atleach hop are the
most complex part of the model. They must deal both with thesloop replication
feature and the revisitinglect. However, we should remark that the model can be
trivially adapted to networks where tl@e-hop replicatiomproperty does not hold,
and the search finishes only when the node we are searchimgftarnd (see the
last paragraph in Section 2.4).

Likewise, it is easy to modify the model to a variation of tle@dom walk where
each node avoids sending back the message to the node tegdefrom at the
previous hop. We denote this routing mechanaroiding random walksand we
deem it interesting for two reasons. First, intuitivelyshiould improve the random
walk coverage (we have confirmed this experimentally). 8dcd can be imple-
mented in real systems using only local information, jushaspure random walk
(the sending node only needs to know from which neighbor tleesage came
from).

A feature of our proposal is that it does not require the cetephdjacency matrix
A, that in some situations could be unknown. Instead, thamkbd randomness
assumption we apply it only needs the degree distributiain@ihetwork to com-
pute the metrics we are interested in. On the other handwitik is focused on
networks with good connectivity and where the nodes degreemdependent (see
Section 2.1).

Another property of this model is that it takes into accounat tevisiting &ect by
modeling the coverage of the random walk at eachltdgpending on the coverage

at the previous hop- 1. That is, the evolution of the coverage is not assumed to be
a memoryless process, a simplification that can lead tosa®seen in [20].

The rest of the paper is organized as follows. Section 2dlites our analysis of
the coverage and average search length of random walkgy afitim some exper-

imental evaluation. Section 3 is centered on obtaining tteeage search time of
random walks. Finally, in Section 4, we state our conclusiand propose some
potential future work.

2 Analysisof Random Walks

In this section, we analyze the behavior of random walks litiary networks.

2.1 Model and Assumptions

We will represent networks by means of undirected grdphs(V, E), where ver-
ticesV represent the nodes and edges V xV are the links between nodes. There
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Fig. 1. lllustrative example of visited and covered nodes

are no links connecting a vertex to itself, or multiple edgesveen the same two
vertices. This does not simplify our model, but makes itetds real scenarios like
typical P2P networks. We denote M = nthe number of nodes in the graph and
by n, the number of nodes that have degkgge., the number of nodes that have
k neighbors}’, knc = 2|E|). For all vertices its degrdeis lower than the size of the
networkn, as in typical real world networks (such as social and puie iworks)
each node is connected to only a subset of the other vertick®isystem. We
also denote byy the probability that some node in the network, chosen umifpr
at random, has degrédi.e., px = ng/n). The average degree of a network is given
by k = 3, k p.. For a given network, the distribution formed by the proliies py
(for all k) is known as thelegree distributiorof such a network.

A random walk ovelG can be defined asMarkov Chain[15] processVig where
the transition matriP = [P;;] is defined as:

1 . . .
p, = (3 "-DeE ()
0 otherwise.

wherePj; is the probability of moving from nodeto nodej, andd(i) is the degree
of nodei. P allows to study the probability of visiting each node at eaop|.
This probability is expressed in thstate probability vectard = (d. db, ....d),
whereq represents the probability that the random walk visits ricaténopl. This
probability evolves ag = g ~*P.

Assuming that is connected and finite, thévig is irreducible: any node can be
reached from any other node, and the average path lengtle®etwo any nodes is
finite. Assuming also thds is non-bipartite, then we can state tihd¢ is aperiodic

2 Some P2P networks like Napster have a central node that network mensieeis lo-
cate files. But those networks are not considered as pure P2P syseausé they use a
typical server-client architecture with a centralized topology to perfaanches. They are
regarded to have a “P2P” behavior only in the way files are shared.wdnis is rather
focused on the decentralized topologies of pure P2P networks



and so we are able to apply tir@indamental Theorem of Markov Chaifisb].
This theorem states that in such gralgly is ergodic and exists a unique state
probability distributionsr, denoted thestationary distribution such thattP = m,

n = (mq, o, ..., ), Wherer; is:

_d()
i = 2|E| (2)
Intuitively, = represents the steady stateM§. That is,n; represents the proba-
bility that the node is visited at any hop of the random walk once the stationary
distribution has been reached. This probability is prdpoel to the degree df,

d(i).

Mixing Rate and Conductance We are interested on how fast the random walk
converges tar, a magnitude that is called timeixing rate[18].

The convergence rate is related with the eigenvalues ofrémsition matrixP. A
vector X is aneigenvectorof P with eigenvaluel iff XP = AX (so for exampler
is an eigenvector dP with eigenvalue 1). It is well known [18] th& hasn real
eigenvaluesly = 1 > A; > ... > A,1 > -1 (and in fact, ifG is non-bipartite
thena,_; > -1). Itis also known [25] that the convergence raterts governed
by the second largest eigenvalue modulu®omaxX11, [1,_1]}. In most real world
networks we can safely assume that- |1, 41| [18,19,25]. The following holds for
a random walk starting at nod¢18]:

POG) — 7l < %za, 3)

whereP!" is the distribution of the state of the random walk at hoheni is the
initial state. Thus, we can expect a fast mixing for high eslof thespectral gap
1- 1.

Now, theA; value is strongly related with theonductancef the network ®g. In-
formally, the conductance measures how well ‘connectelgtiaph is. It is defined
as follows. ForS c V, the cutset of5, C(S), is the set of edges with one endpoint
in S and the other endpoint i. The volume ofS, vol(S), is defined as the sum
of degrees of the nodes 8 i.e., voIS) = } s d(i). Then the conductance Gfis
computed as:

IC(S)I
vol(S)’

DG =
ScV
vol(S)<vol(V)/2

(4)



The relationship between the conductance and the convagggiven by the fo-
llowing expressionCheeger’s inequalify[18]:

05
7$1—/11SZCDG. (5)

Soa good conductance leads to high mixing ratéet is, the random walk state
will converge quickly to the stationary distributian The intuition behind this fact
is that in graphs with good conductance the random walk veilable to move to
any region of the graph easily, whichever the origin nodel sm it will evolve
quickly to the equilibrium. We reason that high connecyivg to be expected in
many real world networks (specially communication netvgdiknd network mod-
els [26—28]. We should note that, on the other hand, the goodwctance property
discards some topologies such as cycles. This fast comeggse necessary to as-
sume the validity of Eq. 2 from the initial steps of the randealk, which in turn
is required by our model. In Figure 2 we show how Eq. 2 holdsHatos-Renyi
and small-world networks built by random mechanisms, whiehthe main focus
of our experimental validation of the proposed model (sexi@®2.5). So, our first
assumption is:

Assumption 1there is a fast convergence of the random walk to the stationa
distributionzr, where Eq. 2 holds.

Another issue to be taken into account is the possible depmies between the
degrees of neighbors. For example, networks built by peeteal mechanisms such
as those defined by Baradi [31] present such dependencies. As we will see in
Sec. 2.5, this can lead to certain deviations in mean-basalgsas of the random
walk (as our own). Our model applies the following premise:

Assumption 2the degrees of neighbors are independent. That is, giverivany
connected nodesand j ((i, j) € E) and any two degree valuds andk,, then
Pld(i)=ki | d(j)=ko] = P[d(i)=ki] = Py

There is another premise needed for our model. Our analySiaates the average
number of nodes visited and covered by the random walk attaiodrop from
the values estimated at the previous hop. The new estimiatialid if there is no
dependency between consecutive steps of the random watkistithe following
must hold:

Assumption 3the random walk has statistical properties identical tordrelom
sampling (i.e. independent walk) of nodes where the pradibabf choosing a cer-

tain node is proportional tky despite the apparent dependencies between consecu-
tive hops

The work by Gkantsidis et al. [19] shows the similaritiesvetn independent
sampling and random walks, that we assume for our mean baséygsis. As the



authors state, in networks with good connectivity and egmamproperties (which
are strongly related td,) the random walk has a behavior close to independent
sampling, being the probability of choosing some node priopaal to its degree.

Now, given Eq. 2 we state that the probability that the nodéed by the random
walk has degre& at each hop of the random walR(k), is also proportional td
and can be computed as:

~ di) =k kp
Pl = ZV 26l - "Sm T Tk ©)
d(i)=k

We will apply Equation 6 intensively for our analysis of thm/erage. Of course, as
emphasized before, its correctness depends on the disiatioee random walk to
the stationary distribution, or how fast it converges td\e would like to remark
that the property expressed by Equation 6 is in fact assumeguevious works
about random walks (e.g., [20, 21]) and backed by [19].

This property holds in networks built by random mechanisiike, the ones used

to built the ER and small-world networks we target in our ekpents. We have
studied the validity of Eq. 6 by comparing the results ol#dimunning several
random walks on dilerent random networks (again, Erdos-Renyi and small-world
networks built using random mechanisms) and the valuesidiyd>(k) definition.

First, we confirm that the degree independence assumpti@hids by simulations
that aim to measure if the probability of reaching a node gfélek when following

a random walk is fiected by the degrdé of the node the random walk was in the
previous hop R(k/k’)). Our results, shown in Figure 3, lead to the conclusion tha
Yk, k’P(k/K’) is constant (this constant value is tR&) predicted by the model),
that is,k’ does not have an impact ¢&nObserve that these values are the average
over a large number of walks. In a particular walk and netytr& probability of
reaching a node of a given degree will depend on the node atwthe walk is.
However, as mentioned before, we are interested in expgatads averaged over
all random networks and random walks. Now, in Figure 4 we cortie validity of
Eq. 6 by showing that almost immediately after hop 0 (stade)pthe probability

of reaching a node of degrées P(k). Please note that this does not imply that the
stationary distribution has been reached at hop 1, instezsktresults are due to
the randomness of the networks used.

In the following, we study how many fierent nodes are visited by a random walk
as a function of its length (i.e., of the number of steps takel of the degree dis-
tribution of the chosen network. Subsequently, we extersddsult to also consider
the neighbors of the visited node. These metrics allow usiemtify how much of

a network is being “known” throughout a random walk progr&seen, we turn our
attention to provide an estimation of the average seargjthent a random walk.
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(a) Erdos-Renyi networks. (b) Small-world networks.

Fig. 2. In these figures, we show the probability of a search messagegat a particular
node as a function of its degree. For each deduebe probability of visiting a certain
nodei of degreed(i) = k is computed aﬁ%. Each dot in the figure represents the mea-
sured probability of reaching a certain nade any hop of a ramdom walk, its position in
the x-axis given by its degred{i). This probability is computed b%. We have
used both Erdos-Renyi and small-world (power-law) networks forme8®000 nodes,
with different average node degrees (10, 20 and 30), and built by randohamems (see
Section 2.5). In each network, @0 random walks were run, each, 000 hops long (so
Total hops= 100- 10f). Each random walk was started from a node choosen uniformly
at random from the set of nodes in the graph. The same experimentbdmv@erformed
with networks formed by 2800 and 100000 nodes, and we found similar results. As it
can be readily seen, the probability of a search message arriving atieulga node is
proportional to the degree of the node, as defined in Eq. 2.
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(a) Erdos-Renyi networlk = 30. (b) Small-world networkk = 10.

Fig. 3. These figures compare the probabiftk) of reaching a node of degr&eas defined
by the model P(k) = kTp‘), with the measured probability of reaching a node of de§gree
given that the rw comes from a node of degkéeP(k/k’). This probability is computed
by dividing the amount of visits to nodes of deglkeeoming from nodes of degrdé by
the total amount of visits to nodes of degieeBoth for ER and small-world networks
the experimental results are averaged over thrferdnt networks with the same average
degree and sizen(= 10°). In each network 100 random walks, 1000 hops long, were
run.

In the last subsection, we validate our analytical resuftsneans of simulations.
We assume that only the degree distributrand the sizen = |V| of the network
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(a) Erdos-Renyi networlk = 30. (b) Small-world networkk = 10.

Fig. 4. These figures compare the probabifitik) of reaching a node of degr&eas defined

by the model P(k) = kTp‘), against the measured probability that the node visited at hop
has degred, P(k/l). Both for ER and small-world networks the experimental results are
averaged over threeffierent networks with the same average degree andrsizésQ- 10%).

In each network 19random walks were run, each one 100 hops long. The measured prob-

ability P(k/I) was computed aB(k/|) = Yists 0 nodes of degrdeat hop!

are known.

Finally we should remark that, actually, our model holdsifatependent walks.
The purpose of this section was to shown how in certain nésvcandom walks

show properties identical to independent walks, which rmake analysis suitable
to the study of random walks under the assumptions listedealéan the other hand,
we have run some simulations (results are commented indBe2tb) that show

how in networks where random walks cannot be assumed to belsandependent
walks, there is a mismatch between the values predicted bynadel and the

results obtained by simulations.

2.2 Number of Visited Nodes

This metric represents the average number fiecent nodes that are visited by a
random walk until hog (inclusive), denoted by/'. Note that nodes may each be
visited more than once, but revisits are not counted.

To obtainV', we first calculate the average number dfafient nodes of degrde
that are visited by a random walk until hbfinclusive), denoted by}. We make a
case analysis:

e Whenl =0 (i.e., in the source node): Since the source node of theoranalk
is chosen uniformly at random, then the probability of stgre random walk at
a node of degrekis px. Therefore,

Ve =1p+0-(1-p) = pe (7)
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e Whenl =1 (i.e., at the first hop): Here we apply that the probabilityisiting
some node of degrdeat any hop is given b¥?(k) (Equation 6). This is based on
the assumption that the random walk behaves similarly tepeddent sampling
despite dependencies between consecutive hops (based] oseld Section 2.1).
We deem this premise to be reasonable even at the first sthgjes mndom
walk, due to the high mixing rates found in the type of netvgook which we
focus our work (again, see Section 2.1). Recall that the @xjetal evaluation
both of this assumption (Fig. 2) and of our model (shown inti8a.5), seem
to verify this. Thus, we have that

Vi = V¢ + P(K)

K p (8)
+ —.
Pk ”

e When!| > 1: we must take into account the probability of the randomkwal
arriving at an already visited node. To compute such a pribtyalwve define the
following two values:

- Py(k,1): This represents the probability that, if the random walkvas at a
node of degre& at hopl, that node has been visited before. It can be obtained
as follows:

V|—2
P(k1) = —*. 9)
Nk
Note that we puv/, 2 instead ofv, ! because the node visited at hiop 1
can not be visited at hdp(no vertex is connected to itself).

- Pp: This is the probability that at any given hop the random walknoving
back to the node where it came frdmSince any visited node has degiee
with probability P(k), then the random walk will go back through the same
link from which it came with probability k. Therefore, we have:

1 1
P, = ; PR = - (10)
Using these probabilitieS(,'< can be written as
Vi = Vit + PR(L - Po)(L - Pu(k. 1))
V-2 11
= v'k-1+kTp<(1—%)(1—L). (D)
k k Nk

Finally, taking the results obtained in Equations 7, 8 andnie have that the total

3 Here we can easily adapt the model to #widing random walklf we don’t want to
consider the case of a random walk moving back to the node where it cameifris
enough to assigRy, = 0.

12



number of diferent nodes visited until hdps

Vo= Zv'k. (12)
k

2.3 Number of Covered Nodes

This metric provides an estimation of the average numbeifigrént nodesovered
by a random walk until hop (inclusive), denoted b¢'. A node is covered by a
random walk if such a node, or any of its neighbors, has bestediby the random
walk.

To obtainC', we first calculate the number offtérent nodes of degrdecovered
at hopl, denoted byC,.

e Whenl = 0:

C¢

P(1+kP(K) + > pj Pk
‘ ; | (13)

= V2 + P(K) k.

The first term takes into account the possibility that there@unode has de-
greek. The second term refers to the number of neighboring nodéls€source
node) of degre&. If the source node has degrg@vhich happens with probabil-
ity p;) then, on averagg,P (k) nodes of degrekwill be covered, since each one
of the j neighboring nodes of the source node will have degreih probability
P(K).

e Whenl > 0: Given a link ¢, w) € E, we say that it has two endpoints, which are
the two ends of the link. We denote the endpoint of the linkatev by v (w),
and similarly the endpoint of the link at nodeby w (v). We say that (w) hooks
ontonodev. We also say that(w) has beercheckedby a random walk if such
a random walk has visited node These concepts are graphically explained in
Fig. 5.

Now, let us denote b the number of endpoints checked for the first time at
hopl, and byP,(k, I) the probability that these endpoints hook onto still urcov
ered nodes of degrée Then,C| (wherel > 0) can be written as follows:

Ci = Gt + Py I) E. (14)
- To obtainE', we consider the number offérent endpoints checked after Hop
to be}:; jV}. So, the number of endpoints checked for the first time atlh®p

zj(v} —V}‘l)j. However, one of the endpoints hooks onto the node the random
walk comes from (i.e., it cannot increase the amount of ntdusare covered).
Thus:
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d(b) i i i e(c)

Fig. 5. The figure shows a simple graph formed by 5 nodes (nangca, d ande) where
there is a random walk that follows the pathb—c—e. At each node, we represent the dif-
ferent "endpoints” that areookedon that node by means of small circles. For instance, the
endpointsa(b) anda(c) are said to be hooked onto nodeln the graph, when the random
walk starts (at nodd), then endpoinb(d) is said to bechecked Similarly, when it visits
nodeb, then endpointsl(b), a(b) andc(b) are said to be checked. The same mechanism
applies when the random walk visits noaesnde.

E = Z(v} ~VIT)(j - 1). (15)
j

- To obtainPy(k, 1), on one hand we consider the overall number of endpoints
hooking onto uncovered nodes of degkefist before hog is k(nx — C.-1).
On the other hand, the overall number of endpointg jg n;, and the overall
number of checked endpoints until hbp 1 (inclusive) is};; | V}‘l. That is,

the number of endpoints not checked just before hispy; j nj — X | V}‘l.
Therefore, we can write:
k (N —C/h)
Ziin =Xyivit
Substituting Equation 15 and 16 into Equation 14, we have tha

Pulk, 1) = (16)

k (N — C\%) )

Sin -3,V x )V -Vvi(G-1. @)
J

cL =cit + (
J

Finally, taking into account Equations 13 and 17, we havettietotal number of
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(a) Erdos-Renyi network. (b) Small-world network.

Fig. 6. In the Erdos-Renyi network most nodes have approximately the samber of
links. In contrast, the small-world network is heterogeneous: the majorityeafddes have
approximately the same number of links but a few nodes have a large nufitbeno

nodes covered after hdps

c = Zc‘k. (18)
k

2.4 Average Search Length

Using the previous metric, we are now able to provide an edtim of the average
search length of random walks, denoted blyormally,| is given by the following
expression:

I = i| P(l), (19)
1=0

wherePs(l) is the probability that the search finishes at hdpe., the probability
that the search is successful at hppaving failed during the previous- 1 hops).
Let us define th@robability of succesat hopl, denoted byP(l), as the probability
of finding, at that hop, the node we are searchingfgfl) can be obtained as the
relation between the number of new nodes that will be covatdtbpl, and the
number of nodes that are still uncovered at hophat is,

I ~l-1
Pl) = “ o (20)
Now, P¢(l) can be obtained as follows:
-1 | _ -1
Pil) = P [ |- Pi) = (21)
i=0

Therefore] can be written as
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| = 1i| (C'-C' ).
n 1=0

2.5 Experimental Evaluation

(22)

We have run a set of experiments to evaluate the accuracyy axpressions pre-
sented in the previous subsections. The results obtaireegrasented in this sec-

tion.

For our work, we consider two kinds of network: small-worldtworks (con-
structed as in [21]) and Erdos-Renyi networks (construcsad §30]).

e Small-world networkf21,31]. In [32] it is shown that many real world networks
present an interesting feature: each node can be reachmdfip other node in
few hops. These networks are typically denoted small-woettivorks. The In-
ternet, the Web, the Science collaboration graph, etc.xammpgles of real world
networks that are consistent with this property. This kihch@tworks are also
specially interesting for our work because here the rengsiéffect commented
in Section 1 is strongly present due to the uneven degrebdion. We build
small-world networks using the mechanism described in,[@4ich leads to
networks whose degree distribution follows a power-lawriiation p, ~ k™
(power-law networks).

e Erdos-Renyi (ER) random network30]. For two any nodeg j € V thereis a
constant probabilite that they are connected,({) € E). The resulting degree
distribution is a binomial distributiop ~ (E)c"(l — o)™k,

See Figure 6 for an illustrative example of both kinds of reks.
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Fig. 10. Covered nodeg}, fork = k+ 5 andk = k- 5.

Number of Visited and Covered Nodes Our first goal is to study the evolution
of the network coverage by random walks in real networks.

The experiments were run on networks of two sizes,5 -_104 andn = 10° nodes.
Networks were built using threeftierent average degreds= 10,k = 20 andk =
30. In each network we ran 4@andom walks of lengtim = |V|. The source node
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of each random walk was chosen uniformly at random. Fromxpereaments, we
obtained the average number of visited and covered nodesibbrdegrek at each
hopl. Finally, for each network, we extracted its degree distrdn n, and apply

the expressions described in the previous section to geidigion of those values,
given byVI'( andCI'(. Results are shown in Figures 7, 8, 9, and 10. For the sake of
clarity, the experimental results are shown every 2000 hodl figures. Model
predictions, on the other hand, are drawn as lines.

Figure 7(a) shows the evolution of the number of visited isadeER and small-
world networks of size = 5- 10* nodes, with two dferent average degrekes- 10
andk = 30. We see that, although the length of the random walks isignto
potentially include all the nodes, only a fraction of thera gisited. This happens
because of the revisitingtect, and it is more evident when the number of hops
increases, since the probability of revisiting grows whlke humber of hops. The
revisiting dtect is stronger in small-world networks than in random neksoThe
reason is the uneven distribution of the nodes degrees Hrersome nodes with
a very high degree that will be visited once and again by thdom walk. Thus,
the chances of finding new nodes at each hop are lowered fassenall-world
networks than in ER networks. Also, we observe in Figure @i in networks of
smallerk the revisiting &ect is stronger. Finally, Figure 7(b) shows the impact of
the network sizex on the amount of visited nodes. As expected, a grestaplies

a lesser number of revisits for the same number of hops. baa#s, the prediction
V! of the total amount of dierent nodes visited is very close to the experimental
results.

In Figure 8 we study the accuracy of the predictions of thewarhof visited nodes
of a particular degrek at each hop, V1|<- We draw the results and predictions of
degreek = k+ 5 andk = k-5, fork = 10,k = 20 andk = 30. Again, it can be
seen that the model predictions fit very well with the expenial results, despite
the revisits and the fferent behavior observed forffirent degrees.

Figure 9 gives the results of the experiments run to studgakierage of the random
walk. Figure 9(a) shows how the coverage grows faster inlsnald networks
than in ER networks for networks of the same average ddgrdéis contrasts
with the amount of visited nodes, that behave in the oppagitg (see previous
paragraphs). The reason is the presence of well-conneotigbnthat are quickly
visited during the first hops of the random walk and increasesiclerably the cov-
erage because of the high amount of neighbors they have x&ore, after 4000
hops, the random walk has covered about half of the smalldwwgtwork with
k = 10, while in the ER network of the sankehe random walk only has covered
close to 30% of the nodes. Moreover, we can see that the retwerage degree
has also an important impact on the coverage. In both kinettfarks the cover-
age grows faster when the average degree is higher. Besideshserve that the
difference of the coverage for both networks decreases mordyfoc a higherk.
Figure 9(a) confirms the importance of the average degreepaonng the results
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Fig. 11. Avoiding Random Walk, Visited and Covered No¥ésindC'.

for networks of diferent size an#l. In addition, Figure 9(b) compares the results of
the coverage for ER networks offfrent sizes and average degrees. As it could be
expected, the networks of smaller size require less hops tmered. We observe
also that the average degree has an important influence @ovtkeage dference.
The greater the average degree, the faster the coveragthafdtevorks converges.

In all cases, th€' values given by the model predict very well how the coverage
behaves and evolves.

Figure 10 allows to check the precision of the coverage ptiexis for diferentk
valuesC,. As before, the values provided are very close to the expariahresults,
although the behavior of the coverage changes stronglyndiépg on the kind of
network and average degree.

Finally, we check the model accuracy for random walks thaicathe previous
node, theavoiding random walkAs stated in Section 2.2, the avoiding random
walk can be easily implemented by our model just by setipg= 0 (see Equa-
tion 10). Results are shown in Figure 11. There we comparedherage of pure
and avoiding random walks in ER and small-world networksizné s = 10° nodes
and average degrde= 10. Figure 11(a) confirms that, as expected, the avoiding
random walk is able to visit a greater number dfelient nodes, as the revisiting
effect is, to a certain degree, lessened. However, Figure sh(ys that this has
little impact on the network coverage. We find that there iy @nsmall increase
on the amount of covered nodes when using avoiding randokswalr both kind

of networks. Nonetheless, in all cases YHeandC' values given by the model are
very close to real results.

Average Search Length  For the experiments regarding the average search length
we used networks whose sizes ranged fromt@@- 10° nodes. In each experiment
we ran 10 searches, averaging the obtained results. At each seachptles (one
corresponding to the source and the other to the destinatiere chosen uniformly

19



30000 T T T T T T T T T 20000

N 18000 | Small-world Net, k=10, Average Search Length ~ * +
ER Net, k=10, Average Search Length. ~ * N n Small-world Net, k=10, | —— - -
25000 | - et, r— Small-world Net, k=20, Average Search Length % p
ER Net, K=20, Average Search h X - 16000 - _'small-world Net, k=20, | =~~~
- ER Net, e / Small-world Net, k=30, Average Search Length. ~ *
ER Net, K=30, Average Search Length  * Smalloworld Net. k30, |~
ER Net, k=30, | =~ g '
14000 |
20000 . R
g & 12000
g 2
S 15000 - / 1 S 10000 1
] 3 s
£ / £
2 S 8000 R
z
10000 - e -
/’/ s 6000 - X
e .
. x e 4000 - [T . *
5000 - e X 4 ; [—
L o | = I
- L e 2000 X
o L% ) MR )

L L L L L L 0 . L L . L L
10 25 50 75 100 125 150 175 200 10 25 50 & 100 125 150 175 200

Network Size (Thousands of Nodes) Network Size (Thousands of Nodes)
(a) Erdos-Renyin = 10%, ..,2- 10 k = (b) Small-world;n = 10, ..,2-10° k =
10, 20, 30. 10, 20, 30.

Fig. 12. Average Search Length

at random. Starting from the source, a random walk travetteedetwork until the
destination node was found (i.e., a neighbor of the desbina visited).

The first thing to note is that the average search length gfimearly with the
network size in both ER and small-world networks. Besides aerage degrde
has an importantfiect on the results. The bigger thethe shortest the searches are.
The reason is that a highkimplies that at each hop more nodes of the network are
discovered. Also, it can be observed in Figure 12 that theageesearch length is
greater in ER networks than in small-world networks. This ba explained if we
take into account that random walks, on average, cover magesin small-world
networks than in ER networks (see Figures 9).

As in the previous experiments, Figure 12 also shows thaexperimental results
regarding the average search length correspond very @ddbe tanalytical results
that were obtained.

At this point, we would like to note that, given the assumpsiave made in our
analytical model, it seems that the very good match achiewtthe experimental
results could only occur if these assumptions are corresta Aatter of fact, we
have verified, in practice (see Figs. 2 and 3), that the typebfiorks we consider
in this paper, indeed, fulfill our assumptions.

On the other hand, it is clear that if we take into account pet&/that do not fulfill
some of our assumptions, then a certain mismatch shoulddee®ed. For instance,
networks built by preferential mechanisms are known notés@rve the indepen-
dence of degrees of neighbors [29]. Therefore, we shoul@inofor a very close
correspondence between analytical and experimentaltseSMé have performed
the same experiments we ran for random and small-world mksaregarding the
average search length, but this time with networks builbhgishe preferential at-
tachment mechanism proposed by Basil{31]. Now, we have observed that, as
expected, in preferential networks our experimental tesid not correspond very
close to the analytical results (see Fig. 13(a)). Instdalintodel seems to be con-
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Fig. 13. Average Search Lengtmot pure random networks.

sistently pessimistic. Also, the error continuously grawth the network size.

Finally, we have tested the model against Toroidal netwofkdifferent average
degreek = 10 (5 dimensions) ankl = 16 (8 dimensions). Our intention is to ana-
lyze networks which are not random at all. Results, which hosve in Fig. 13(b),
show a very clear mismatch among the results predicted bytiae| and the actual
performance of the random walk.

3 Duration of Searchesby Random Walks

In this section, we present the second part of our model. Wererovide useful
expressions that allow to predict the performance of ranaaiks as a search tool,
which is the main goal of this work. These expressions relthersame estimation
of the average search length (like the one described in thaqus section), that is
combined with Queuing Theory [33]. As a result, given thecpssing capacities
and degrees of nodes, we are able to compute two key values:

e Theload limit: the searches rate limit that the network can handle betditeas
tion.

e Theaverage search timehe average time it takes to complete a search, given
the global load.

Also, we show how these expressions can be used to analyzé ¥eatures a net-
work should have so random walks have a better performaree gearches are
solved in less time). In particular, we focus on studying riélationship between
degree and capacity distributions, showing that the mininsearch time is ob-
tained when nodes of higher capacities are also those oéhdgyrees.

In our analysis, networks are assumed taJaekson networkg33]: the arrival of
new searches into the network follows a Poisson distribudind the service at each
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node is a Poisson process.

3.1 Searches Length and Load on Nodes

Ouir first step is to set the relationship between the averegelses length and the
system load. Each search is processed, on averagktihes (once at the source
node, and once at each step of the random walk). Using thigawesxpress the
total load on all the nodes of the systeimas

A= (1+1)y, (23)
wherey is the load injected in the system by new searches, that weras$o

be known. Note thafl is composed of the new generated searchgsplus the
searches that move from one node to another, denotedt bience,

1=2 (24)
Y

To compute the load on each particular ngde;, let us take into account that the
probability that a random walk visits a node is proportiottathe node’s degree
(see Section 2). This implies that, for each nqde V, the load on nodg due to
search messages, denofgdis proportional to its degrelg. As a result, we have
that there is a value such thaty] = 7 kj, forall j. Henceyy’ = }; Yi=T d, where
dis the sum of all degrees in the network (ig= >, nk K). Therefore,

T = %/ (25)

Assuming that all nodes generate approximately the saméeauof new searches
(y/n), we can compute the average load at npds

y ki 1
/lj:Tkj+ﬁ:y[Fj+ﬁ)' (26)

where the first term represents the load due to search messagethe second
term to the searches generated at npd¢ote that any other search generation rate
model can be implemented just by changing the tgfm
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3.2 Average Search Duration

In order to obtain the average search duratignwe useLittle’s Law [33], which
states that

r=ryxT, (27)

wherer is the average number oésidentsearches in the network (i.e., searches
that are waiting or being served), ants the average number of searclgeserated
per unit of time (i.e., the arrival rate of searches). Obse¢maty is assumed to be
known. Hence, the challenge to compilites to obtainr. Letr; be the number of
resident searches in nogeThen,r = 3;r;.

To obtainrj, we applyLittle’s Law again, this time individually to each noge

r = /lj X Trl, (28)

whereT/ is the average search time at ngdend.; is the averagéoad at nodej,
which includes both searches generated at noded searches due to messages
from other nodes. Next we use that, Iackson’s Theorerf84] (recall we assume
the network to be a Jackson network), each npadan be analyzed as a single
M/M/1 queue with Poisson arrival ratgand exponentially distributed service time
with meanT{ (which can be computed from the node capacity, that we assoime
be known). Then:

T = , (29)

wherep; is the utilization rate and! is the average service time at nofleAs
pj = 4; T4, we can write

(30)



Once we hava; andT/, we can combine them to obtain

Y
12 .
== ) AT
Y =
]
1 A, T)
_)’Zj:l—/lesj (31)
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+
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Z‘(TJ (ki Tn+d) _y]_l'

That is, we have provided an expression that computesieage search time
using the topology, the average service times of nodes engdarch arrival rate.

3.3 Load Limit

Implicitly, in our previous results it has been assumed tlmahode is overloaded
(i.e.,4; < 1/T¢ for all j). Otherwise, the network would never reach a stable state.
Thus, a key value for any network is itsad limit: the minimum search arrival rate
(y) that would overload the network, denotedyy Clearly,y, = min;{ys} being

¥4 the minimum search arrival rate that would overload npde

From Equation 26, we have that

ly,
d

Y
i = k; = 32
=kt (32)
Also, since no node must be overloaded, it must be satisfatd th
1
/lj < —. (33)

T

Combining Equation 32 with Equation 33 we have that, for epdhe following
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Table 1

Capacity distributions
Percentage || Processing
of nodes || capacity
20% 1
45% 10
30% 100
4.9% 1,000
0.1% 10,000
1le+08 . , .
ER Net, k=30, Average Search Time "~
ER Net, k=10, Average Seé,lghly]ﬂfg e A
et, k=10, 1, EI - 2
E o e +
[ L
-5 = i:;*’*fii S i
§ 1e+07 | ﬁfff—fégf***ﬁ-«i T &
g -
g Small-world Net, k=30, Average Search Time =+
3 _ Small-world Net, k=30, T,
< Small-world Net, k=10, Average Search Time — *
Small-world Net, k=10, T, -8+~
1le+06

. . . . . .
0.15 0.3 0.45 0.6 0.75 0.9
Fraction of y,

Fig. 14. Average Search Times. For the analytical valig$, (ve used Equation 31,
taking into account thaf! follows an exponential distribution with averagg (i.e.,

T{ ~ Exponentialdj)), wherel; can be computed as the relation between the number
of resources known and their processing capacity.

must hold: d
y < +n (34)
TS (kj In+d)
Therefore, the load limit for nodgis
- dn
')/J =, (35)
Tl Tn+d)
and
o = minj— 940 L (36)
ATk In+d)

3.4 Experimental Evaluation
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Average Search Duration In this subsection, we present the results of a set of
experiments addressed to evaluate, in practice, the amgcafaour model for the
average search time. As in the previous experiments (S$e2tl), we conducted
extensive simulations over ER and small-world networks$.n&tworks are made
up of 10" nodes.

In each experiment, nodes generate new searches follovRegsaon process with
ratey/n, wherey is the global load on the network. When a node starts a search fo
a resource, it first checks whether it already knows thatureso(i.e., if the node
itself or any of its neighbors hold the resource). If so, tharsh ends successfully.
Otherwise, a search message for the requested resoureatscand sent to some
neighbor node chosen uniformly at random. When a node receigearch mes-
sage, it also verifies whether it knows the resource. If se,search is finished.
Otherwise, the search is again forwarded to another nergttimsen uniformly at
random. The experimental results are obtained by averagagesults that were
obtained.

We used six dterent global loadsy): 0.15xy,, 0.3X7,, 0.45Xy,, 0.6Xy,, 0.75Xy,
and Q9 x v,, wherey, is the minimum arrival rate that would overload the network
(see Section 3.3). The distribution of the nodes searchegsiitg capacitieg is
derived from the measured bandwidth distributions of Gllau{85] (see Table 1).
Capacities are assigned so that nodes with a higher degrggvarea higher ca-
pacity. All nodes are assumed to have the same number ofroeswu= 10, 000.
Each resource is held by one node, and all resources havartieegobability of
being chosen for search. The processing time at eachirfolievs an exponential
distribution with an average service time computedas- w k/c;. This average

is computed dividing the amount of resources checked fon saarch (the total
amount of resources knoww(k + 1), minus the resources of the node the search
message came fromj) by the node’s capacity.

For each load, we measured the average search times exp#iimnér each net-
work. Results are shown in Fig. 14. It can be seen that, as eqebe average
search time always increases with the load, undergoing lehigrowth when it
approaches the maximum arrival rate. Furthermore, ourrerpatal results show
a very close correspondence with the analytical resultsitbee obtained.

Load Limit We have computed thg, values for random and small-world net-
works with diferent average degrees. For each kind of network and aveeggeed
five networks were built with the capacity distribution prated in Table 1. Our
goal was to observe the variation of thefor networks of the same type akdand
also to study the dierence among thg, values depending on the network kind and
average degree.

Results, which are shown in Figure 15fdr for random and small-world networks.
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The first thing to note is that small-world networks can haralgreater load than
random networks.

Small-world networks present variations of thgvalues even for networks of the
same average degree. Despite this variation, it is cleathlkdoad limit tends to
grow with thek. The reason is that a greateimplies a smaller global load for
the same rate of queries injected to the system. Recall thabthl load is given
by (1+ I)y (Equation 23) and that higher average degrees lead to lagseage
searches lengthis(Figure 12(b)). Hence, it is possible to perform more querie
before overloading the network.

Erdos-Renyi networks however behave in a veryedent manner. They present
very little variations of the,, values. And, more surprising, there is a small decrease
of the load limit when thé grows. This contrasts with the behavior of small-world
networks. As it is shown in Figure 12(a), larger average eegrimply smaller
average searches lengths and so a smaller global load. ldowiesy, that can be
handled by the network does not change accordingly to thisréason seems to be
that in ER networks the load is more evenly distributed amuodes. This implies
that low capacity nodes have to handle an important amousgarfches. Besides,
a greater average degree impacts on the average serviessTfjiof these nodes,
as they know, and so they have to process, more resourcesgrehsHence, these
nodes keep being the bottleneck of the network despite tladlemaverage search
length, preventing the system to be able to handle a gresedr |

However, itis important to recall that these results are dise to the capacity distri-
bution used, and how it was distributed among the nodes. &ll-smorld networks,

if we assign low capacities to high degree nodes we can exbest to become
bottlenecks of the network that force smgjlvalues. In ER networks, adding more
high capacity nodes could change theéendency so it would grow with the average
degree. Exploring all these phenomena is beyond the scapesgfaper.

3.5 Optimal Relationship between Degree and Capacity Distions

In this section we show that, when there is a full correlabetween theapacity
of a node (i.e., the number of searches a node can processngeurtit) and its
degree, this leads to a minimal value of the average seanti.

Let us first state the relation we assume between the capgaityd the average
service timeT! of a nodej. We assume that the first is a parameter that does not
depend on the degree or the number of resources known by tlee and only de-
pends on the processor and network connection speeds. Waea#sat the second

is a strictly increasing function of the node’s degf¢k;). We assume that a node’s
service time is directly proportional to its degree and isedy proportional to its
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0.0005

ER Nety,
0.0004 | Small-world Net y,, mww

0.0003 -

0.0002 -

Load (Queries/Time Unit)

0.0001 -

k=10 k=20 k=30
Average Degree k

Fig. 15. Load limity,. Five different networks are created for each network type (ER or
small-world) and average degrkeThe resultingy, are shown grouped b

capacity as follows:

_ fk)

Let us now consider a pair of nodeg € V, such thak; > k (so f(k;) > f(k)),

and two possible positive capacitiesandc,, such that; > c,. We show that, if
no other degree or capacity assignment changes, hayiag; andc; = ¢, gives
a smaller average search tinlg, than the average search tini¢ with reverse
assignmend:’j = C; andc = ¢;.

Using Eq. 37, we obtain the following possible average sertimes:

C_HR) o f) (k)
Tsl— o TJ C—z’ Tsz— o (38)

i fk)
T, =—=

in which Ty, are the service times obtained with the first capacity agségn and
Ts. are the service times obtained with the second. From theeadguations, we
have

_ fk) f(kp)
G (39)

= T, Th,

TaTa

and

TI TI = (k.)

C1 Cz
-G
f (ki (40)
( ) s
Téz — Tél.

A
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Let 4; and; be the loads onand j. Sincek; < k;, thena; < 4;. Hence, from this
and Eg. 40, we find that

AT+ A Til < 4T, + 4 Tiz. (41)

To compute the valuek, andT/, we use Eq. 31

1
Tr:—ri+r,-+2rh; (42)
Y hi h# |
’ 1 ’ ’
T= S{r+r+ Yl (43)
Y hi h# |

wherer; andr; are obtained with the first capacity assignment gnahd I with
the second. Observe thgtremains the same for any nofighat is neithei nor
j, because its degree, load, and capacity are just the sarnetfocases. Hence, if
ri+rp<r{+rithenT, <T.

From Egs. 28 and 30, we obtain that

AT . 4T
1-4T, 1-4 T,

-2 /1i /lj Tis,l Tsjzl + /1i Tis,l + /11' Til
T+ 4 T T = T+ 4 T

ri+r;=
(44)

and
AT . AT
AT, 1T
—2 /h /11‘ Tis,2 TiZ +/1i Tia2 +/1j Tiz
1+4 4T, T_i;z ~ (AT, + A Tiz)’

(45)

Finally, applying Egs. 39 and 41, we conclude that
r+rp <ri+ri, (46)

and hence
T < T/. 47

This proves that, for a given degree distribution, the bestgpmance will be ob-
tained by assigning the largest capacities to the nodeghétlargest degrees. Note
that we have found a condition that is necessary in ordertgonathe minimum
possibleT,, once the degree distribution has been set. Howevierdnt degree
distributions can obtain very fierentT, values.
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4 Conclusions

In this paper, we have presented an analytical model thawslus to predict the
behavior of random walks. Furthermore, we have also peddrsome experiments
that confirm the correctness of our expressions.

Some work can be carried out to complement our results. Riamce, several
random walks can be used at the same time, a situation thigtloewsed to further
improve the @iciency of the search mechanism. These random walks could run
independently or, in order to cover separated regions orgthphs, coordinate
among them in some way.
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